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Abstract

This paper considers generalized method of moments (GMM) and sequential GMM (SGMM) esti-
mation of dynamic short panel data models. The efficient GMM motivated from the quasi maximum
likelihood (QML) can avoid the use of many instrument variables (IV) for estimation. It can be asymp-
totically efficient as maximum likelihood estimators (MLE) when disturbances are normal, and can be
more efficient than QML estimators when disturbances are not normal. The SGMM, which also incor-
porates many IVs, generalizes the minimum distance estimation originated in Hsiao et al. (2002). By
focusing on the estimation of parameters of interest, the SGMM saves computational burden caused by
nuisance parameters such as variances of disturbances. It is asymptotically as efficient as the correspond-
ing GMM. In particular, the SGMM based on QML scores can generate a closed-form root estimator for
the dynamic parameter, which is asymptotically as efficient as the QML estimator. Nuisance parameters
can also be estimated efficiently by an additional SGMM step if they are of interest.
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1 Introduction

Dynamic panel data (DPD) models are popular in empirical studies, as they control for unobserved in-

dividual effects and allow for state dependence. Due to individual effects and dynamic feature, maximum

likelihood (ML) and quasi-maximum likelihood (QML) estimations of fixed effects DPD can cause an inci-

dental parameter problem (Nickell, 1981; Hsiao, 1986), and the magnitude of the bias is of the order O(1/T )

where T is the number of time periods. To avoid the incidental parameter problem, the estimation method

of instrumental variables (IV) is popular (see Anderson and Hsiao, 1981; Arellano and Bond, 1991; Arel-

lano and Bover, 1995; Blundell and Bond, 1998; Bun and Kiviet, 2006, etc). When observations of panels

∗Corresponding author. E-mail address: jihai.yu@gmail.com.

mailto:jihai.yu@gmail.com


over time periods are short, instead of the IV method, another approach is to specify the initial condition

and apply the QML estimation as in Hsiao et al. (2002), where individual effects are eliminated by first

differences. In the current paper, we focus on dynamic panels with short time periods, and aim to estimate

those panel models by the generalized method of moments (GMM) and sequential GMM (SGMM), where

the information of initial conditions is critical and can be utilized to improve the efficiency of estimates. The

GMM and SGMM are also applied to dynamic panel data models with time-varying exogenous variables.

With properly designed moment conditions, GMM estimates can be asymptotically as efficient as maxi-

mum likelihood (ML) estimates under normal disturbances but might be relatively more efficient than QML

estimates when model disturbances are not normal.1 For some situations, a GMM estimation approach can

be relatively computationally simpler than the ML or QML estimates. Furthermore, in the existing litera-

ture, while the model is estimated by IV methods, there could be an issue on using many IVs as those many

IV estimates might have large asymptotic biases. Such a problem can be overcome by a properly designed

GMM estimation with a finite number of moments. Best GMM moments may also be constructed under

some circumstances.

For DPD models that have not achieved stationarity due to a finite starting period, the variance of

the initial starting period of the dependent variable will be a free parameter. With an initial consistent

estimate of such a variance parameter, a minimum distance (MD) estimation method has been considered

in Hsiao et al. (2002). However, the asymptotic distribution of the MD estimator would be influenced by

the asymptotic distribution of the initial estimate of that free variance parameter. To overcome the issue of

such an asymptotic variance estimate, the GMM and SGMM estimation can be used. An SGMM approach

proposed in Jin and Lee (2018) can be asymptotically as efficient as the GMM and can be computationally

simpler. If we take the variance parameter of the initial period dependent variable as a nuisance parameter

and use a simple initial consistent estimate, the SGMM can focus on efficient estimation of remaining

parameters of interest and avoid some computational burden. The SGMM uses a C(α)-type transformation of

moment vectors to eliminate the asymptotic impact of initial consistent estimators and to achieve asymptotic

efficiency. In particular, we show that, for an SGMM that is based on the QML first order conditions but

only estimates the dynamic parameter, a closed form root estimator exists and is asymptotically as efficient

as the QML estimator.

The current paper is organized as follows. Section 2 studies the fixed effects pure DPD model with a

short past, and Section 3 studies the fixed effects DPD model with exogenous variables. For each model,

a general GMM estimation framework is motivated from QML scores. Efficient GMM under the normality

1In the following, the ML or QML estimates for fixed effects DPD models all refer to those based on first differenced equations
of the dependent variable.
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assumption of disturbances can be derived. We investigate some computationally simple and efficient SGMM

estimates based on the efficient GMM and QML scores. For the fixed effects pure DPD model, the SGMM

improves upon the computationally simple MD estimator in Hsiao et al. (2002) by eliminating the asymptotic

impact of an initial variance estimator but yet can achieve asymptotic efficiency. Section 4 studies stationary

fixed effects DPD models.2 Monte Carlo results for various estimators are provided in Section 5. Section 6

concludes the paper and summarizes the contributions. Proofs, detailed algebra and additional Monte Carlo

experiments are provided in a supplementary file available upon request. GMM and SGMM estimations of

random effects DPD models can be similarly studied and we provide them in the supplementary file.3

2 Fixed effects pure DPD with a short past

In this section, we first introduce the fixed effects pure DPD model with a short past and its MD

estimation. We show that a best IV for the MD estimation exists under some conditions, but the best IV is

infeasible. We propose the efficient GMM and SGMM based on QML scores to overcome such a problem.

Consider the pure dynamic panel data model

Ynt = γ0Yn,t−1 + cn0 + Vnt, t = 1, 2, . . . , T, (2.1)

where Ynt = (y1t, . . . , ynt)
′ at time t represents the vector of outcomes of all the n individuals with yit

representing the outcome of individual i at time t; cn0 = (c10, c20, . . . , cn0)′ is the n-dimensional vector of

individual effects, and Vnt = (v1t, . . . , vnt)
′ is the vector of disturbances of all n individuals. In this model,

the disturbances vit’s are i.i.d. (0, σ2
v0) across all individuals. In a fixed effects model, all the individual effects

ci’s are treated as unknown fixed parameters, while in a random effect model, they are treated as random

elements. In this section, we consider the fixed effects specification. As ci’s are n unknown parameters in a

sample with n individuals but a finite number of T time periods, ci creates an incidental parameter problem

(Nickell, 1981). Therefore, it is desirable to eliminate the fixed effects ci’s before estimation. It is natural to

perform the elimination by taking time difference (e.g., Hsiao et al. 2002). By taking first (time) difference,

∆Ynt = γ0∆Yn,t−1 + ∆Vnt where ∆ denotes first difference. The estimating equation will consist of

∆Ynt = γ0∆Yn,t−1 + ∆Vnt, t = 2, · · · , T, (2.2)

together with the observation ∆Yn1. The ∆Yn1 may be treated as the first period sample for the difference

2We note that, “stationarity” here refers to the situation that the process has started a long time ago.
3For stationary random effects DPD models, the quasi log likelihood function can be decomposed as a sum of the quasi log

likelihood function of within equations and that of between equations (Lee and Yu, 2018). We use the decomposition to derive
simple moment vectors, which can yield GMM estimators that are asymptotically as efficient as ML estimators under normal
disturbances, but can be more efficient relative to QML estimators.
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process in (2.2). For ∆Yn1, by continuous substitution, we have, up to the past m time periods,

∆Yn1 = γm0 ∆Yn,−m+1 +

m−1∑
j=0

γj0∆Vn,1−j .

In the case that the process has started from finite m periods ago, where m is unknown, E(∆Yn1) =

γm0 E(∆Yn,−m+1) and Var(∆Yn1) = ω0σ
2
v0In for some ω0 > 1, both of which are unknown values. Fol-

lowing Hsiao et al. (2002), we have the moment properties that E(∆Yn1) = κ0ln, Var(∆Yn1) = ω0σ
2
v0In,

Cov(∆Yn1,∆Vn2) = −σ2
v0In, and Cov(∆Yn1,∆Vnt) = 0 for t ≥ 3. Thus, the nT ×nT variance matrix of the

disturbances is σ2
v0[HT (ω0)⊗ In], where

HT (ω) =


ω −1

−1 2
. . .

. . .
. . . −1
−1 2

 . (2.3)

The quasi log likelihood function for (2.2) with sample observations ∆Ynt, t = 1, ..., T , as if [∆Y ′n1 −

κ0l
′
n,∆V

′
n2, . . . ,∆V

′
nT ]′ were normally distributed, is

lnLw(θ) = −nT
2

ln(2πσ2
v)− n

2
ln |HT (ω)| − 1

2σ2
v

e′nT (θ1)(H−1
T (ω)⊗ In)enT (θ1), (2.4)

where θ1 = (κ, γ)′, θ = (κ, γ, ω, σ2
v)′, and enT (θ1) = [∆Y ′n1 − κl′n,∆Y ′n2 − γ∆Y ′n1, . . . ,∆Y

′
nT − γ∆Y ′n,T−1]′

with ln being the n-dimensional vector consisting of all unit entries. This quasi log likelihood function has

explored not only the main regression equations for ∆Ynt but also their variances. Hsiao et al. (2002) has

considered the properties of a QML estimator that maximizes (2.4). The first order derivatives are

∂ lnLw(θ)

∂θ1
=

1

σ2
v

∆Z′n,T−1(H−1
T (ω)⊗ In)enT (θ1), (2.5a)

∂ lnLw(θ)

∂ω
= −n

2
tr(H−1

T (ω)JT ) +
1

2σ2
v

e′nT (θ1)
(
H−1
T (ω)JTH

−1
T (ω)⊗ In

)
enT (θ1), (2.5b)

∂ lnLw(θ)

∂σ2
v

= − nT
2σ2

v

+
1

2σ4
v

e′nT (θ1)
(
H−1
T (ω)⊗ In

)
enT (θ1), (2.5c)

where ∆Zn,T−1 = [ιnT ,∆Yn,T−1] with ιnT = [l′n, 0, . . . , 0]′, ∆Yn,T−1 = [0,∆Y ′n1, . . . ,∆Y
′
n,T−1]′, and JT ≡

∂HT (ω)
∂ω is a diagonal matrix with its (1, 1)th element being 1 and all other elements being zero.

For further analysis, from Hsiao et al. (2002), by denoting d = 1
1+T (ω−1) , we have

H−1
T (ω) = d ·



T T − 1 T − 2 . . . 2 1
T − 1 (T − 1)ω (T − 2)ω . . . 2ω ω
T − 2 (T − 2)ω (T − 2)(2ω − 1) . . . 2(2ω − 1) 2ω − 1

...
...

...
. . .

...
...

2 2ω 2(2ω − 1) . . . 2((T − 2)ω − (T − 3)) (T − 2)ω − (T − 3)
1 ω (2ω − 1) . . . (T − 2)ω − (T − 3) (T − 1)ω − (T − 2)


, (2.6)
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and AHTA
′ = D, where

A =


a0

a0 a1

a0 a1 a2

...
...

...
. . .

a0 a1 a2 . . . aT−1

 , (2.7)

and D = diag{a0a1, a1a2, . . . , aT−1aT } is a diagonal matrix formed by asas+1 with as = 1+s(ω0−1). Thus,

H−1
T = A′D−1A and it can be written as

H−1
T = A′D−1/2 ·D−1/2A. (2.8)

This decomposition of H−1
T will yield uncorrelated and homoskedastic transformed disturbances (D−1/2A⊗

In)enT . Also, by denoting

FT (γ) =


0
1 0
γ 1 0
...

...
. . .

. . .

γT−2 γT−3 . . . 1 0

 , (2.9)

and F
(1)
T (γ) as the first column of FT (γ), we have ∆Yn,T−1 = (FT (γ)⊗ In)enT (θ1) + κF

(1)
T (γ)⊗ ln for any

value γ. In particular, ∆Yn,T−1 = (FT ⊗ In)enT + κ0F
(1)
T (γ0)⊗ ln, so that

E[∆Y′n,T−1(HT ⊗ In)−1enT ] = nσ2
v0 tr(FT ) = 0. (2.10)

With this orthogonality property for ∆Yn,T−1, and strict exogeneity of lnT , apparently E[∆Z′n,T−1(HT ⊗

In)−1enT ] = 0.

2.1 MD estimation and the search for the best IV estimate

The score vector (2.5) gives the moment ∆Z′n,T−1 · (HT ⊗ In)−1 · enT . However, HT (ω) involves the

unknown parameter ω if one would like to work with this moment equation. With a consistent initial

estimate ω̂ of ω so that HT (ω) can be consistently estimated, Hsiao et al. (2002) suggest an MD estimation

of θ1 by

min
θ1

e′nT (θ1)(H−1
T (ω̂)⊗ In)enT (θ1). (2.11)

The first order condition of this MD estimation is the score (except the omission of a constant factor) in

(2.5a). The resulting MD estimate θ̂1,md is a generalized instrumental variable (GIV) estimator as

θ̂1,md =
[
∆Z′n,T−1(H−1

T (ω̂)⊗ In)∆Zn,T−1

]−1[
∆Z′n,T−1(H−1

T (ω̂)⊗ In)∆YnT

]
,
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where ∆YnT = [∆Y ′n1, ...,∆Y
′
nT ]′. However, the MD estimator is not really a usual GIV estimator in that

the asymptotic distribution of the initial consistent estimate ω̂ has an impact on the asymptotic distribution

of the MD estimator, even thought the MD estimator is consistent. The remaining issue of interest is whether

a similar IV estimate could exist and be asymptotically efficient within a class of IV estimates, assuming

that the disturbances in the model are normally distributed.

As the estimation equation involves the predetermined variables in difference, i.e., ∆Yn,T−1, an IV can

be a function of elements in ∆Yn,T−1, in addition to other strictly exogenous variables, here the constant

intercept term. Consider the IV matrix QnT = [(KT ⊗ In)ιnT , (AT ⊗ In)∆Yn,T−1], where KT and AT

are T × T constant matrices. The corresponding IV estimate is θ̂1,iv solved from the empirical moment

Q′nT enT (θ̂1,iv) = 0. For QnT to be a valid IV, the orthogonality condition E(Q′nT enT ) = 0 is required.

With ∆Yn,T−1 = (FT ⊗ In)enT + κ0F
(1)
T ⊗ ln and E(enT e

′
nT ) = σ2

v0HT ⊗ In, a selected AT shall satisfy

tr(F ′TA
′
THT ) = 0. From the expressions of HT in (2.3) and FT in (2.9), we can see that HTF

′
T is an upper

triangular matrix with its (1, 1)th element being 0. Then any matrix AT that is lower triangular with zero

diagonals (the first diagonal element can be arbitrary) will satisfy tr(F ′TA
′
THT ) = 0, i.e.,

AT =


0
a21 0
a31 a32 0
...

...
. . .

. . .

aT1 aT2 . . . aT,T−1 0

 . (2.12)

By doing so, for (AT ⊗ In)∆Yn,T−1 and corresponding disturbances enT = (∆Y ′n1−κ0ι
′
nT ,∆V

′
n2, ...,∆V

′
nT )′,

arbitrary linear combinations of ∆yi1, ...,∆yi,t−2 can be IV variables for ∆vit with t ≥ 3. A simple choice of

AT can be AT =

( 0
1 0

. . .
. . .
1 0

)
, and that of KT can be IT so that QnT = [ιnT , (0, 0,∆Y

′
n1, ...,∆Y

′
n,T−2)′]. In

the literature, most have used a sufficient number of time lagged variables for IVs. Thus, those correspond

to the use of some AT in (2.12). In addition to the class of IVs corresponding to (2.12), there might be other

IVs, each of which in its general form might be a linear function of all ∆Ynt, t = 1, ..., T −1, even though enT

is in certain recursive time order. Apparently, one example is AT = H−1
T , the choice implied by the score

vector, which satisfies tr(F ′TA
′
THT ) = tr(FT ) = 0. However, there is a practical issue on using H−1

T because

it involves the unknown true parameter ω. But this example does motivate other possible AT beyond those

recursive time ones in (2.12). It is of interest to investigate whether a best AT in the class of tr(F ′TA
′
THT ) = 0

might exist, so that a corresponding IV matrix in the class QnT = [(KT ⊗ In)ιnT , (AT ⊗ In)∆Yn,T−1] would

yield an IV estimate with the smallest asymptotic variance. An IV estimate is

θ̂1,iv = (Q′nT∆Zn,T−1)
−1
Q′nT∆YnT = θ10 + (Q′nT∆Zn,T−1)

−1
Q′nT enT . (2.13)
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As shown in the supplementary file, under normal disturbances, if AT satisfies tr(F ′TA
′
THTF

′
TA
′
THT ) = 0,

e.g., AT belongs to (2.12) or AT = H−1
T , then Var(Q′nT enT ) = σ2

v0 E[Q′nT (HT ⊗ In)QnT ].4 Thus, the

asymptotic variance of the IV estimate in (2.13) under normality is

σ2
v0 (Q′nT∆Zn,T−1)

−1
Q′nT (HT ⊗ In)QnT

(
∆Z′n,T−1QnT

)−1
.

Its inverse is

1

σ2
v0

∆Z′n,T−1QnT [Q′nT (HT ⊗ IT )QnT ]−1Q′nT∆Zn,T−1

=
1

σ2
v0

∆Z′n,T−1(H
−1/2
T ⊗ IT ) · (H1/2

T ⊗ IT )QnT [Q′nT (HT ⊗ IT )QnT ]−1Q′nT (H
1/2
T ⊗ IT ) · (H−1/2

T ⊗ IT )∆Zn,T−1

≤ 1

σ2
v0

∆Z′n,T−1(H−1
T ⊗ IT )∆Zn,T−1,

by the generalized Schwarz inequality, where the equality holds when (H
1/2
T ⊗IT )QnT = (H

−1/2
T ⊗IT )∆Zn,T−1,

i.e., KT = AT = H−1
T . Thus, under the normality assumption,5 the best IV in the class of QnT =

[(KT ⊗ In)ιnT , (AT ⊗ In)∆Yn,T−1], where AT satisfies tr(F ′TA
′
THT ) = 0 and tr(F ′TA

′
THTF

′
TA
′
THT ) = 0,

shall be Q∗nT = (H−1
T ⊗ In)∆Zn,T−1.

Nevertheless, the best IV requires the use of HT , which involves the unknown parameter ω0. Thus, the

“best” IV is infeasible. One may attempt to use an initial consistent estimate of ω0 and hence a consistent

estimate ĤT to construct a feasible IV.6 However, such a feasible IV would not achieve the same asymptotic

variance of the infeasible best IV estimate. This issue has been pointed out by Maddala (1971) for a

distributed lag model with serially correlated disturbances. The same issue has been recognized in Hsiao

et al. (2002) for the dynamic panel model. With an initial consistent estimate ω̃, the IV estimation with

the empirical moment ∆Z′n,T−1(H−1
T (ω̃) ⊗ In)enT (θ1) is called an MD estimation in Hsiao et al. (2002).

The asymptotic distribution of the MD estimator will depend on the asymptotic distribution of the initial

estimate ω̃. This can be seen from an asymptotic expansion of 1
n∆Z′n,T−1(H−1

T (ω̃) ⊗ In)enT at ω0, which

has 1
n∆Z′n,T−1(H−1

T (ω̃) ⊗ In)enT = 1
n∆Z′n,T−1(H−1

T ⊗ In)enT − 1
n∆Z′n,T−1(H−1

T
∂HT
∂ω H−1

T ⊗ In)enT (ω̃ −

ω0) + op(1), where E[ 1
n∆Y′n,T−1(H−1

T
∂HT
∂ω H−1

T ⊗ In)enT ] = σ2
v0 tr(F ′TH

−1
T

∂HT
∂ω ) 6= 0, since tr(F ′TH

−1
T

∂HT
∂ω ) =

1
(1−γ0)[1+T (ω0−1)] (T −

1−γT0
1−γ0 ) when γ0 6= 1 and tr(F ′TH

−1
T

∂HT
∂ω ) = T (T−1)

2[1+T (ω0−1)] when γ0 = 1.7

4On the other hand, if tr(F ′TA
′
THTF

′
TA
′
THT ) is not equal to zero, Var(Q′nT enT ) would not be necessarily equal to

σ2
v0 E[Q′nT (HT ⊗ In)QnT ].

5If the disturbances are not normal, from the proof of Theorem 3(iii), the asymptotic variance of the IV estimate θ̂1,iv
is equal to that of an optimal GMM estimator. We show that there is no best GMM under non-normal disturbances in the
supplementary file, so there is no best IV under non-normal disturbances.

6Initial consistent parameter estimates for various models considered in this paper are given in the supplementary file.
7As in Hsiao et al. (2002), when the process {yit} starts from a finite past, γ0 can be 1. We thank an anonymous referee for

pointing out this.
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In the supplementary file, by restricting our attention to the case with true κ0 = 0 being known, we

elaborate on the impossibility that HT could be consistently estimated without asymptotic impact on the

feasible IV estimator. Thus, when T is small, there might not be a feasible “best” IV estimate. Without the

availability of the best IV, in order to improve efficiency, one might be tempted to use more possible IVs for

estimation. But the use of many IVs might give rise to a serious asymptotic bias problem as a by-product

(see Bekker, 1994; Donald and Newey, 2001; Alvarez and Arellano, 2003; Chao and Swanson, 2005; Han and

Phillips, 2006, etc). The “infeasible IV” issue occurs only for panels with a finite T , where ω in the first

entry of HT (ω) generates the efficiency issue for estimation. From the supplementary file, we see that under

normality, the asymptotic precision of the MLE γ̂w,mle is

1

σ2
v0

E[∆Y′n,T−1(H−1
T ⊗ In)∆Yn,T−1]− 2n

T (T − 1)(1− γ0)2

(
T − 1− γT0

1− γ0

)2

(2.14)

when γ0 6= 1 and is 1
σ2
v0

E[∆Y′n,T−1(H−1
T ⊗ In)∆Yn,T−1]− nT (T−1)

2 when γ0 = 1, which can be smaller than

the asymptotic precision of the best IV estimate, if the latter would exist. For the case with T tending to

infinity, asymptotically feasible best IV is possible for the case with |γ0| < 1.8

2.2 Efficient GMM

We may consider a class of GMM estimators motivated from a direct application of the scores. Under the

normality assumption of disturbances, the best moments exist, thus an efficient GMM can be constructed

using these best moments. It is also possible to have a computationally simpler approach with a sequential

GMM (SGMM), which treats some parameters as nuisance ones, and focus on estimation of remaining

structural parameters of interest.

From the first order conditions in (2.5a)–(2.5c), we derive the moment conditions:

gnT,κ(θ2) =
1

n
ι′nT (H−1

T (ω)⊗ In)enT (θ1), (2.15a)

gnT,γ(θ2) =
1

n
∆Y′n,T−1(H−1

T (ω)⊗ In)enT (θ1), (2.15b)

gnT,ω(θ2) =
1

n
e′nT (θ1)(ΦT (ω)⊗ In)enT (θ1), (2.15c)

where θ2 = (κ, γ, ω)′ and ΦT (ω) = H−1
T (ω)JTH

−1
T (ω) − 1

T tr(H−1
T (ω)JT )H−1

T (ω). These moment condi-

tions have mean zero at the true parameter values. We recognize that by using the identity ∆Yn,T−1 =

(FT (γ)⊗ In)[enT (θ1) + κιnT ], and denoting BT = D−1/2A from (2.8) so that H−1
T = B′TBT and H−1

T (ω) =

8When T goes to infinity, the second component is dominated by the first one, so that the asymptotic precision of the MLE
is asymptotically equal to that of the best IV estimate. The best IV estimation is possible by ignoring the first row of HT (ω)
or simply replacing it by HT (2) with 2 replacing ω. The approximation or replacement will be good when T becomes large.
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B′T (ω)BT (ω), the empirical moments (2.15a)–(2.15c) due to scores can be written as

gnT,κ(θ2) =
1

n
ι′nT (H−1

T (ω)⊗ In)enT (θ1), (2.16)

gnT,γ(θ2) =
1

n
e′nT (θ1)(B′T (ω)⊗ In)

[
(B′−1

T (ω)F ′T (γ)B′T (ω)⊗ In)
]

(BT (ω)⊗ In)enT (θ1)

+
1

n
κι′nT (F ′T (γ)H−1

T (ω)⊗ In)enT (θ1),

(2.17)

and

gnT,ω(θ2) =
1

n
e′nT (θ1)(B′T (ω)⊗ In)

[(
BT (ω)JTB

′
T (ω)− 1

T
tr(JTH

−1
T (ω))IT

)
⊗ In

]
(BT (ω)⊗ In)enT (θ1).

(2.18)

These empirical moments suggest a class of GMM estimation with linear moments

ι′nT (KjT ⊗ In)enT (θ1) (2.19)

and quadratic moments

e′nT (θ1)(B′T (ω)⊗ In)(CjT ⊗ In)(BT (ω)⊗ In)enT (θ1), (2.20)

where CjT ’s can be constant matrices or matrices involving θ2 with tr(CjT ) = 0 at the true θ20. Those

matrices CjT ’s with their traces being zero will guarantee that the moment E[e′nT (B′T ⊗ In)(CjT ⊗ In)(BT ⊗

In)enT ] = 0. To understand the moments in (2.16)–(2.18) from scores, we see that the implied equation (2.2)

and the initial ∆Yn1 are combined into a system ∆YnT = γ0∆Yn,T−1 +κ0ιnT +enT with the variance of enT

being σ2
v0HT ⊗ In.9 A relatively efficient estimate will explore both the main equation and the variance of

disturbances for estimation. On the contrary, an IV approach has explored only the main regression equation

but not the variance of disturbances, so that efficiency might be lost. For a possible efficient estimation, it

is natural to consider the use of quadratic functions in terms of enT . For the DPD process, it is of interest

to know that the moment involving ∆Yn,T−1 and enT in a (weighted) product can be rewritten as a linear-

quadratic function of enT . With H−1
T = B′TBT , the pure DPD process (2.2) in difference can be transformed

into

(BT ⊗ In)∆YnT = γ0(BT ⊗ In)∆Yn,T−1 + κ0(BT ⊗ In)ιnT + e∗nT ,

where e∗nT = (BT⊗In)enT . The variance of e∗nT is σ2
v0InT , hence the moment condition E[e∗′nT (CjT⊗In)e∗nT ] =

σ2
v0 tr(CjT ) = 0 for any T × T matrix CjT with zero trace, i.e, tr(CjT ) = 0. For the IV estimation with

QnT = (AT ⊗ In)∆Yn,T−1, where AT satisfies tr(F ′TA
′
THT ) = 0, the empirical moment is

Q′nT enT (θ1) = e′nT (θ1)(B′T (ω)⊗ In)(A1T (θ2)⊗ In)(BT (ω)⊗ In)enT (θ1) + κι′nT (F ′T (γ)A′T ⊗ In)enT (θ1),

9Recall that ∆YnT = [∆Y ′n1, . . . ,∆Y
′
nT ]′ and ∆Yn,T−1 = [0,∆Y ′n1, . . . ,∆Y

′
n,T−1]′.
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where A1T (θ2) = B′−1
T (ω)F ′T (γ)A′TB

−1
T (ω) has a zero trace at θ2 = θ20. This moment combines a linear

moment and a quadratic moment with some specific weights. The quadratic moment in (2.17) has CjT =

B′−1
T (ω)F ′T (γ)B′T (ω), and that in (2.18) has CjT = BT (ω)JTB

′
T (ω)− 1

T tr(JnH
−1
T (ω))In.

The GMM estimation can be implemented by treating θ2 in KjT (θ2) and CjT (θ2) as unknown in addition

to those in BT (ω) and enT (θ1). Such a GMM estimation will be a single step approach. On the other hand,

the GMM approach may also be implemented with a two-step procedure, where in the first step, one derives

a consistent estimate θ̃2 so that those KjT and CjT matrices can be consistently estimated by KjT (θ̃2) and

CjT (θ̃2), then the suggested quadratic moments in terms of (BT (ω) ⊗ In)enT (θ1) for a GMM estimation is

feasible.10 One can show that a GMM estimate from a single step or a two-step estimation is asymptotically

equivalent to the exact GMM estimator by using KjT (θ20) and CjT (θ20) as if they were known.11

Assume that we have m1 such KjT and m2 such CjT . Then, the vector of moment conditions is

gnT (θ2) =
1

n



ι′nT (K1T ⊗ In)enT (θ1)
...

ι′nT (Km1T ⊗ In)enT (θ1)
e′nT (θ1)(B′T (ω)C1TBT (ω)⊗ In)enT (θ1)

...
e′nT (θ1)(B′T (ω)Cm2TBT (ω)⊗ In)enT (θ1)


. (2.21)

At the true θ20, ι′nT (KjT ⊗ In)enT (θ10) = ι′nT (KjTB
−1
T ⊗ In)e∗nT and

e′nT (θ10)(B′T (ω0)Cm2TBT (ω0)⊗ In)enT (θ10) = e∗′nT (Cm2T ⊗ In)e∗nT ,

where e∗nT = (BT ⊗ In)enT is homoskedastic and uncorrelated. To derive the analytic form of the variance

of gnT (θ20), we can transform enT into homoskedastic errors as in Vn,T+1 via enT = (DT,T+1 ⊗ In)Vn,T+1,

where

DT,T+1 =


−
√
ω0 − 1 1

−1 1
. . .

. . .

−1 1

 ,

Vn,T+1 = [U ′n0, V
′
n1, . . . , V

′
nT ]′, and Un0 = 1√

ω0−1
[−γm0 (∆Yn,−m+1−E ∆Yn,−m+1) +Vn0−

∑m−1
j=1 γj0∆Vn,1−j ]

is independent of Vnt and has the same variance as that of Vnt for t = 1, . . . , T . The transformation

implies that ∆Yn1 = κ0ln + Vn1 −
√
ω0 − 1Un0. Notice that DT,T+1D

′
T,T+1 = HT . Then, at the true

θ20, elements of gnT (θ20) are either linear or quadratic in Vn,T+1, and Var(gnT (θ20)) generally involves

the third and fourth moments of Vn,T+1. Let µ3v and µ3u be the third moments of, respectively, vit and

10We note that as contrary to later sequential GMM estimation, these moments are quadratic in enT but not quadratic in
the parameter γ because BT (γ) is nonlinear in γ.

11See the supplementary file for a proof.
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an element ui0 of Un0. Define µ4v and µ4u similarly. Let µ3T = diag(µ3u, µ3vl
′
T ) be a diagonal matrix

formed by the vector [µ3u, µ3vl
′
T ], vecD(A) for a square matrix A be a column vector formed by the diagonal

elements of A, As = A + A′, and ιT = [1, 0, . . . , 0]′ be a T × 1 unit vector. By Lemma A.1 in Lin and

Lee (2010), the variance of
√
ngnT (θ20) is ΣT =

(
ΣT,11 Σ′T,21
ΣT,21 ΣT,22

)
, where ΣT,11 is an m1 × m1 matrix with

its (r, s)th element being σ2
v0(KrTHTK

′
sT )11, ΣT,21 is a m2 × m1 matrix with its (r, s)th element being

vecD
′(D′T,T+1B

′
TCrTBTDT,T+1)µ3TD

′
T,T+1K

′
sT ιT , and ΣT,22 is a m2 ×m2 matrix with its (r, s)th element

being

(µ4u − 3σ4
v0)(D′T,T+1B

′
TCrTBTDT,T+1)11(D′T,T+1B

′
TCsTBTDT,T+1)11

+ (µ4v − 3σ4
v0)

T+1∑
t=2

(D′T,T+1B
′
TCrTBTDT,T+1)tt(D

′
T,T+1B

′
TCsTBTDT,T+1)tt + σ4

v0 tr(CsrTCsT ).

The optimal GMM estimator with the moment vector gnT (θ2) is

θ̂2,gmm = arg min
θ2∈Θ2

g′nT (θ2)Σ̂−1
nT gnT (θ2), (2.22)

where Σ̂nT is a consistent estimator of ΣT and Θ2 is the parameter space of θ2.

The above discussion assumes that vit’s are i.i.d. It might be of interest to consider the case that vit’s

are independent but Var(v2
it) = σ2

t depends on T and is unknown. In such a situation, the moments linear in

enT (θ1) of (2.21) are still valid, but those quadratic in enT (θ1) might be not. We may investigate whether

moments of the form e′nT (θ1)(CjT⊗In)enT (θ1) are valid or not. Note that Var(enT ) = D∗T,T+1ΞT+1D
∗′
T,T+1⊗

In, where ΞT+1 = diag((ω0−1)σ2
u, σ

2
1 , . . . , σ

2
T ) with σ2

u = E(u2
i0), and D∗T,T+1 is equal to DT,T+1 except that

the (1, 1)th element of D∗T,T+1 is −1. Then

E[e′nT (θ10)(CjT ⊗ In)enT (θ10)] = n · tr(CjTD∗T,T+1ΞT+1D
∗′
T,T+1) = n · tr(D∗′T,T+1CjTD

∗
T,T+1 · ΞT+1).

As ΞT+1 is a diagonal matrix, we may choose CjT ’s such that the diagonal elements of D∗′T,T+1CjTD
∗
T,T+1 are

zero, which implies that E[e′nT (θ10)(CjT ⊗ In)enT (θ10)] = 0 and the quadratic moments are valid. However,

due to the special form of D∗T,T+1, CjT = [cjT,rs] should satisfy cjT,11 = cjT,TT = 0 and cjT,r,r−1 =

cjT,r−1,r−1 + cjT,rr − cjT,r−1,r for r = 2, . . . , T . In that case, the best selection of CjT becomes rather

complex. Whether the best selection is possible or not remains an issue. For a possible panel model with

infinite (large T ) periods, this problem becomes even more challenging as it would be a model with infinite

number of parameters as σ2
t ’s are included.12 So in this paper, we focus on the i.i.d. case of vit’s and do not

consider heterogeneity in vit’s.

12We thank a referee for raising this issue.
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If Vn,T+1 ∼ N(0, σ2
v0In(T+1)),

ΣT = σ2
v0



(K1THTK
′
1T )11 . . . (K1THTK

′
m1T

)11 0 . . . 0
...

. . .
...

...
. . .

...
(Km1THTK

′
1T )11 . . . (Km1THTK

′
m1T

)11 0 . . . 0
0 . . . 0 σ2

v0 tr(C1TC
s
1T ) . . . σ2

v0 tr(C1TC
s
m2T

)
...

. . .
...

...
. . .

...
0 . . . 0 σ2

v0 tr(Cm2TC
s
1T ) . . . σ2

v0 tr(Cm2TC
s
m2T

)


.

As tr(CjTC
s
kT ) = 1

2 tr(CsjTC
s
kT ) and tr(AB) = vec′(A′) vec(B) for two conformable matrices A and B,

ΣT = σ2
v0∆′T∆T , (2.23)

where

∆T =

(
B′−1
T K ′1T ιT . . . B′−1

T K ′m1T
ιT 0 . . . 0

0 . . . 0
√

2
2 σv0 vec(Cs1T ) . . .

√
2

2 σv0 vec(Csm2T
)

)
. (2.24)

This variance form can be used to derive the best moment vector under normality, which is

g∗nT (θ2) =


ι′nT (H−1

T ⊗ In)enT (θ1)
ι′nT (F ′TH

−1
T ⊗ In)enT (θ1)

e′nT (θ1)(B′T (ω)C∗1TBT (ω)⊗ In)enT (θ1)
e′nT (θ1)(B′T (ω)C∗2TBT (ω)⊗ In)enT (θ1)

 , (2.25)

where C∗1T = BTFTB
−1
T and C∗2T = BωTB

−1
T −

1
T tr(BωTB

−1
T )IT with BωT = ∂BωT (ω0)

∂ω . As expected from

the asymptotic efficiency of the ML approach, the best moment vector under normality corresponds to the

score vector.13,14 While the score vector combines ι′nT (F ′TH
−1
T ⊗ In)enT (θ1) and e′nT (θ1)(B′T (ω)C∗1TBT (ω)⊗

In)enT (θ1) linearly with specific weights, the GMM uses the two moments separately so the number of

moments in (2.25) is over-identified. Hence, the corresponding optimal GMM could be efficient relative

to the QML as the proper optimal weighting matrix is used for combining the set of linear and quadratic

moments for estimation while the QML takes a specific combination of those moments into a score vector for

estimation. The best GMM moments are over-identified but the moments of the score vector consist of exactly

identified moments.15 However, the score vector might not be the best combination if the disturbances were

not normally distributed.

In the following, we present regularity conditions and asymptotic results on the GMM estimation.

13We may show that (BωTB
−1
T )s = −BT JTB′T . See the proof of Theorem 3 in the supplementary file.

14If the disturbances are not normally distributed, we show in the supplementary file that the limiting variance of the GMM
estimator θ̂2,gmm has a lower bound by the generalized Schwarz inequality, but the lower bound cannot be achieved. The
reason is that DT,T+1B

′
TC

s
jTBTDT,T+1 needs to be a diagonal matrix for some CsjT , but this cannot be the case given the

specific form of DT,T+1.
15If the number of best moments is just identified, and the score vector and the best moment vector are linear transformations

of each other, then their estimators would be the same. In this exactly identified moments case, the best GMM estimator would
not have an asymptotic gain.
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Assumption 2.1. The disturbances {vit}, i = 1, . . . , n and t = 1, . . . , T , are i.i.d. across i and t with zero

mean, variance σ2
v0 and E(|vit|4+η) <∞ for some η > 0.

Assumption 2.2. n→∞ and T is fixed.

Assumption 2.3. The process {yit} has started from a finite but unknown m periods ago, ∆yi1 = κ0 +

vi1 −
√
ω0 − 1ui0, where ui0’s are i.i.d. (0, σ2

v0), E(|ui0|4+η) <∞ for some η > 0, and ui0’s are independent

of vjt’s but with the same variance σ2
v0.

Assumption 2.4. CjT ’s have zero traces and are linearly independent, and [K ′1T,1·, . . . ,K
′
m1T,1·] has full

column rank, where KjT,1· is the first row of KjT .

Assumption 2.5. When κ0 6= 0,

( (K1T )11 (K1TFT )11

...
...

(Km1T
)11 (Km1T

FT )11

)
has full column rank, and

[dT (ω)C1T d
′
T (ω), . . . , dT (ω)Cm2T d

′
T (ω)] 6= 0

for any ω 6= ω0, where dT (ω) = [(a0(ω)a1(ω))−1/2, (a1(ω)a2(ω))−1/2, . . . , (aT−1(ω)aT (ω))−1/2] with at(ω) =

1 + t(ω − 1); when κ0 = 0, (KjT )11 6= 0 for some 1 ≤ j ≤ m1, and dT (ω)C1T d
′
T (ω) tr[F ′TB

′
T (ω)Cs1TBT (ω)HT ] tr[F ′TB

′
T (ω)C1TBT (ω)FTHT ]

...
...

...
dT (ω)Cm2T d

′
T (ω) tr[F ′TB

′
T (ω)Csm2T

BT (ω)HT ] tr[F ′TB
′
T (ω)Cm2TBT (ω)FTHT ]


has full column rank for any ω in its parameter space.

Assumption 2.6. When κ0 6= 0, tr(CsjTBωTB
−1
T ) 6= 0 for some 1 ≤ j ≤ m2; when κ0 = 0, tr(Cs1TBTFTB
−1
T ) tr(Cs1TBωTB

−1
T )

...
...

tr(Csm2T
BTFTB

−1
T ) tr(Csm2T

BωTB
−1
T )


has full column rank.

Assumption 2.7. The parameter space Θ of θ is compact, ω > 1, and θ0 is in the interior of Θ.

Assumption 2.1 states the simple i.i.d. regularity condition on the disturbances vit’s. The moment

condition on vit is needed for a proper central limit theorem. The large n and small T asymptotic in this

paper is summarized in Assumption 2.2. While we focus on the small T case in this paper, the GMM and

SGMM estimates in this paper can also be considered for a large T . Assumption 2.3 states the setting with a

finite past and regularity conditions on ∆yi1. Assumption 2.4 is a sufficient condition for the nonsingularity of

the variance of the moment vector so that the optimal GMM estimator in (2.22) can be formulated. Note that
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gnT (θ2) only depends on the first rows of KjT ’s. Assumptions 2.5 is a sufficient identification condition on the

corresponding GMM estimator. Under Assumption 2.6, the expected gradient matrix GT = E(∂gnT (θ20)
∂θ′2

) has

full column rank, so that θ̂2,gmm has the
√
n-rate of convergence. A compact parameter space in Assumption

2.7 is a usual condition on extremum estimators. The consistency of estimators does not require θ0 to be

in the interior of the parameter space, but the asymptotic distributions need it to avoid issues of a true

parameter vector on the boundary of its space. For simplicity, we do not separately state conditions required

for consistency and asymptotic distributions. Since ω0 > 1, we state explicitly that ω > 1 so that HT (ω) is

positive definite and H−1
T (ω) = B′T (ω)BT (ω) for any ω in its parameter space.

Let θ̂qml be the QML estimator that maximizes the log likelihood function (2.4), θ̂2,qml be a subvector

of θ̂qml corresponding to θ2, which as we recall is (κ, γ, ω)′, θ̂∗2,gmm be the optimal GMM estimator with the

over-identified moment vector g∗nT (θ2) in (2.25), G∗T = E(
∂g∗nT (θ20)

∂θ′2
) and Σ∗T = Var[

√
ng∗nT (θ20)].

Theorem 1. Suppose that Assumptions 2.1–2.7 are satisfied.

(i) The optimal GMM estimator θ̂2,gmm in (2.22) is consistent and has the asymptotic distribution
√
n(θ̂2,gmm−

θ20)
d−→ N(0, (G′TΣ−1

T GT )−1), where

GT = E
(∂gnT (θ20)

∂θ′2

)
= −



(K1T )11 κ0(K1TFT )11 0
...

...
...

(Km1T )11 κ0(Km1TFT )11 0
0 σ2

v0 tr(Cs1TBTFTB
−1
T ) −σ2

v0 tr(Cs1TBωTB
−1
T )

...
...

...
0 σ2

v0 tr(Csm2T
BTFTB

−1
T ) −σ2

v0 tr(Csm2T
BωTB

−1
T )


.

(ii) The QML estimator θ̂qml is consistent and follows the asymptotic distribution
√
n(θ̂qml − θ0)

d−→

N(0,ΓT,θ), where ΓT,θ = [E(− 1
n
∂2 lnLw(θ0)

∂θ∂θ′ )]−1 E( 1
n
∂ lnLw(θ0)

∂θ
∂ lnLw(θ0)

∂θ′ )[E(− 1
n
∂2 lnLw(θ0)

∂θ∂θ′ )]−1 with16

E
(
− 1

n

∂2 lnLw(θ0)

∂θ∂θ′
)

=


1
σ2
v0

(H−1
T )11 ∗ ∗ ∗

κ0

σ2
v0

(H−1
T FT )11

κ2
0

σ2
v0

(F ′TH
−1
T FT )11 + tr(F ′TH

−1
T FTHT ) ∗ ∗

0 tr(F ′TH
−1
T JT ) 1

2
tr(H−1

T JTH
−1
T JT ) ∗

0 0 1
2σ2
v0

tr(H−1
T JT ) T

2σ4
v0

 .

(iii) θ̂∗2,gmm is asymptotically efficient relative to θ̂2,qml in general, i.e., (G∗′T Σ∗−1
T G∗T )−1 ≤ ΓT,θ2 , where

ΓT,θ2 is the asymptotic variance of θ̂2,qml, which is a submatrix of ΓT,θ corresponding to θ2.

(iv) If Vn,T+1 ∼ N(0, σ2
v0In(T+1)), then:

16The explicit expression of E
(
1
n
∂ lnLw(θ0)

∂θ
∂ lnLw(θ0)

∂θ′
)

can be derived similarly as that of the variance matrix of
√
ngnT (θ20),

thus we omit it for simplicity. We can see that it does not depend on n.
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(a) Among optimal GMM estimators with moments of the form (2.21), θ̂∗2,gmm has the minimum

asymptotic variance, i.e., (G∗′T Σ∗−1
T G∗T )−1 ≤ (G′TΣ−1

T GT )−1, where

G∗′T Σ∗−1
T G∗T =


1
σ2
v0

(H−1
T )11

κ0
σ2
v0

(H−1
T FT )11 0

κ0

σ2
v0

(H−1
T FT )11

κ2
0

σ2
v0

(F ′TH
−1
T FT )11 + tr(F ′TH

−1
T FTHT ) tr(F ′TH

−1
T JT )

0 tr(F ′TH
−1
T JT ) 1

2
tr(H−1

T JTH
−1
T JT ) − 1

2T
tr2(H−1

T JT )

 .

(b) θ̂∗2,gmm has the same asymptotic variance as that of θ̂2,qml, i.e., (G∗′T Σ∗−1
T G∗T )−1 = ΓT,θ2 .

Note that the relative efficiency in (iii) is possible because the best moments are over-identified for θ2.

2.3 SGMM

For the above GMM with the efficient moment vector, ω appears in a highly nonlinear way in the moment

vector. With an initial consistent estimator of τ0 = (κ0, ω0)′, we may use the moment conditions (2.15a)–

(2.15c) derived from the QML scores to define an SGMM estimator that focuses on the estimation of the

parameter of interest γ0. Such an SGMM estimator has a closed form expression and can be asymptotically

efficient under normal disturbances.17 As the asymptotic influence of an initial consistent estimate ω̃ can be

overcome, those SGMM estimators may also improve upon the feasible MD estimate. To derive an efficient

estimator of γ0, we may follow the approach in Jin and Lee (2018), which combines all moments with a C(α)-

type formulation so that initial consistent estimates of nuisance parameters can be plugged into combined

C(α)-moments to estimate only parameters of interest. With the proper C(α)-type formulation, initial

estimates will have no impact on the asymptotic distribution of the estimator of parameters of interest. In

the special case that the difference between the number of total moments and the number of combined C(α)-

moments is equal to the number of nuisance parameters, the approach can generate an efficient estimator

of parameters of interest. Alternatively, we may construct an SGMM estimator using concentrated moment

conditions. Since gnT,κ(θ2) = 0 yields a closed form solution of κ for given γ and ω,18 we can substitute

this solution into gnT,γ(θ2) and gnT,ω(θ2) to derive concentrated moment conditions, and then base on these

moments to consider an SGMM estimator of γ0. This approach is in the spirit of Crepon et al. (1997) by

estimation with concentrated moments. Since the number of moments reduced by concentration is equal to

the number of parameters being concentrated, which is one here for κ, the concentrated moments do not lose

information for the estimation of remaining parameters.19 With concentrated moments, a further moment

17Instead of moments based on the score vector, one may used the best moments in (2.25) to obtain an SGMM estimate
of γ. But as the number of moments involved is over-identified for γ, the corresponding SGMM would not have a tractable
explicit expression. Such an SGMM estimation approach will be considered in a subsequent section on models with exogenous
regressors. The moments in (2.25) could be regarded as a special case of the estimation with ιnT as a regressor vector.

18The estimate of κ for given γ and ω is [ι′nT (H−1
T (ω) ⊗ In)ιnT ]−1ι′nT (H−1

T (ω) ⊗ In)(∆YnT − γ∆Yn,T−1) = 1
n
l′n∆Yn1 +

1
n

∑T
t=2(1− t−1

T
)l′n(∆Ynt − γ∆Yn,t−1), which does not depend on ω.

19In our case, the concentration works on the solution of scores, so it is a method of elimination and substitution in solving
a system of equations.
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reduction is conducted for estimating the parameter of interest γ using the method in Jin and Lee (2018).

Thus, the second approach is a combined one of those in Crepon et al. (1997) and Jin and Lee (2018).20 The

first approach is more general in the sense that it works whether or not some nuisance parameters can be

concentrated out, while the second approach, when it can be applied, can partly simplify the first approach.

In the above two approaches, the final moment condition is quadratic in the unknown parameter γ, so there

is a closed-form consistent (and efficient) root estimator. We shall provide conditions that clarify which root

of a quadratic equation is consistent and they can be easily employed in practice.21

Approach one: SGMM estimator of γ0

Denote

gnT,γ(γ, τ) =
1

n
∆Y′n,T−1(H−1

T (ω)⊗ In)enT (θ1),

gnT,τ (γ, τ) =
1

n
[ι′nT (H−1

T (ω)⊗ In)enT (θ1), e′nT (θ1)(ΦT (ω)⊗ In)enT (θ1)]′,

where τ = (κ, ω)′ and ΦT (ω) is defined below (2.15c). Here, the moments of κ and ω are collected in

gnT,τ (γ, τ). Let γ̃ and τ̃ be, respectively,
√
n-consistent estimators of γ0 and τ0. The SGMM estimator γ̇ of

γ0 is characterized by the following equation

gnT,γ(γ̇, τ̃)− ĈnT,γgnT,τ (γ̇, τ̃) = 0, (2.26)

where ĈnT,γ =
∂gnT,γ(γ̃,τ̃)

∂τ ′ (
∂gnT,τ (γ̃,τ̃)

∂τ ′ )−1. By a Taylor expansion, one can see that, as an asymptotic orthog-

onality condition is satisfied, the initial estimate τ̃ would not have an asymptotic impact on the moment

gnT,γ(γ, τ̃) − ĈnT,γgnT,τ (γ, τ̃), so the asymptotic distribution of the initial estimate τ̃ would not have an

influence on the asymptotic distribution of the SGMM estimator γ̇ of γ.22 The C(α)-moment gnT,γ(γ, τ̃)−

ĈnT,γgnT,τ (γ, τ̃) has one less moment than the number of moments in gnT (γ, τ) = [gnT,γ(γ, τ), g′nT,τ (γ, τ)]′,

and the resulting SGMM estimator of γ0 is asymptotically as efficient as that of γ0 from the joint GMM

estimation with the moment vector gnT (γ, τ). As the GMM moments are constructed from scores, in the case

of normality, the SGMM estimator γ̇ is efficient relative to the MD estimator γ̌ of γ0 in Hsiao et al. (2002),

which is characterized by ∆Z′n,T−1(H−1
T (ω̃) ⊗ In)enT (θ̌1) = 0. The combined C(α)-moment is intended to

improve robustness and retain efficiency of the gnT,γ(γ, τ) moment for estimation. But while the moment

20The SGMM in Jin and Lee (2018) is asymptotically equivalent to the approach in Trognon and Gouriéroux (1990) applied
to the GMM, which is derived by a first order Taylor expansion of the moment vector at the nuisance parameter estimator.

21Root estimators for spatial autoregressive models are considered in Jin and Lee (2012).
22The consistent estimation of plimn→∞

∂gnT,γ(γ0,τ0)

∂τ ′ (
∂gnT,τ (γ0,τ0)

∂τ ′ )−1 by ĈnT,γ would not have an asymptotic influence
on the moment equation due to its role as coefficients for linear combinations of valid moments.
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gnT,γ(γ, τ) is linear in γ, the combined C(α)-moment is quadratic in γ. The importance of a score vector in

terms of a quadratic function of enT is highly visible in the ML estimation of a short dynamic panel.

By denoting Φ̃T = ΦT (ω̃) and H̃T = HT (ω̃), the quadratic equation (2.26) of γ̇ can be rewritten as

snT,1γ̇
2 + snT,2γ̇ + snT,3 = 0,

where snT,1 = 1
n ĈnT,γ

[
0,∆Y′n,T−1(Φ̃T ⊗ In)∆Yn,T−1

]′
,

snT,2 =
1

n
∆Y′n,T−1(H̃−1

T ⊗In)∆Yn,T−1−
1

n
ĈnT,γ

[
ι′nT (H̃−1

T ⊗In)∆Yn,T−1, 2∆Y′n,T−1(Φ̃T⊗In)(∆YnT−κ̃ιnT )
]′
,

and

snT,3 =
1

n
ĈnT,γ

[
ι′nT (H̃−1

T ⊗ In)(∆YnT − κ̃ιnT ), (∆YnT − κ̃ιnT )′(Φ̃T ⊗ In)(∆YnT − κ̃ιnT )
]′

− 1

n
∆Y′n,T−1(H̃−1

T ⊗ In)(∆YnT − κ̃ιnT ).

Using ∆YnT = γ0∆Yn,T−1 + κ0ιnT + enT , we have snT,2 = −snT,4 − 2γ0snT,1 + op(1), where

snT,4 =
1

n
ĈnT,γ

[
ι′nT (H̃−1

T ⊗ In)∆Yn,T−1, 2∆Y′n,T−1(Φ̃T ⊗ In)enT
]′ − 1

n
∆Y′n,T−1(H̃−1

T ⊗ In)∆Yn,T−1,

and snT,3 = γ0snT,4 + γ2
0snT,1 + op(1) as 1

ne
′
nT (Φ̃T ⊗ In)enT = op(1) and 1

n∆Y′n,T−1(H̃−1
T ⊗ In)enT = op(1).

The quadratic equation can have the solutions on γ as

−snT,2 ±
√
s2
nT,2 − 4snT,1snT,3

2snT,1
= γ0 +

snT,4 ±
√
s2
nT,4 + op(1)

2snT,1
.

Thus, the consistent root is
−snT,2−

√
s2nT,2−4snT,1snT,3

2snT,1
if snT,4 ≥ 0, or

−snT,2+
√
s2nT,2−4snT,1snT,3

2snT,1
if snT,4 < 0.

In practice, snT,4 can be estimated by

s̃nT,4 =
1

n
ĈnT,γ

[
ι′nT (H̃−1

T ⊗ In)∆Yn,T−1, 2∆Y′n,T−1(Φ̃T ⊗ In)enT (θ̃1)
]′ − 1

n
∆Y′n,T−1(H̃−1

T ⊗ In)∆Yn,T−1

to determine the consistent root.23

Approach two: SGMM estimator of γ0 with concentrated moments

If we set gnT,κ(θ2) in (2.15a) to zero, then the estimate of κ for given γ and ω is [ι′nT (H−1
T (ω) ⊗

In)ιnT ]−1ι′nT (H−1
T (ω) ⊗ In)(∆YnT − γ∆Yn,T−1).24 Substituting this estimate into (2.15b) and (2.15c)

23The probability limit of snT,4 depends on ω0, γ0, T and σ2
v0, and it can be positive or negative.

24This estimate can be further simplified to 1
n
l′n∆Yn1 + 1

n

∑T
t=2(1− t−1

T
)l′n(∆Ynt−γ∆Yn,t−1), which does not depend on ω.

Using the form [ι′nT (H−1
T (ω)⊗In)ιnT ]−1ι′nT (H−1

T (ω)⊗In)(∆YnT −γ∆Yn,T−1) simplifies the presentation of the concentrated
moments.
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yields the following two moment conditions:

gnT,γc(γ, ω) =
1

n
∆Y′n,T−1(H−1

T (ω)⊗ In)MnT (∆YnT − γ∆Yn,T−1),

gnT,ωc(γ, ω) =
1

n
(∆YnT − γ∆Yn,T−1)′M ′nT (ΦT (ω)⊗ In)MnT (∆YnT − γ∆Yn,T−1),

where MnT = InT − ιnT [ι′nT (H−1
T (ω) ⊗ In)ιnT ]−1ι′nT (H−1

T (ω) ⊗ In) = InT − ϕT ⊗ ( 1
n lnl

′
n) and ϕT = ιT ·

[1, 1− 1
T , . . . ,

1
T ] is a T ×T matrix. Let γ̃ and ω̃ be initial

√
n-consistent estimators of γ0 and ω0 respectively.

Denote ĈnT,γc =
∂gnT,γc(γ̃,ω̃)

∂ω (
∂gnT,ωc(γ̃,ω̃)

∂ω )−1. The SGMM estimator γ̈ is characterized by the equation

gnT,γc(γ̈, ω̃)− ĈnT,γcgnT,ωc(γ̈, ω̃) = 0. (2.27)

This equation can be rewritten as

snT,1cγ̈
2 + snT,2cγ̈ + snT,3c = 0,

where snT,1c = 1
n ĈnT,γc∆Y′n,T−1M

′
nT (Φ̃T ⊗ In)MnT∆Yn,T−1,

snT,2c =
1

n
∆Y′n,T−1(H̃−1

T ⊗ In)MnT∆Yn,T−1 −
2

n
ĈnT,γc∆Y′n,T−1M

′
nT (Φ̃T ⊗ In)MnT∆YnT ,

and snT,3c = 1
n ĈnT,γc∆Y′nTM

′
nT (Φ̃T ⊗ In)MnT∆YnT − 1

n∆Y′n,T−1(H̃−1
T ⊗ In)MnT∆YnT . Using ∆YnT =

γ0∆Yn,T−1 + κ0ιnT + enT , we have snT,2c = −snT,4c − 2γ0snT,1c, where

snT,4c =
2

n
ĈnT,γc∆Y′n,T−1M

′
nT (Φ̃T ⊗ In)MnT enT −

1

n
∆Y′n,T−1(H̃−1

T ⊗ In)MnT∆Yn,T−1,

and snT,3c = γ0snT,4c + γ2
0snT,1c + op(1) as 1

ne
′
nTM

′
nT (Φ̃T ⊗ In)MnT enT = op(1) and 1

n∆Y′n,T−1(H̃−1
T ⊗

In)MnT enT = op(1). The quadratic equation can have the solutions on γ as

−snT,2c ±
√
s2
nT,2c − 4snT,1csnT,3c

2snT,1c
= γ0 +

snT,4c ±
√
s2
nT,4c + op(1)

2snT,1c
.

Thus, the consistent root is
−snT,2c−

√
s2nT,2c−4snT,1csnT,3c

2snT,1c
if snT,4c ≥ 0, or

−snT,2c+
√
s2nT,2c−4snT,1csnT,3c

2snT,1c
if

snT,4c < 0. The SnT,4c can be estimated by

s̃nT,4c =
2

n
ĈnT,γc∆Y′n,T−1M

′
nT (Φ̃T ⊗ In)MnT (∆YnT − γ̃∆Yn,T−1)− 1

n
∆Y′n,T−1(H̃−1

T ⊗ In)MnT∆Yn,T−1.

For the asymptotic variance of
√
n[gnT,γc(γ0, ω0), gnT,ωc(γ0, ω0)]′, using Yn,T−1 = (FT ⊗In)(enT +κ0ιnT ), we

may show that
√
n[gnT,γc(γ0, ω0), gnT,ωc(γ0, ω0)]′ = gnT,c(γ0, ω0)+op(1), where gnT,c(γ0, ω0) = [ 1√

n
e′nT (F ′TH

−1
T ⊗

In)enT + κ0√
n
ι′nT (F ′TH

−1
T ⊗ In)MnT enT ,

1√
n
e′nT (ΦT ⊗ In)enT ]′. Then under regularity conditions,

√
n[gnT,γc(γ0, ω0), gnT,ωc(γ0, ω0)]′

d−→ N(0,ΣT,γc),
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where ΣT,γc = Var[
√
ngnT,c(γ0, ω0)]. This result can be used to derive the asymptotic distribution of γ̈.

Equation (2.26) is quadratic in the limit under the following Assumption 2.8, and so is (2.27) under

Assumption 2.9.

Assumption 2.8. σ2
v0 tr(F ′TΦTFTHT ) + κ2

0(F ′TΦTFT )11 6= 0.

Assumption 2.9. σ2
v0 tr(F ′TΦTFTHT ) + κ2

0

[(
FT −

(F ′TH
−1
T )11

(H−1
T )11

IT
)′

ΦT
(
FT −

(F ′TH
−1
T )11

(H−1
T )11

IT
)]

11
6= 0.

Theorem 2. Suppose that Assumptions 2.1–2.7 are satisfied.

(i) If Assumption 2.8 also holds, the SGMM estimator γ̇ is consistent and follows the asymptotic distri-

bution
√
n(γ̇ − γ0)

d−→ N(0, (RTγGTγ)−2RTγΣTγR
′
Tγ),

where ΣTγ = Var(
√
ngnT (γ0, τ0)), RTγ = [1,−κ0

(F ′TH
−1
T )11

(H−1
T )11

,− tr(F ′TH
−1
T JT )

tr(H−1
T JTH

−1
T JT )− 1

T tr2(H−1
T JT )

] and

GTγ = −[σ2
v0 tr(F ′TH

−1
T FTHT ) + κ2

0(F ′TH
−1
T FT )11, κ0(F ′TH

−1
T )11, 2σ

2
v0 tr(F ′TH

−1
T JT )]′.

The asymptotic distribution of γ̇ is the same as that of the QML estimator γ̂qml of γ in Theorem 1(ii).

(ii) If Assumption 2.9 also holds, the SGMM estimator γ̈ is consistent and follows the asymptotic distri-

bution
√
n(γ̈ − γ0)

d−→ N(0, (RT,γcGT,γc)
−2RT,γcΣTγ,cR

′
T,γc),

where ΣT,γc = Var(
√
ngnT,c(γ0, τ0)), RT,γc = [1,− tr(F ′TH

−1
T JT )

tr(H−1
T JTH

−1
T JT )− 1

T tr2(H−1
T JT )

] and

GT,γc = −
[
σ2
v0 tr(F ′TH

−1
T FTHT ) + κ2

0(F ′TH
−1
T FT )11 − κ2

0

[(F ′TH
−1
T )11]2

(H−1
T )11

, 2σ2
v0 tr(F ′TH

−1
T JT )

]′
.

The asymptotic distribution of γ̈ is the same as that of the QML estimator γ̂qml of γ in Theorem 1(ii).

Note that the asymptotic variances in Theorem 2(i)–(ii) are equal, though they are written in different

forms.

3 Fixed effects DPD with exogenous variables

Consider the fixed effects DPD model with exogenous variables:

yit = γ0yi,t−1 + xitβ0 + ci0 + vit, t = 1, . . . , T,
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and yi0 is observable. In this model, ci0 absorbs all time-invariant regressors. For yi0, by continuous

substitution, we have

yi0 = γm0 yi,−m + xi0β0 +

m−1∑
j=1

γj0xi,−jβ0 + ci0

m−1∑
j=0

γj0 +

m−1∑
j=0

γj0vi,−j .

For ci0 and the unobserved xi,−1, . . . , xi,−m+1 and yi,−m, we may use ~xi = [xi0, . . . , xiT ] and observable

time-invariant regressors zi to predict them. Assume that E(ci0|zi, ~xi) = zi%c + ~xiπc, E(yi,−m|zi, ~xi) =

zi% + ~xiπ and E(xi,−j |zi, ~xi) = zi%j + ~xiπj for j = 1, . . . ,m − 1. Then, yi0 = ziα
(1) + ~xiα

(2) + ξi0, where

α(1) = γm0 % +
∑m−1
j=1 γj0%jβ0 + %c

∑m−1
j=0 γj0, α(2) = γm0 π + [β′0, 0, . . . , 0]′ +

∑m−1
j=1 γj0πjβ0 + πc

∑m−1
j=0 γj0,

ξi0 =
∑m−1
j=0 γj0vi,−j + pi, and pi = γm0 [yi,−m − E(yi,−m|zi, ~xi)] +

∑m−1
j=1 γj0[xi,−j − E(xi,−j |zi, ~xi)]β0 + [ci0 −

E(ci0|zi, ~xi)]
∑m−1
j=0 γj0 is the prediction error. It follows that

∆yi1 = [zi, ~xi]α0 + ξi1,

where α0 =
[
(γ0 − 1)α(1)′ + %′c, (γ0 − 1)α(2)′ + π′c + [0, β′0, 0, . . . , 0]

]′
is a free parameter vector, and ξi1 =

(γ0 − 1)ξi0 + vi1 + [ci0 − E(ci0|zi, ~xi)] = vi1 + (γ0 − 1)
∑m−1
j=0 γj0vi,−j + p∗i is the error term with p∗i =

(γ0−1)γm0 [yi,−m−E(yi,−m|zi, ~xi)]+(γ0−1)
∑m−1
j=1 γj0[xi,−j−E(xi,−j |zi, ~xi)]β0 +γm0 [ci0−E(ci0|zi, ~xi)] being

the overall prediction error. As in Hsiao et al. (2002), p∗i ’s are assumed to be i.i.d. with zero mean and a

finite variance. With this assumption, ξi1 has overall zero mean and finite variance. Let the variance of ξi1

be σ2
v0ω0, where ω0 is a free parameter due to the prediction errors in ξi1. Thus, regardless whether the

process has started from a finite m or infinite past as m → ∞, due to the prediction error on exogenous

variables in the past, the variance parameter ω of ξi1 is free from a restriction with γ in this model.

The quasi log likelihood function for the within model of ∆YnT is

lnLw(θ) = −nT
2

ln(2πσ2
v)− n

2
ln |HT (ω)| − 1

2σ2
v

e′nT (α, δ)(H−1
T (ω)⊗ In)enT (α, δ), (3.1)

where δ = (β′, γ)′, θ = (α′, δ′, ω, σ2
v)′, enT (α, δ) = ∆YnT −∆ZnT δ −ΥnTα,

∆ZnT =


0 0

∆Xn2 ∆Yn1

...
...

∆XnT ∆Yn,T−1

 and ΥnT =


Zn ~XnT

0 0
...

...
0 0

 ,
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for Zn = [z′1, . . . , z
′
n]′ and

−→
XnT = [~x′1, ..., ~x

′
n]′. The first order derivatives of (3.1) are

∂ lnLw(θ)

∂α
=

1

σ2
v

Υ′nT (H−1
T (ω)⊗ In)enT (α, δ),

∂ lnLw(θ)

∂δ
=

1

σ2
v

∆Z′nT (H−1
T (ω)⊗ In)enT (α, δ),

∂ lnLw(θ)

∂ω
= −n

2
tr[H−1

T (ω)JT ] +
1

2σ2
v

e′nT (α, δ)(H−1
T (ω)JTH

−1
T (ω)⊗ In)enT (α, δ),

∂ lnLw(θ)

∂σ2
v

= − nT
2σ2

v

+
1

2σ4
v

e′nT (α, δ)(H−1
T (ω)⊗ In)enT (α, δ).

3.1 Efficient GMM

For the fixed effects DPD model with exogenous variables, ∆Yn,T−1 = (FT⊗In)(enT+∆XnTβ0+ΥnTα0),

where ∆XnT = [0,∆X ′n2, . . . ,∆X
′
nT ]′. Then the moment condition ∆Y′n,T−1(H−1

T ⊗In)enT = e′nT (F ′TH
−1
T ⊗

In)enT + (∆XnTβ0 + ΥnTα0)′(F ′TH
−1
T ⊗ In)enT is linear-quadratic in enT . Let X∗nT = [ΥnT ,∆XnT ]. From

the score vector of the quasi log likelihood function, we may consider the following moment vector for a

GMM estimation:

gnT (θ3) =
1

n



X∗′nT (K1T ⊗ In)enT (α, δ)
...

X∗′nT (Km1T ⊗ In)enT (α, δ)
e′nT (α, δ)(B′T (ω)C1TBT (ω)⊗ In)enT (α, δ)

...
e′nT (α, δ)(B′T (ω)Cm2TBT (ω)⊗ In)enT (α, δ)


, (3.2)

where θ3 = [α′, δ′, ω]′, enT (α, δ) = ∆YnT − ∆ZnT δ − ΥnTα, and CjT ’s have zero traces. Let ΣnT =

Var[
√
ngnT (θ30)] and Σ̂nT be a consistent estimator of limn→∞ΣnT . The optimal GMM estimator with

gnT (θ3) is

θ̂3,gmm = arg min
θ3∈Θ3

g′nT (θ3)Σ̂−1
nT gnT (θ3), (3.3)

where Θ3 is the parameter space of θ3. When the disturbances are normally distributed, we may show by

the generalized Schwarz inequality that the best moment vector among moment vectors of the form (3.2) is

g∗nT (θ3) =
1

n


X∗′nT (H−1

T ⊗ In)enT (α, δ)
X∗′nT (F ′TH

−1
T ⊗ In)enT (α, δ)

e′nT (α, δ)(B′T (ω)C∗1TBT (ω)⊗ In)enT (α, δ)
e′nT (α, δ)(B′T (ω)C∗2TBT (ω)⊗ In)enT (α, δ)

 , (3.4)

where C∗1T = BTFTB
−1
T and C∗2T = BωTB

−1
T −

1
T tr(BωTB

−1
T )IT with BωT = ∂BT (ω0)

∂ω . This moment vector

corresponds to the QML score vector.

We give required regularity conditions below and present asymptotic results on the GMM estimation.

21



Assumption 3.1. The process {yit} has started from either the infinite past or a finite but unknown m

periods ago, ∆yi1 = [zi, ~xi]α0 + vi1 −
√
ω0 − 1ui0, where ui0’s are i.i.d. (0, σ2

v0), E(|ui0|4+η) < ∞ for some

η > 0, and ui0’s are independent of vjt’s, even though they have the same variance σ2
v0.

Assumption 3.2. Xnt and Zn are nonstochastic such that supl,t,n
1
n

∑n
i=1 |xit,l|2+η <∞ and supl,n

1
n

∑n
i=1 |zi,l|2+η <

∞ for some η > 0, where xit,l is the (i, l)th element of Xnt and zi,l is the (i, l)th element of Zn.

Assumption 3.3. CjT ’s have zero traces and are linearly independent, and limn→∞
1
n [(K ′1T⊗In)X∗nT , . . . , (K

′
m1T
⊗

In)X∗nT ]′[(K ′1T ⊗ In)X∗nT , . . . , (K
′
m1T
⊗ In)X∗nT ] has full rank.

Assumption 3.4. When (α′0, β
′
0)′ 6= 0, limn→∞

1
n

 X∗′nT (K1T⊗In)X∗nT X∗′nT (K1TFT⊗In)X∗nT (α0
β0

)
...

...
X∗′nT (Km1T

⊗In)X∗nT X∗′nT (Km1T
FT⊗In)X∗nT (α0

β0
)

 has full

column rank, and [dT (ω)C1T d
′
T (ω), . . . , dT (ω)Cm2T d

′
T (ω)] 6= 0 for any ω 6= ω0, where

dT (ω) = [(a0(ω)a1(ω))−1/2, (a1(ω)a2(ω))−1/2, . . . , (aT−1(ω)aT (ω))−1/2]

with at(ω) = 1 + t(ω − 1); when (α′0, β
′
0)′ = 0, limn→∞

1
n

 X∗′nT (K1T⊗In)X∗nT
...

X∗′nT (Km1T
⊗In)X∗nT

 has full column rank, and

 dT (ω)C1T d
′
T (ω) tr[F ′TB

′
T (ω)Cs1TBT (ω)HT ] tr[F ′TB

′
T (ω)C1TBT (ω)FTHT ]

...
...

...
dT (ω)Cm2T d

′
T (ω) tr[F ′TB

′
T (ω)Csm2T

BT (ω)HT ] tr[F ′TB
′
T (ω)Cm2TBT (ω)FTHT ]


has full column rank for any ω in its parameter space.

Assumption 3.5. When (α′0, β
′
0)′ 6= 0, tr(CsjTBωTB

−1
T ) 6= 0 for some 1 ≤ j ≤ m2; when (α′0, β

′
0)′ = 0, tr(Cs1TBTFTB

−1
T ) tr(Cs1TBωTB

−1
T )

...
...

tr(Csm2T
BTFTB

−1
T ) tr(Csm2T

BωTB
−1
T )


has full column rank.

Assumption 3.6. limn→∞
1
nX
∗′
nTX

∗
nT has full rank.

Assumption 3.7. The parameter space Θ of θ is compact, ω > 1, and θ0 in the interior of Θ.

Assumption 3.1 states the prediction equation of ∆yi1 using exogenous variables. In Assumption 3.2,

Xnt and Zn are assumed to be nonstochastic for simplicity, and the existence of empirical moments of order

2 + η is the requirement of a proper central limit theorem. Assumption 3.3 is a sufficient condition for the

nonsingularity of the limiting variance of the moment vector. It requires X∗nT to have full column rank
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for large enough n and KjT ’s to be linearly independent, in addition to the linear independence of CjT ’s.

Assumptions 3.4 and 3.6 are sufficient identification conditions for, respectively, the GMM estimator and the

QML estimator θ̂qml that maximizes the log likelihood function (3.1). Under Assumption 3.5, the expected

gradient matrix GnT = E(∂gnT (θ30)
∂θ′3

) has full column rank for large enough n. Assumption 3.7 is a usual

assumption on the parameter space.

Let θ̂3,qml be the QML estimator of θ3, which is a subvector of θ̂qml corresponding to θ3, θ̂∗3,gmm be

the optimal GMM estimator with the moment vector g∗nT (θ3) in (3.4), G∗nT = E(
∂g∗nT (θ30)

∂θ′3
) and Σ∗nT =

Var[
√
ng∗nT (θ30)].

Theorem 3. Suppose that Assumptions 2.1–2.2 and 3.1–3.7 are satisfied.

(i) The optimal GMM estimator θ̂3,gmm in (3.3) is consistent and has the asymptotic distribution
√
n(θ̂3,gmm−

θ30)
d−→ N(0, limn→∞(G′nTΣ−1

nTGnT )−1), where

GnT = − 1

n



X∗′nT (K1T ⊗ In)X∗nT X∗′nT (K1TFT ⊗ In)X∗nT
(
α0

β0

)
0

...
...

...
X∗′nT (Km1T ⊗ In)X∗nT X∗′nT (Km1TFT ⊗ In)X∗nT

(
α0

β0

)
0

0 nσ2
v0 tr(Cs1TBTFTB

−1
T ) −nσ2

v0 tr(Cs1TBωTB
−1
T )

...
...

...
0 nσ2

v0 tr(Csm2T
BTFTB

−1
T ) −nσ2

v0 tr(Csm2T
BωTB

−1
T )


.

(ii) The QML estimator θ̂qml is consistent and follows the asymptotic distribution

√
n(θ̂qml − θ0)

d−→ N
(
0, lim
n→∞

ΓnT,θ
)
,

where ΓnT,θ = [E(− 1
n
∂2 lnLw(θ0)

∂θ∂θ′ )]−1 E( 1
n
∂ lnLw(θ0)

∂θ
∂ lnLw(θ0)

∂θ′ )[E(− 1
n
∂2 lnLw(θ0)

∂θ∂θ′ )]−1 with

E
(
− 1

n

∂2 lnLw(θ0)

∂θ∂θ′
)

=


1

nσ2
v0
X∗′nT (H−1

T ⊗ In)X∗nT ∗ ∗ ∗
1

nσ2
v0

(
α0

β0

)′
X∗′nT (F ′TH

−1
T ⊗ In)X∗nT ΩnT,22 ∗ ∗

0 tr(F ′TH
−1
T JT ) 1

2 tr(H−1
T JTH

−1
T JT ) ∗

0 0 1
2σ2
v0

tr(H−1
T JT ) T

2σ4
v0

 ,

and ΩnT,22 = 1
nσ2

v0

(
α0

β0

)′
X∗′nT (F ′TH

−1
T FT ⊗ In)X∗nT

(
α0

β0

)
+ tr(F ′TH

−1
T FTHT ).

(iii) θ̂∗3,gmm is asymptotically efficient relative to θ̂3,qml in general, i.e., (G∗′nTΣ∗−1
nT G∗nT )−1 ≤ ΓnT,θ3 , where

ΓnT,θ3 is the asymptotic variance of θ̂3,qml, which is a submatrix of ΓnT,θ corresponding to θ3.

(iv) If Vn,T+1 ∼ N(0, σ2
v0In(T+1)), then:
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(a) Among optimal GMM estimators with moments of the form (3.2), θ̂∗3,gmm has the minimum

asymptotic variance, i.e., (G∗′nTΣ∗−1
nT G∗nT )−1 ≤ (G′nTΣ−1

nTGnT )−1, where

G∗′T Σ∗−1
T G∗T =


1

nσ2
v0
X∗′nT (H−1

T ⊗ In)X∗nT ∗ ∗
1

nσ2
v0

(
α0

β0

)′
X∗′nT (F ′TH

−1
T ⊗ In)X∗nT ΩnT,22 ∗

0 tr(F ′TH
−1
T JT ) 1

2 tr(H−1
T JTH

−1
T JT )− 1

2T tr2(H−1
T JT )

 .

(b) θ̂∗3,gmm has the same asymptotic variance as that of θ̂3,qml, i.e., (G∗′nTΣ∗−1
nT G∗nT )−1 = ΓnT,θ3 .

3.2 SGMM

We may consider an efficient SGMM estimator of δ0 = [β′0, γ0]′ based on the efficient GMM. Let δ̃ = [β̃′, γ̃]′

and α̃1 be, respectively,
√
n-consistent estimators of δ0 and α10 = [α′0, ω0]′. Denote the moment vector by

gnT (δ, α1) = [g′nT,1(δ, α1), g′nT,2(δ, α1)]′, where

gnT,1(δ, α1) =
1

n

 ∆X′nT (H̃−1
T ⊗ In)enT (α, δ)

X∗′nT (F̃ ′T H̃
−1
T ⊗ In)enT (α, δ)

e′nT (α, δ)(F̃ ′TH
−1
T (ω)⊗ In)enT (α, δ)

 ,

gnT,2(δ, α1) =
1

n

(
Υ′nT (H̃−1

T ⊗ In)enT (α, δ)
e′nT (α, δ)(ΦT (ω)⊗ In)enT (α, δ)

)
,

with α1 = [α′, ω]′, F̃T = FT (γ̃), H̃T = HT (ω̃) and ΦT (ω) is defined below (2.15c), which will be asymptoti-

cally efficient under normality. In gnT (δ, α1), the estimates γ̃ and ω̃ in F̃T and H̃T do not affect the asymptotic

distribution of the SGMM estimator, so we use F̃T and H̃T directly. Let ΣnT,δ = Var[
√
ngnT,b(δ0, α10)] and

Σ̂nT,δ be a consistent estimator of limn→∞ ΣnT,δ, where gnT,b(δ, α1) is the moment vector obtained by replac-

ing F̃T and H̃T in gnT (δ, α1) with, respectively, FT (γ) andHT (ω). Denote ĈnT,δ =
∂gnT,1(δ̃,α̃1)

∂α′1
(
∂gnT,2(δ̃,α̃1)

∂α′1
)−1

and R̂nT,δ = [I,−ĈnT,δ], where I is an identity matrix conformable with gnT,1(δ, α1). Then we have the

SGMM estimator of δ0:

δ̂ = arg min
δ

[R̂nT,δgnT (δ, α̃1)]′(R̂nT,δΣ̂nT,δR̂
′
nT,δ)

−1R̂nT,δgnT (δ, α̃1). (3.5)

If we would like to focus on the estimation of only γ, which has a closed form solution of the estimate

and can also be asymptotically efficient under normal disturbances, we may concentrate out α, β and σ2
v

from the QML first order conditions to derive the following two moment conditions:25

gnT,1(γ, ω) =
1

n
∆Y′n,T−1(H−1

T (ω)⊗ In)M∗nT (ω)(∆YnT − γ∆Yn,T−1),

gnT,2(γ, ω) =
1

n
(∆YnT − γ∆Yn,T−1)′M∗′nT (ω)[ΦT (ω)⊗ In]M∗nT (ω)(∆YnT − γ∆Yn,T−1),

25As in Section 2, we can also directly follow the approach in Jin and Lee (2018) to construct an SGMM estimator of γ using
moment conditions derived from the QML first order conditions. On the other hand, we do not use gnT (δ, α1) to construct an
SGMM estimator of only γ due to an identification issue. As shown below, by using the concentrated moments derived from
the QML first order conditions, we can have closed-form roots of γ and investigate which root is consistent.
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whereM∗nT (ω) = InT−X∗nT [X∗′nT (H−1
T (ω)⊗In)X∗nT ]−1X∗′nT (H−1

T (ω)⊗In). Denote ĈnT,γc =
∂gnT,1(γ̃,ω̃)

∂ω (
∂gnT,2(γ̃,ω̃)

∂ω )−1

and M̃∗nT = M∗nT (ω̃). The SGMM estimator γ̇ is characterized by the quadratic equation of γ̇:

gnT,1(γ̇, ω̃)− ĈnT,γcgnT,2(γ̇, ω̃) = −snT,1γ̇2 − snT,2γ̇ − snT,3 = 0, (3.6)

where snT,1 = 1
n ĈnT,γc∆Y′n,T−1M̃

∗′
nT (Φ̃T ⊗ In)M̃∗nT∆Yn,T−1,

snT,2 =
1

n
∆Y′n,T−1(H̃−1

T ⊗ In)M̃∗nT∆Yn,T−1 −
2

n
ĈnT,γc∆Y′n,T−1M̃

∗′
nT (Φ̃T ⊗ In)M̃∗nT∆YnT ,

and snT,3 = 1
n ĈnT,γc∆Y′nT M̃

∗′
nT (Φ̃T ⊗ In)M̃∗nT∆YnT − 1

n∆Y′n,T−1(H̃−1
T ⊗ In)M̃∗nT∆YnT . Using ∆YnT =

γ0∆Yn,T−1 + ∆XnTβ0 + ΥnTα0 + enT , we have snT,2 = −snT,4 − 2γ0snT,1, where

snT,4 =
2

n
ĈnT,γc∆Y′n,T−1M̃

∗′
nT (Φ̃T ⊗ In)M̃∗nT enT −

1

n
∆Y′n,T−1(H̃−1

T ⊗ In)M̃∗nT∆Yn,T−1,

and snT,3 = γ0snT,4 + γ2
0snT,1 + op(1) as 1

ne
′
nT M̃

∗′
nT (Φ̃T ⊗ In)M̃∗nT enT = op(1) and 1

n∆Y′n,T−1(H̃−1
T ⊗

In)M̃∗nT enT = op(1). The quadratic equation has the solutions

−snT,2 ±
√
s2
nT,2 − 4snT,1snT,3

2snT,1
= γ0 +

snT,4 ±
√
s2
nT,4 + op(1)

2snT,1
.

Thus, the consistent root is
−snT,2−

√
s2nT,2−4snT,1snT,3

2snT,1
if snT,4 ≥ 0, or

−snT,2+
√
s2nT,2−4snT,1snT,3

2snT,1
if snT,4 < 0.

The snT,4 can be estimated by

s̃nT,4 =
2

n
ĈnT,γc∆Y′n,T−1M̃

∗′
nT (Φ̃T ⊗ In)M̃∗nT (∆YnT − γ̃∆Yn,T−1)− 1

n
∆Y′n,T−1(H̃−1

T ⊗ In)M̃∗nT∆Yn,T−1.

Using Yn,T−1 = (FT ⊗ In)(enT + X∗nT
(
α0

β0

)
), we may show that [

√
ngnT,1(γ0, ω0),

√
ngnT,2(γ0, ω0)]′ =

√
ngnT (γ0, ω0) + op(1), where

gnT (γ0, ω0) =
1

n

(
e′nT (F ′TH

−1
T ⊗ In)enT +

(
α0

β0

)′
X∗′nT (F ′TH

−1
T ⊗ In)M∗nT enT

e′nT (ΦT ⊗ In)enT

)

with M∗nT = M∗nT (ω0). Denote ΣnT,γc = Var[
√
ngnT (γ0, ω0)].

The following assumptions are needed for the SGMM estimators.

Assumption 3.8. limn→∞
1
n

(
∆X′nT (H−1

T ⊗In)MnT [∆XnT ,(FT⊗In)X∗nT (α0
β0

)]

X∗′nT (F ′TH
−1
T ⊗In)MnT [∆XnT ,(FT⊗In)X∗nT (α0

β0
)]

)
has full column rank.

Assumption 3.9. lim
n→∞

1
n

(
α0

β0

)′
X∗′nT (F ′T⊗In)M∗′nT (ΦT⊗In)M∗nT (FT⊗In)X∗nT

(
α0

β0

)
+σ2

v0 tr(F ′TΦTFTHT ) 6= 0.

Assumptions 3.8 is a sufficient identification condition for δ̂. It requires [α′0, β
′
0]′ 6= 0. Under Assumption

3.9, (3.6) is quadratic in γ in the limit.
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Theorem 4. Suppose that Assumptions 2.1–2.2 and 3.1–3.7 are satisfied.

(i) If Assumption 3.8 also holds, the SGMM estimation δ̂ in (3.5) is consistent and has the asymptotic

distribution

√
n(δ̂ − δ0)

d−→ N(0, lim
n→∞

[G′nT,δR
′
nT,δ(RnT,δΣnT,δR

′
nT,δ)

−1RnT,δGnT,δ]
−1),

where

GnT,δ = − 1

n


∆X′nT (H−1

T ⊗ In)∆XnT ∆X′nT (H−1
T FT ⊗ In)X∗nT

(
α0

β0

)
X∗′nT (F ′TH

−1
T ⊗ In)∆XnT X∗′nT (F ′TH

−1
T FT ⊗ In)X∗nT

(
α0

β0

)
0 nσ2

v0 tr(F ′TH
−1
T FTHT )

Υ′nT (H−1
T ⊗ In)∆XnT Υ′nT (H−1

T FT ⊗ In)X∗nT
(
α0

β0

)
0 2nσ2

v0 tr(F ′TH
−1
T JT )

 ,

and RnT,δ = [I,−CnT,δ] with

CnT,δ =

∆X′nT (H−1
T ⊗ In)ΥnT [Υ′nT (H−1

T ⊗ In)ΥnT ]−1 0
X∗′nT (F ′TH

−1
T ⊗ In)ΥnT [Υ′nT (H−1

T ⊗ In)ΥnT ]−1 0

0
tr(F ′TH

−1
T JT )

tr(H−1
T JTH

−1
T JT )− 1

T tr2(H−1
T JT )

 .

The asymptotic distribution of δ̂ is the same as that of the GMM estimator δ̂gmm in Theorem 3(i) with

the moment vector (3.4).

(ii) If Assumption 3.9 also holds, the SGMM estimator γ̇ is consistent and follows the asymptotic distri-

bution
√
n(γ̇ − γ0)

d−→ N(0, lim
n→∞

(RnT,γcGnT,γc)
−2RnT,γcΣnT,γcR

′
nT,γc),

where RnT,γc = [1,− tr(F ′TH
−1
T JT )

tr(H−1
T JTH

−1
T JT )− 1

T tr2(H−1
T JT )

] and

GnT,γc = −[σ2
v0 tr(F ′TH

−1
T FTHT )+ 1

n

( α0

β0

)′
X∗′nT (F ′TH

−1
T ⊗In)M∗nT (FT⊗In)X∗nT

( α0

β0

)
, 2σ2

v0 tr(F ′TH
−1
T JT )]′.

The asymptotic distribution of γ̇ is the same as that of the QML estimator γ̂qml of γ in Theorem 3(ii).

4 Stationary fixed effects DPD

In this section, we consider the pure stationary fixed effects DPD model where the process has started a

long time ago. In this situation, ω = 2
1+γ will no longer be a free parameter.26 Another model of interest is

the stationary fixed effects DPD model with exogenous variables. However, to approximate the unobservable

past exogenous variables, we have the need to introduce a prediction error, and hence ω would become a

free parameter. Under such a situation, the efficient GMM estimation in Section 3.1 would apply.

26κ no longer exists, and the mean of ∆Yn1 is zero.
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For the pure stationary fixed effects DPD model, the estimation equation (2.2) has now the T×T variance

matrix

HT (γ) =


2

1+γ −1

−1 2
. . .

. . .
. . . −1
−1 2

 (4.1)

and HT = HT (γ0). For the QML estimation, the quasi log likelihood function for (2.2) with sample obser-

vations ∆Ynt, t = 1, . . . , T , is

lnLw(γ, σ2
v) = −nT

2
ln(2πσ2

v)− n

2
ln |HT (γ)| − 1

2σ2
v

e′nT (γ)(H−1
T (γ)⊗ In)enT (γ), (4.2)

where enT (γ) = (∆Y ′n1,∆Y
′
n2 − γ∆Y ′n1, ...,∆Y

′
nT − γ∆Y ′n,T−1)′. The first order derivatives of (4.2) are

∂ lnLw(γ, σ2
v)

∂γ
=

1

σ2
v

∆Y′n,T−1(H−1
T (γ)⊗ In)enT (γ)

+
1

2σ2
v

e′nT (γ)
(
H−1
T (γ)

∂HT (γ)

∂γ
H−1
T (γ)⊗ In

)
enT (γ)− n

2
tr
(∂HT (γ)

∂γ
H−1
T (γ)

)
, (4.3)

∂ lnLw(γ, σ2
v)

∂σ2
v

= − nT
2σ2

v

+
1

2σ4
v

e′nT (γ)(H−1
T (γ)⊗ In)enT (γ),

where ∆Yn,T−1 ≡ (0,∆Y ′n1,∆Y
′
n2, . . . ,∆Y

′
n,T−1)′. The QMLE θ̂ = (γ̂, σ̂2

v)′ will satisfy the gradient vector of

the quasi log likelihood in (4.3) being set to zero. Given γ̂, we have σ̂2
v(γ̂) = 1

nT e
′
nT (γ̂)(H−1

T (γ̂)⊗ In)enT (γ̂).

For γ̂, it is characterized by the score equation:

∆Y′n,T−1 · (H−1
T (γ̂) ⊗ In) · enT (γ̂)

+
1

2
e′nT (γ̂)

(
H−1
T (γ̂)

∂HT (γ̂)

∂γ
H−1
T (γ̂) ⊗ In

)
enT (γ̂) −

tr
( ∂HT (γ̂)

∂γ
H−1
T (γ̂)

)
2T

e′nT (γ̂)(H−1
T (γ̂) ⊗ In)enT (γ̂) = 0.

(4.4)

From the score vector, the model implies two moment conditions:

E[∆Y′n,T−1(H−1
T ⊗ In)enT ] = E[e′nT (F ′T ⊗ In)(H−1

T ⊗ In)enT ] = 0

and

E
{
e′nT

[
H−1
T

∂HT

∂γ
H−1
T ⊗ In −

tr(∂HT∂γ H−1
T )

T
·H−1

T ⊗ In
]
enT

}
= 0.

Therefore, these suggest two empirical moments ∆Y′n,T−1(H−1
T (γ)⊗ In)enT (γ) and

e′nT (γ)
(
H−1
T (γ)

(∂HT (γ)

∂γ
H−1
T (γ)−

tr(∂HT (γ)
∂γ H−1

T (γ))

T
IT
)
⊗ In

)
enT (γ)

for a GMM estimation. A direct GMM approach is to use these two moment conditions to implement a

GMM estimation.
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Alternatively, we would like a possible GMM framework which can incorporate both IVs and MD es-

timation approaches in the literature as members in it, and also an efficient GMM estimation might be

possible. Because ω is now a function of γ but not a free parameter, the previous sequential GMM approach

by regarding ω as if it was a free parameter is possible but it would not retain the constraint that ω is a

function of γ in the second step estimation. Therefore, such a sequential GMM approach could not achieve

asymptotic efficiency. In order to achieve possible asymptotic efficiency, we suggest an alternative GMM

estimation approach below. However, as ω is a nonlinear function of γ, nonlinear moments in γ seem not to

be avoidable.

We recognize that by using the identity ∆Yn,T−1 = (FT (γ) ⊗ In)enT (γ), and denoting BT = D−1/2A

from (2.8) so that H−1
T = B′TBT , the two corresponding empirical moments due to scores can be written as

e′nT (γ)(B′T (γ)⊗ In)
[
(B′−1

T (γ)F ′T (γ)B′T (γ)⊗ In)
]

(BT (γ)⊗ In)enT (γ) (4.5)

and

e′nT (γ)(B′T (γ)⊗ In)
[
BT (γ)

∂HT (γ)

∂γ
B′T (γ)⊗ In −

tr(∂HT (γ)
∂γ H−1

T (γ))

T
IT ⊗ In

]
(BT (γ)⊗ In)enT (γ). (4.6)

As γ0 is in BT , these empirical moments suggest a class of GMM estimation with moments of the form

e′nT (γ)(B′T (γ)⊗ In)(AjT ⊗ In)(BT (γ)⊗ In)enT (γ), (4.7)

where AjT ’s can be constant matrices or matrices involving γ, but at the true γ0, they have the property

tr(AjT ) = 0. Those matrices AjT ’s with their traces being zero will guarantee that the moment E[e′nT (B′T ⊗

In)(AjT ⊗ In)(BT ⊗ In)enT ] = 0.

Assume that we have m1 such AjT for j = 1, ...,m1. Then, the vector of moment conditions is

gnT (γ) =
1

n

 e′nT (γ)(B′T (γ)A1TBT (γ)⊗ In)enT (γ)
...

e′nT (γ)(B′T (γ)Am1TBT (γ)⊗ In)enT (γ)

 , (4.8)

and the optimal GMM estimator with gnT (γ) is

γ̂ = arg min
γ
g′nT (γ)Σ̂−1

nT gnT (γ), (4.9)

where Σ̂nT is a consistent estimator of the limiting variance matrix of
√
ngnT (γ0). Due to the nature of the

score vector which is correctly specified under normal disturbances and the GMM moments are motivated

from those scores, the best moment vector under normal disturbances is

g∗nT (γ) =
1

n

(
e′nT (γ)(B′T (γ)A∗1TBT (γ)⊗ In)enT (γ)
e′nT (γ)(B′T (γ)A∗2TBT (γ)⊗ In)enT (γ)

)
, (4.10)
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where A∗1T = BTFTB
−1
T and A∗2T = BγTB

−1
T −

tr(BγTB
−1
T )

T IT with BγT = ∂BT (γ0)
∂γ . Alternatively, it can be

simply 1
ne
′
nT (γ)(B′T (γ)K1TBT (γ)⊗In)enT (γ), where K1T = Ks

T−
tr(Ks

T )
T IT with KT = BTFTB

−1
T −BγTB

−1
T .

While using A∗1T and B∗2T separately yields a GMM estimate that is asymptotically as efficient as the ML

estimate in the case of normal disturbances, it may generate a relatively efficient GMM estimate due to

optimal weighting than the QML estimate in the case of non-normal disturbances.

We maintain the following assumptions for the GMM estimation.

Assumption 4.1. The process {yit} has started from the infinite past and |γ0| < 1.

Assumption 4.2. AjT ’s have zero traces and are linearly independent.

Assumption 4.3. For any γ 6= γ0,

2

(1 + γ0)(1 + γ)

 dT (γ)A1T d
′
T (γ)

...
dT (γ)Am1T

d′T (γ)

+(γ0−γ)

 tr[F ′TB
′
T (γ)As1TBT (γ)HT ]

...
tr[F ′TB

′
T (γ)Asm1T

BT (γ)HT ]

+(γ0−γ)2

 tr[F ′TB
′
T (γ)A1TBT (γ)FTHT ]

...
tr[F ′TB

′
T (γ)Am1T

BT (γ)FTHT ]

 6= 0,

where dT (γ) = [(a0(γ)a1(γ))−1/2, (a1(γ)a2(γ))−1/2, . . . , (aT−1(γ)aT (γ))−1/2] with at(γ) = 1 + t( 2
1+γ − 1).

Assumption 4.4. tr(AsjK
s
T ) 6= 0 for at least one 1 ≤ j ≤ m1.

Assumption 4.5. γ0 is in the interior of the compact parameter space of γ.

Since we study in this section the stationary case that the process {yit} has started from the infinite

past, the condition |γ0| < 1 in Assumption 4.1 is needed. Assumption 4.2 ensures the nonsingularity of

the variance matrix of the moment vector. Assumption 4.3 is a sufficient identification condition. Under

Assumption 4.4, the expected gradient GT = E(∂gnT (γ0)
∂γ ) is a nonzero vector. Assumption 4.5 is a familiar

condition on the parameter space.

Let θ̂qml be the QML estimator that maximizes (4.2), γ̂qml be the first element of θ̂qml, γ̂
∗
gmm be the

optimal GMM estimator with the moment vector g∗nT (γ), G∗T = E(
∂g∗nT (γ0)

∂γ ) and ΣT = Var[
√
ng∗nT (γ0)].

Theorem 5. Suppose that Assumptions 2.1–2.2 and 4.1–4.5 are satisfied.

(i) The optimal GMM estimator γ̂ in (4.9) is consistent and has the asymptotic distribution

√
n(γ̂gmm − γ0)

d−→ N(0, (G′TΣ−1
T GT )−1),

where ΣT = Var(
√
ngnT (γ0)) and GT = E(∂gnT (γ0)

∂γ ) = −σ2
v0[tr(As1TKT ), . . . , tr(Asm1T

KT )]′.

(ii) The QML estimator θ̂qml is consistent and has the asymptotic distribution

√
n(θ̂qml − θ0)

d−→ N(0,ΓT,θ),
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where ΓT,θ = [E(− 1
n
∂2 lnLw(γ0,σ

2
v0)

∂θ∂θ′ )]−1 1
n E(

∂ lnLw(γ0,σ
2
v0)

∂θ
∂ lnLw(γ0,σ

2
v0)

∂θ′ )[E(− 1
n
∂2 lnLw(γ0,σ

2
v0)

∂θ∂θ′ )]−1 with

E
(
− 1

n

∂2 lnLw(γ0, σ
2
v0)

∂θ∂θ′
)

=

(
2 tr(F ′TH

−1
T

∂HT
∂γ )+tr(F ′TH

−1
T FTHT )+ 1

2 tr(H−1
T

∂HT
∂γ H−1

T

∂HT
∂γ ) 1

2σ2v0
tr(H−1

T

∂HT
∂γ )

1

2σ2v0
tr(H−1

T

∂HT
∂γ ) T

2σ4v0

)
.

(iii) γ̂∗gmm is asymptotically efficient relative to γ̂qml in general, i.e., (G∗′T Σ∗−1
T G∗T )−1 ≤ ΓT,γ , where ΓT,γ

is the (1, 1)th element of ΓT,θ in (ii).

(iv) If vit ∼ N(0, σ2
v0), then:

(a) Among optimal GMM estimators with moments of the form (4.8), γ̂∗gmm has the minimum asymp-

totic variance, i.e., (G∗′T Σ∗−1
T G∗T )−1 ≤ (G′TΣ−1

T GT )−1, where G∗′T Σ∗−1
T G∗T = tr((Ks

T−
tr(Ks

T )
T IT )KT ) =

2 tr(F ′TH
−1
T

∂HT
∂γ ) + tr(F ′TH

−1
T FTHT ) + 1

2 tr(H−1
T

∂HT
∂γ H−1

T
∂HT
∂γ )− 1

2T tr2(H−1
T

∂HT
∂γ ).

(b) γ̂∗gmm has the same asymptotic variance as that of γ̂qml, i.e., (G∗′T Σ∗−1
T G∗T )−1 = ΓT,γ .

5 Monte Carlo

We investigate the performances of various GMM estimators for the dynamic panel, and compare them

with least square dummy variables (LSDV) estimates, MLEs and MD estimates under different values of n

and T . Samples are generated from

yit = γ0yi,t−1 + ci0 + vit, t = 1, 2, · · · , T,

where γ0 takes the value of 0.5. The ci0 and vit are generated from independent standard normal distributions.

We generated the dynamic panel data with m+T periods (m = 20) where the starting value is from N(0, In),

and then take the last T periods as our sample. By doing so, the initial value in the estimation is close to the

steady state. We also use the first period of the simulated data as the initial observation in the estimation

sample (so that m = 1 and the process is away from its steady state). We use T = 3, 10, and n = 100, 300.

For each set of generated sample observations, we calculate various estimators and evaluate their biases. We

do this 500 times to obtain the median bias (mb), median absolute deviation (mad), and interdecile range

(idr) which is the difference between the 0.9 and 0.1 quantiles in the empirical distribution. Finite sample

properties of these estimators are summarized in Tables 1–2 for each n and T .27

For these estimates, LSDV is the bias corrected LSDV estimate in Hahn and Kuersteiner (2002), FD-W

is the IV estimate from first differenced equations using two lagged values as IVs, FD-S is the system GMM

estimate in Blundell and Bond (1988), which combines the moments of first differenced equations and level

27Detailed Monte Carlo results for other values of γ0 (0.2, 0.8, 0.9) are presented in the supplement file.
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equations together. The ML-W is the ML estimate assuming that the process has achieved stationarity. The

ML-C is the ML estimate that allows the initial period to have unrestricted mean and variance, and MD-W

is the minimum distance estimate. The G-W is the efficient GMM estimate with a short history, and G-WS

is the corresponding efficient GMM estimate with a long history that has achieved stationarity. The SG-W1

and SG-W2 are the two sequential GMM estimates in Section 2.3. The Rao-W is the score method estimate

based on Rao (1965).

Table 1 reports the results for the case with γ0 = 0.5 under the pure DPD, including both the DGP

with m = 20 and m = 1. For the m = 20 case, we see that when T is short (T = 3), the bias of LSDV is

large. The FD-W, FD-S, ML-C and MD-W have some bias, while the ML-W has small bias. The efficient

GMM estimate which uses quadratic moments has small bias and small median absolute deviation overall,

and GS-W that assumes a stationary process has a smaller variation. The SG-W1 and SG-W2 also have

small biases, but have a larger deviation than the efficient GMM estimates under stationary process. The

score method estimate Rao-W also has small biases. For the m = 1 case, the FD-S has a larger bias.

This is consistent with the theoretical prediction because the system GMM estimate requires that initial

observations are uncorrelated with the individual effects, which is satisfied if the process has started a long

time ago. However, various sequential GMM estimates still perform well. Also, the biases of the ML-W,

G-W and Rao-W have a larger bias when m = 1. Other estimates such as LSDV and FD-W have similar

performances compared to the case of a long history (m = 20) when n or T is large. To sum up, for the

case when the dynamic coefficient is moderate, the efficient and sequential GMM estimates have satisfactory

performance. Compared with the FD-W in Arellano and Bond (1991) and the FD-S in Blundell and Bond

(1998), the efficient and sequential GMM estimates have smaller biases, and efficient GMM estimates have

a smaller deviation. Particularly, the system GMM estimates in Blundell and Bond (1998) have large biases

when m = 1 under a small T . Also, the efficient and sequential GMM estimates have similar performance as

MD estimates in Hsiao et al. (2002), except that MD estimates have a larger deviation when the DGP has

a short history (m = 1). Compared with ML estimates, the efficient and sequential GMM estimates have

similar performance on average in terms of biases. However, the deviations of sequential GMM estimates

are larger than those of ML estimates, while deviations of efficient GMM estimates are similar to those of

ML estimates.

We also investigate the case with exogenous variables. The DGP is

yit = γ0yi,t−1 + zib0 + xitβ0 + ci0 + vit, t = 1, 2, · · · , T,

where xit is generated from an AR(1) process xit = 0.5xi,t−1 + εit. We assign b0 = 1 for the intercept term

in the DGP and β0 = 1 for xit. The dynamic coefficient is γ0 = 0.5. We use the fixed effects DGP where
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individual effects are generated by

cn0 = X̄nTπ0+ζn,

with standard normally distributed ζn and π0 = 1. For the initial period approximation of unobserved past

regressors, we use the linear approximation. Table 2 presents the result.

From Table 2, we see that the bias corrected LSDV, FD-W and MD-W have similar performance when

T = 10, while FD-S has large bias under short T . The efficient and sequential GMM estimates have

similar biases as MD estimates, but they have a smaller deviation than MD estimates. Comparing with ML

estimates, the efficient and sequential GMM estimates have similar biases and deviations.

In the above DGPs, the disturbances are normally distributed. We see that the deviations of GMM

estimates are larger than those of MLEs. We conduct additional simulations to investigate performance

of various estimates when the disturbances are not normal. Non-normal errors are generated from the

exponential distribution with mean 1, where its kurtosis is 4! = 24. Comparing the cases with normal

disturbances and non-normal disturbances,28 we see that the performances of various estimates are similar,

and the efficient and sequential GMM estimates do not have a smaller deviation than those of MLEs under

non-normal disturbances.

6 Conclusion

This paper investigates various GMM estimation of short dynamic panel data models including efficient

GMM and sequential GMM estimation. For the efficient GMM estimation, we make use of the score vector

of the quasi maximum likelihood (QML) estimation. These GMM estimators can be as efficient as maximum

likelihood estimators when disturbances are normal, and more efficient than QML estimators when distur-

bances are not normal. Alternative sequential GMMs based on the score moments and the efficient GMM

estimation are also discussed. For the sequential GMM estimation, we focus on the estimation of parameters

of interest, thus it reduces some computational burden caused by nuisance parameters. For those sequential

GMM estimation of γ based on score moments, estimates with analytical expressions as root estimates are

available. Monte Carlo experiments are conducted to compare various estimates for dynamic panel data in

the literature, and the performances of efficient and sequential GMM estimates are satisfactory. Compared

with the FD-W in Arellano and Bond (1991) and FD-S in Blundell and Bond (1998), the efficient and

sequential GMM estimates have a smaller bias under the pure DPD model, and have a smaller deviation

when exogenous variables are present. Compared with MD estimates, these GMM estimates have a smaller

28Due to space limit, we present the details of simulation results under non-normal disturbances for γ0 = 0.2, γ0 = 0.5,
γ0 = 0.8, γ0 = 0.9 in the supplementary file.
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deviation for the short history case under the pure DPD model. Compared with the ML estimates, the

efficient and sequential GMM estimates have similar performance on average under different settings.
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Table 1: Estimates under γ = 0.5

m = 20 LSDV FD-W FD-S ML-W ML-C MD-W G-W GS-W SG-W1 SG-W2 Rao-W

n=100,T=3

mb -0.217 -0.039 0.002 0.001 -0.057 -0.010 -0.026 -0.009 0.006 0.006 -0.005
mad 0.061 0.191 0.112 0.074 0.113 0.096 0.176 0.075 0.136 0.136 0.073
idr 0.241 0.683 0.407 0.278 0.495 0.370 0.935 0.294 0.561 0.563 0.282
n=100,T=10

mb -0.031 -0.021 0.015 -0.001 -0.316 -0.006 -0.008 -0.003 0.015 0.015 -0.003
mad 0.023 0.043 0.034 0.024 0.048 0.025 0.028 0.023 0.037 0.037 0.023
idr 0.088 0.157 0.132 0.085 0.383 0.093 0.138 0.085 0.206 0.206 0.084
n=300,T=3

mb -0.212 -0.017 -0.004 0.004 -0.007 -0.005 0.000 0.000 0.028 0.028 0.002
mad 0.038 0.096 0.057 0.046 0.072 0.054 0.081 0.046 0.088 0.088 0.046
idr 0.153 0.368 0.225 0.168 0.301 0.198 0.395 0.168 0.358 0.358 0.173
n=300,T=10

mb -0.028 -0.007 0.008 0.001 -0.290 -0.001 0.000 0.000 0.011 0.011 0.000
mad 0.015 0.024 0.019 0.015 0.042 0.016 0.015 0.015 0.020 0.020 0.015
idr 0.054 0.094 0.079 0.053 0.366 0.058 0.060 0.053 0.080 0.080 0.052

m = 1 LSDV FD-W FD-S ML-W ML-C MD-W G-W GS-W SG-W1 SG-W2 Rao-W

n=100,T=3

mb -0.155 -0.273 0.277 0.154 -0.139 -0.034 -0.149 0.100 -0.046 -0.046 0.054
mad 0.061 0.302 0.060 0.068 0.095 0.137 0.233 0.090 0.100 0.101 0.114
idr 0.248 1.224 0.227 0.304 0.408 0.533 0.858 0.340 0.552 0.551 0.485
n=100,T=10
mb -0.021 -0.034 0.154 0.044 -0.360 0.047 -0.006 0.040 0.011 0.011 0.042
mad 0.023 0.055 0.034 0.025 0.086 0.026 0.027 0.025 0.031 0.031 0.024
idr 0.086 0.211 0.133 0.097 0.496 0.100 0.121 0.093 0.133 0.133 0.094
n=300,T=3
mb -0.150 -0.093 0.304 0.153 -0.120 0.051 -0.018 0.124 -0.008 -0.008 0.119
mad 0.037 0.215 0.031 0.048 0.119 0.099 0.088 0.050 0.088 0.088 0.055
idr 0.143 0.886 0.129 0.181 0.403 0.414 0.808 0.205 0.478 0.478 0.235
n=300,T=10
mb -0.024 -0.009 0.162 0.044 -0.388 0.054 -0.001 0.041 0.004 0.004 0.043
mad 0.011 0.031 0.021 0.015 0.033 0.017 0.012 0.015 0.015 0.015 0.015
idr 0.049 0.120 0.080 0.058 0.457 0.062 0.054 0.057 0.060 0.060 0.058

1. mb is the median bias, md is the median absolute deviation, and idr is the interdecile range which is the
difference between the 0.9 and 0.1 quantiles in the empirical distribution.

2. LSDV is the bias corrected LSDV, FD-W is an IV estimate for first differenced equations, and FD-S is the
system GMM in Blundell and Bond (1988).
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Table 2: Estimates under γ = 0.5, β = 1, FE DGP
LSDV:γ, β FD-W:γ, β FD-S:γ, β ML-W:γ, β MD-W:γ, β G-W:γ, β SG-W1:γ, β SG-W2:γ

n=100,T=3.

mb -0.020 -0.006 -0.049 -0.009 0.275 0.074 -0.009 -0.004 -0.008 0.001 -0.014 -0.006 -0.001 -0.003 0.002
mad 0.048 0.054 0.082 0.055 0.050 0.060 0.046 0.053 0.057 0.054 0.052 0.053 0.049 0.054 0.057
idr 0.180 0.211 0.328 0.211 0.196 0.216 0.183 0.207 0.237 0.214 0.194 0.208 0.192 0.207 0.240
n=100,T=10

mb -0.001 0.002 -0.015 0.006 0.083 -0.010 -0.001 0.002 0.009 -0.004 0.001 0.002 0.007 -0.002 0.012
mad 0.014 0.022 0.016 0.020 0.018 0.022 0.014 0.021 0.024 0.025 0.014 0.021 0.015 0.022 0.020
idr 0.055 0.082 0.063 0.083 0.073 0.088 0.055 0.082 0.113 0.089 0.057 0.083 0.061 0.084 0.088
n=300,T=3

mb -0.015 -0.003 -0.006 0.000 0.299 0.073 0.000 -0.001 -0.001 0.000 -0.001 -0.002 0.004 -0.001 0.005
mad 0.028 0.029 0.048 0.031 0.029 0.032 0.027 0.029 0.035 0.029 0.030 0.029 0.030 0.028 0.030
idr 0.113 0.117 0.189 0.126 0.126 0.132 0.105 0.116 0.136 0.114 0.115 0.119 0.115 0.117 0.122
n=300,T=10

mb 0.000 -0.001 -0.004 0.000 0.097 -0.019 0.001 -0.001 0.005 -0.002 0.002 -0.002 0.003 -0.003 0.003
mad 0.008 0.013 0.011 0.013 0.012 0.013 0.008 0.013 0.011 0.014 0.008 0.013 0.009 0.013 0.009
idr 0.033 0.046 0.039 0.047 0.045 0.049 0.032 0.047 0.045 0.049 0.033 0.047 0.035 0.047 0.035

1. mb is the median bias, md is the median absolute deviation, and idr is the interdecile range which is the difference between the 0.9 and
0.1 quantiles in the empirical distribution.

2. LSDV is the bias corrected LSDV, FD-W is an IV estimate for first differenced equations, and FD-S is the system GMM in Blundell and
Bond (1988).
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