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Abstract

In this paper, we first generalize an approximate measure of spatial dependence, the APLE statistic (Li

et al., 2007), to a spatial Durbin (SD) model. This generalized APLE takes into account exogenous vari-

ables directly and can be used to detect spatial dependence originating from either a spatial autoregressive

(SAR), spatial error (SE) or SD process. However, that measure is not consistent. Secondly, by examining

carefully the first order condition of the concentrated log likelihood of the SD (or SAR) model, whose first

order approximation generates the APLE, we construct a moment equation quadratic in the autoregressive

parameter that generalizes an original estimation approach in Ord (1975) and yields a closed-form consistent

root estimator of the autoregressive parameter. With a specific moment equation constructed from an initial

consistent estimator, the root estimator can be as efficient as the MLE under normality. Furthermore, when

there is unknown heteroskedasticity in the disturbances, we derive a modified APLE and a root estimator

which can be robust to unknown heteroskedasticity. The root estimators are computationally much simpler

than the quasi-maximum likelihood estimators.

Keywords: spatial autoregressive model, spatial error model, spatial Durbin model, APLE, GMM
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1. Introduction

Li et al. (2007) propose a closed-form measure of spatial dependence, an approximate profile-likelihood

estimator (APLE), based on a pure spatial autoregressive (SAR) model. Their Monte Carlo experiments

for spatial weights matrices defined according to a second-order neighborhood structure on toroidal lattices

show that the APLE provides a better assessment of the strength of spatial dependence for data generated

by the pure SAR model than alternative measures such as Moran’s I (Moran, 1950). Thus, the APLE

provides a better measure of spatial dependence than Moran’s I for exploratory analyses. It has been
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shown in Martellosio (2010) that Moran’s I has zero power to detect spatial correlation in a SAR model

when the autoregressive coefficient is large and close to one. Li et al. (2012) generalize the APLE statistic

to the spatial error (SE) model to account for exogenous variables. As both the SAR and SE models

are constrained forms of the more general spatial Durbin (SD) model, an approximate measure for spatial

dependence of interest should account for exogenous variables directly and provide a good approximation

to the autoregressive parameter in the SD model. This approximate measure can be used to detect spatial

dependence originating from either the SAR, SE or SD model. In this paper, we extend the APLE to the SD

model, which, similarly to Li et al. (2007), is based on a first order approximation to the first order condition

of the concentrated log likelihood of the SD model. The original APLE as well as the extended APLE

from the first order approximations are not consistent for the autoregressive parameter due to a systematic

bias. Higher order approximations of the first order condition may generate more accurate measures of the

autoregressive parameter, but they involve multiple roots and generally do not yield closed-form solutions.

Treating the first order condition differently, we obtain a moment equation quadratic in the autoregressive

parameter that generates a closed-form root estimator. Our proposed root estimator generalizes an estimator

originated in Ord (1975) in a general setting. For the quadratic moment equation, conditions under which

one of the roots is consistent will be specified. With an initial consistent estimator, a moment equation can

be designed to generate a second step root estimator which is asymptotically as efficient as the maximum

likelihood estimator (MLE) under normality. Once an estimate of the autoregressive parameter is available,

other parameters in a SD model may be estimated by least squares (LS) after applying a spatial filter to

the data on the dependent variable. The modified APLE and the root estimator can be used as measures

of spatial dependence or simple estimators for the autoregressive parameter in a SD or SAR model, as the

SD model nests the SAR model.

The proposed estimators can further be extended to possess some robust properties. The original APLE

in Li et al. (2007) has not accounted for possible heteroskedasticity in the disturbances. Li et al. (2012) argue

that a valid transformation can be applied to the SE model, so the extended APLE may be calculated with

the transformed data. This is so when the heteroskedastic variance has a known functional form.1 However,

if we do not know the form of heteroskedasticity, the data could not be properly transformed. A misspecified

transformation can lead to errors in inference. With unknown heteroskedasticity, we may adjust the first

order condition to derive a modified APLE statistic, which we call an approximate concentrated moment

estimator (ACME ), and we can also adjust the moment equation to derive a root estimator that is robust

to unknown heteroskedasticity.

Existing estimation methods for SAR (SD) models do not have a closed form and are usually computa-

1In this situation, we can also easily modify our root estimates to accommodate the known heteroskedasticity because after

proper transformation, it results in a SAR model with homogenous disturbances.

2



tionally involved.2 The MLE or quasi-maximum likelihood estimator (QMLE) does not have a closed form

(Anselin, 1988; Lee, 2004a). The computation involves the evaluation of the log-determinant of a square

matrix with dimension equal to the sample size at different parameter values, so it might be computation-

ally demanding when the sample size is large.3 Some empirical applications may create large matrices, for

example, the US Census Bureau collects data at over 250,000 census block group locations and the Home

Mortgage Disclosure Act data have over 100 million observations. Because of the computational burden of

the MLE, even with sample sizes that might not be too large, researchers may turn to less efficient esti-

mation methods such as the two stage least squares (2SLS) proposed by Kelejian and Prucha (1998).4 For

example, Helms (2012) uses the 2SLS estimation when the sample size is 16,638. Lee (2007a) considers the

generalized method of moments (GMM) estimation, which combines the quadratic moments that capture

the correlation across the spatial units with the linear moments used in the 2SLS approach. Compared to

the QMLE, the GMM estimator is computationally simpler and it can be as efficient as the MLE under

normality.5 Lee (2007b) proposes a computationally simpler GMM for the estimation of SAR models. The

method reduces the GMM estimation of a vector of parameters into nonlinear estimation of only the au-

toregressive parameter. It can reduce the computational burden substantially and it may be as efficient as

the joint GMM estimator under certain conditions. But it still does not generate a closed-form solution and

searching over a parameter space is necessary. Even though the GMM avoids computing log-determinants of

matrices, searching over a parameter space with large matrices involved could still be computationally inten-

sive. Our root estimator is asymptotically as efficient as the MLE under normality since the designed second

step moment equation automatically combines the linear and quadratic moment conditions in an efficient

way.6 For SAR models with unknown heteroskedasticity, Lin and Lee (2010) study the GMM estimation

2Because of the correlation of the spatially lagged dependent variable with disturbances, the LS estimator is only consistent

for a subclass of models (Lee, 2002).
3Various techniques and simplifications have been proposed to tackle this problem, see, for example, Martin (1993), Griffith

and Sone (1995), Pace (1997), Pace and Barry (1997a,b), Barry and Pace (1999), Griffith (2000), Smirnov and Anselin

(2001), Pace and LeSage (2004), Pace and LeSage (2009) and Smirnov and Anselin (2009). Even with these techniques and

simplifications, the computation can be still time-consuming. Alternative simplifications often lead to less accurate estimates.

We note that Pace and LeSage (2009) propose a sampling approach to estimate the log determinant. Their Monte Carlo study

shows that the approach can be very fast in estimating the log determinant. Given that the log determinant needs to be

evaluated many times at different parameter values, the actual time of computing an MLE or QMLE may be much longer.
4Their model is more general one with both a spatial lag of the dependent variable and a SAR process in the disturbances.

While the autoregressive parameter for the spatial lag of the dependent variable is estimated by 2SLS, the autoregressive

parameter in the disturbance process is estimated by GMM with three moment equations.
5Liu et al. (2010) and Lee and Liu (2010) consider the efficient GMM estimation of the regular and high order SAR models

with properly modified moment equations. Their estimator is as efficient as the MLE under normality and is more efficient

than the QMLE otherwise.
6Both the modified GMM and our root estimator reduce the estimation to that of only the autoregressive parameter, which

might lead to better finite sample performance when a bias correction might be constructed and applied to this single estimate,
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where linear and quadratic moment equations involving both the autoregressive parameter and parameters

for other exogenous variables are used.7 Our (robust) root estimator is obtained with a properly modified

and combined moment equation quadratic in the autoregressive parameter. Thus, for the closed-form root

estimator (see Eq. (23)), no searching over a parameter space is needed. Because of the closed form, the

root estimator requires little programming effort. Our Monte Carlo study shows that the root estimator has

similar finite sample performance as the QMLE under normality and the robust root estimator performs

well under unknown heteroskedasticity. Computing the root estimates only takes slightly longer time than

computing the APLE, which is much faster than computing the QMLE. As the computational burden of

both the modified APLE and the root estimate is minimal, they can be applied to SAR, SE or SD models

for huge data sets.

The rest of the paper is organized as follows. Section 2 introduces related models and develops the

APLE and ACME ; Section 3 establishes the consistency and asymptotic distribution of our root estimators

in both the homoskedastic and heteroskedastic cases; Section 4 presents some Monte Carlo results; Section 5

concludes. Some lemmas and proofs are collected in the Appendix.

2. The Models, APLE and ACME

In this section, we introduce the related models, and then derive the APLE for the SD model when εni’s

are i.i.d., and the ACME when εni’s may be only independent but with different and unknown variances.

A SAR model is specified as

yn = ρWnyn +Xnβ + εn, (1)

where n is the sample size, yn is an n-dimensional vector of observations, Wn is an n × n spatial weights

matrix with a zero diagonal, Xn is an n × k matrix of exogenous variables, εn = (εn1, . . . , εnn)′ with εni’s

being independent with mean zero, and ρ is an autoregressive parameter. If the spatial dependence is in the

disturbances instead, we have a SE model which is

yn = Xnβ + un, un = ρWnun + εn. (2)

Let In denote the n-dimensional identity matrix. Pre-multiplying both sides of Eq. (2) by (In−ρWn) yields

yn = ρWnyn +Xnβ +WnXn(−ρβ) + εn, (3)

compared to the case when a complete vector of parameters are estimated jointly and then the bias correction is applied to

this vector of estimates.
7Kelejian and Prucha (2010) also consider the specification and estimation of the SAR model with SAR disturbances that has

heteroskedastic innovations. As in Kelejian and Prucha (1998), the autoregressive parameter for the spatial lagged dependent

variable is estimated by 2SLS and the autoregressive parameter in the disturbance process is estimated by GMM with multiple

moment equations.
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which is a constrained form of the SD model8

yn = ρWnyn +Xnβ +WnXnγ + εn. (4)

That is, γ in the SD model (4) is required to be equal to minus ρ times β for the SE process. A regression

model with the SAR process is just the SD model (4) with γ = 0, so it is also a constrained form of the

SD model. Without the constraints, the SD model may also have an interest of its own. The WnXn as

regressors may capture externality arising form neighbors’ characteristics (see, e.g., LeSage and Pace 2009,

p. 30). If Wn is row-normalized and Xn contains an intercept term, i.e., Xn = [ln, X1n], where ln is an

n-dimensional column vector of ones and X1n is an n× (k − 1) matrix, then WnXn will generate a column

vector of ones as WnXn = [ln,WnX1n]. Coefficients on these two column vectors of ones should be collected

together. If Wn is not row-normalized, the columns of Xn and WnXn are in general linearly independent. In

this case, for ln in Xn, Wnln is the vector of row sums which is an extra regressor.9 To make later narrative

easier, we write the SD model as

yn = ρWnyn + Znθ + εn, (5)

where Zn = [Xn,WnX1n] or Zn = [Xn,WnXn], depending on whether both Xn and WnXn contain a column

vector of ones or not, and θ is the corresponding vector of coefficients. The Zn is n × d with d = 2k − 1

or d = 2k. The APLE and ACME are derived for the SD model (5). Our root estimators are also stated

with the setting of Eq. (5). When a SAR model rather than a more general SD model is considered, just

take Zn to be Xn. Let the true parameters of ρ and θ be ρ0 and θ0. When ε′ni’s are i.i.d. (0, σ2), the true

parameter for σ2 is σ2
0 ; when there is unknown heteroskedasticity, E(εnε

′
n) = Diag(σ2

n1, . . . , σ
2
nn) = Σn,

where Diag(an) denote a diagonal matrix with the diagonal elements being those of the vector an. Let

Sn(ρ) = In − ρWn and Gn(ρ) = WnS
−1
n (ρ). Denote Sn = Sn(ρ0) and Gn = Gn(ρ0) for short.

When εni’s are i.i.d. with variance σ2, the log likelihood function for the model (5) is

Ln(ρ, θ, σ2) = −n
2

ln(2πσ2) + ln |Sn(ρ)| − 1

2σ2
[Sn(ρ)yn − Znθ]′[Sn(ρ)yn − Znθ].

Maximizing the function with a fixed ρ, we obtain the QMLEs for θ and σ2 as:

θ̂n = (Z ′nZn)−1Z ′nSn(ρ)yn, (6)

σ̂2
n =

1

n
y′nS

′
n(ρ)MZn

Sn(ρ)yn, (7)

where MZn = In − Zn(Z ′nZn)−1Z ′n. Eqs. (6) and (7) are just like the LS estimators after the spatial filter

Sn(ρ) has been applied to yn. Substituting these expressions into the log likelihood function, we have the

8We use this terminology following LeSage and Pace (2009).
9If elements in Wn are 0 or 1 as in a network, a row sum refers to an outdegree. So in such a case, the outdegrees of

individuals form an explanatory variable.
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concentrated log (or profile) likelihood function of ρ:

Ln(ρ) = −n
2

[ln(2π/n) + 1] + ln |Sn(ρ)| − n

2
ln[y′nS

′
n(ρ)MZn

Sn(ρ)yn].

The first order condition for the maximization of the concentrated log likelihood function is:

ny′nS
′
n(ρ)MZn

Wnyn
y′nS

′
n(ρ)MZnSn(ρ)yn

− tr[Gn(ρ)] = 0, (8)

where tr(An) denotes the trace of a square matrix An. Multiplying both sides by 1
ny
′
nS
′
n(ρ)MZn

Sn(ρ)yn

yields

y′nS
′
n(ρ)MZnWnyn − y′nS′n(ρ)MZnSn(ρ)yn

tr[Gn(ρ)]

n
= 0. (9)

Similar to the derivation of the APLE in Li et al. (2007), an approximate measure of ρ can be obtained from

a first order approximation of the left-hand side of Eq. (9). Note that tr[Gn(ρ)] = tr[Wn(In+ρWn+ . . . )] ≈

ρtr(W 2
n) as Wn has a zero diagonal, the approximation yields

APLE sd =
y′nMZn

Wnyn

y′nW
′
nMZn

Wnyn + y′nMZn
yn

tr(W 2
n)

n

, (10)

For the convenience of later reference, we also write down the APLE for the SAR model as

APLE sar =
y′nMXn

Wnyn

y′nW
′
nMXn

Wnyn + y′nMXn
yn

tr(W 2
n)

n

, (11)

where MXn
= In − Xn(X ′nXn)−1X ′n. Furthermore, for a pure SAR process, MZn

= In. As y′nWnyn =

y′n[(W ′n +Wn)/2]yn and tr(W 2
n) = λ′λ, where λ is the vector of Wn’s eigenvalues, Eq. (10) would reduce to

y′n[(W ′n +Wn)/2]yn

y′nW
′
nWnyn + y′nyn

λ′λ
n

,

which is that given in Li et al. (2007).

Using the same approach, Li et al. (2012) derive the APLE for the SE model as

APLE se =
y′nMXn

[(Wn +W ′n)/2]MXn
yn

An
, (12)

where An = y′nMXn
W ′nWnMXn

yn − y′nMXn
(Wn + W ′n)(In −MXn

)(Wn + W ′n)MXn
yn + y′nMXn

yn
tr(W 2

n)
n .

The APLE for the SAR model in Eq. (11) and that for the SE model in Eq. (12) have different forms.

Alternatively, we could use the APLE based the SD model in Eq. (10) as an approximate measure of spatial

dependence originating from either the SAR, SE or SD model.

Eq. (9) can be rewritten as

y′nS
′
n(ρ)

[
G′n(ρ)− tr[G′n(ρ)]

n
In

]
MZn

Sn(ρ)yn = 0. (13)
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When there is unknown heteroskedasticity, the expectation of the left-hand side of the above equation over

n at the true parameters ρ0, θ0, σ
2
n1, . . . , σ

2
nn does not converge to zero in general, since

1

n
E
{
y′nS

′
n

[
G′n −

tr(G′n)

n
In

]
MZnSnyn

}
=

1

n
E
{

(Znθ0 + εn)′
[
G′n −

tr(G′n)

n
In

]
MZn

(Znθ0 + εn)
}

=
1

n
tr
{[
G′n −

tr(G′n)

n
In

]
MZnΣn

}
=

1

n
tr
{[
G′n −

tr(G′n)

n
In

]
Σn

}
+ o(1)

=
1

n

n∑
i=1

[
G′n −

tr(G′n)

n
In

]
ii
σ2
ni + o(1),

(14)

by Lemma 1 in the Appendix. Under unknown heteroskedasticity, we may modify Eq. (13) into the following

equation

y′nS
′
n(ρ)

[
G′n(ρ)−Diag[G′n(ρ)]

]
MZnSn(ρ)yn = 0, (15)

which is a valid moment equation because the zero diagonal of G′n(ρ) − Diag[G′n(ρ)] implies that the

expectation of the left-hand side of the equation over n at ρ0 converges to zero. Taking a first order Taylor

expansion of the left-hand side of Eq. (15) with ρ and setting it to zero yield a modified APLE statistic,

which we call ACME :

ACME sd =
y′nMZn

Wnyn
y′nW

′
nMZnWnyn + y′nDiag(W 2

n)MZnyn
. (16)

For the SAR model, the ACME is

ACME sar =
y′nMXn

Wnyn
y′nW

′
nMXn

Wnyn + y′nDiag(W 2
n)MXn

yn
. (17)

For a pure SAR process, Eq. (16) simplifies to

y′nWnyn
y′nW

′
nWnyn + y′nDiag(W 2

n)yn
. (18)

Eqs. (16)—(18) can be used as approximate measures of ρ when unknown heteroskedasticity exists. Eqs. (10)

and (16) (or Eqs. (11) and (17)) only differ in the second terms of their denominators.

3. A Root Estimator

3.1. A Root Estimator: Homoskedastic Case

Eq. (13) also motivates an extended GMM root estimator for ρ of the SD model when εni’s are i.i.d..

The matrix G′n(ρ)− In · tr[G′n(ρ)]/n in Eq. (13) has a zero trace. Not accounting for the ρ’s in the matrix,

Eq. (13) is quadratic in ρ. Replacing the matrix with any n×n constant matrix Pn satisfying tr(PnMZn
) = 0
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(or tr(Pn) = 0)10, a consistent GMM root estimator can be derived by solving the equation

gn(ρ) = y′nS
′
n(ρ)PnMZn

Sn(ρ)yn = 0, (19)

because the expectation of gn(ρ0) is zero:

E[gn(ρ0)] = E[(Znθ0 + εn)′PnMZn(Znθ0 + εn)]

= σ2
0tr(PnMZn

) = 0.

The Pn = G′n − In · tr(G′n)/n or Pn = G′n − In · tr(G′nMZn)/n is expected to generate a root estimator

that is asymptotically as efficient as the MLE under normality since Eq. (19) with Pn = G′n − In · tr(G′n)/n

is essentially the first order condition of the concentrated log likelihood function Eq. (13), even though

there is a single moment equation.11 The form of the moment equation automatically combines the linear

and quadratic moments in a way such that the root estimator can be efficient under normality, unlike Lee

(2007a) or Lee (2007b), where linear moments are used together with the quadratic moments as a system

with optimum weighting by the inverse of their variance-covariance matrix. This is not surprising because

the single moment equation is motivated from the first order condition of the concentrated log likelihood

function. Once a consistent estimator of ρ is available, Eqs. (6) and (7) can be used to calculate estimates

for β and σ2, respectively.

To establish the consistency of the root estimator, the following regularity conditions are assumed.

Assumption 1. εni’s in εn = (εn1, . . . , εnn)′ are i.i.d. (0, σ2
0) and the moment E(|ε4+η

ni |) exists for some

η > 0.

Assumption 2. Matrices {Wn} and {S−1
n } are bounded in both row and column sum norms (Horn and

Johnson, 1985). The diagonal elements of Wn are zero.

Assumption 3. Elements of Xn are uniformly bounded constants, Zn has full column rank and limn→∞
Z′

nZn

n

exists and is nonsingular.

Assumption 4. Constant n-dimensional square matrices {Pn = [pn,ij ]} which satisfy tr(PnMZn) = 0 are

bounded in both row and column sum norms.

10We still have a consistent estimator if tr(Pn) = 0 instead of tr(PnMZn ) = 0. This is so because for the expectation of the

left-hand side of Eq. (19) at ρ0, the additional term divided by n is −σ2
0
n
tr[PnZn(Z′nZn)−1Z′n] = −σ2

0
n
tr[Z′nPnZn(Z′nZn)−1] =

O( d
n

), which is not exactly zero but converges to zero as n goes to infinity. However, using a matrix Pn such that tr(PnMZn ) = 0

might have better small sample properties. Given any matrix An, such a Pn matrix can be constructed as Pn = An −
tr(AnMZn )

n−d In.
11For a pure SAR process, Eq. (19) will be reduced to y′nS

′
n(ρ)PnSn(ρ)yn = 0. In Ord (1975), based on the motivation of a

modified LS estimation, he considered the quadratic moment y′nS
′
n(ρ)WnSn(ρ)yn = 0, but dismissed it in favor of the MLE in

terms of efficiency. The Eq. (19) with a class of Pn provides a general framework including the Ord’s moment equation. One

can overcome the relative inefficiency of the Ord’s moment estimator by the selection of an efficient Pn as above.
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The existence of a moment higher than the fourth order of the disturbances in Assumption 1 is needed

for the application of the central limit theorem for linear and quadratic forms (Kelejian and Prucha, 2001).

The boundedness in row and column sum norms of a sequence of matrices in Assumption 2 originated in

Kelejian and Prucha (1998, 1999, 2001). Assumption 3 is required for convenience, as in Lee (2004a). As

Pn is often generated from Wn, it is reasonable to assume that {Pn} are bounded in both row and column

sum norms.

The quadratic moment equation Eq. (19) has two roots in general. Under certain conditions, one of the

roots is consistent. Let Bsn = Bn +B′n for any n-dimensional square matrix Bn.

Proposition 1. Under Assumptions 1—4, if (Znθ0)′PnMZn
Gn(Znθ0) + 1

2σ
2
0tr(P

s
nG

s
n) were non-negative,

the consistent root for ρ0 of Eq. (19) would be

ρ̂1n =
bn −

√
b2n − 4ancn
2an

, (20)

where an = y′nW
′
nPnMZn

Wnyn, bn = y′n(PnMZn
)sWnyn and cn = y′nPnMZn

yn; but if (Znθ0)′PnMZn
Gn(Znθ0)+

1
2σ

2
0tr(P

s
nG

s
n) were negative, the consistent root would be

ρ̂2n =
bn +

√
b2n − 4ancn
2an

, (21)

when limn→∞
1
n [(Znθ0)′G′nPnMZnGn(Znθ0) + σ2

0tr(G
′
nPnGn)] 6= 0. In the case that

limn→∞
1
n [(Znθ0)′G′nPnMZnGn(Znθ0) + σ2

0tr(G
′
nPnGn)] = 0, ρ̂3n = cn/bn is the unique consistent root if

limn→∞
1
n [(Znθ0)′PnMZn

Gn(Znθ0) + 1
2σ

2
0tr(P

s
nG

s
n)] 6= 0.

The conditions that limn→∞
1
n [(Znθ0)′G′nPnMZn

Gn(Znθ0) + σ2
0tr(G

′
nPnGn)] 6= 0 and

limn→∞
1
n [(Znθ0)′PnMZn

Gn(Znθ0) + 1
2σ

2
0tr(P

s
nG

s
n)] 6= 0 guarantee that an/n and bn/n do not converge to

zero in probability, respectively. Let Hn(ρ) = G′n(ρ) − tr(G′
n(ρ)MZn )
n−d MZn

, Hn = Hn(ρ0),12 and f(Pn) =

(Znθ0)′PnMZnGn(Znθ0) + 1
2σ

2
0tr(P

s
nG

s
n) = (Znθ0)′PnMZnH

′
n(Znθ0) + 1

2σ
2
0tr(P

s
nH

s
n). The sign of f(Pn)

depends on the correlation between Pn and Hn. If Pn = Hn, then f(Hn) ≥ 0 and Eq. (20) is the consistent

root when an/n 6= oP (1). By continuity, f
(
Hn(ρ)

)
is non-negative when ρ is close to ρ0. In empirical

applications, ρ0 is often positive, then Pn = Hn(0.5) or Pn = Hn(0) = W ′n −
tr(W ′

nMZn )
n−d MZn

could generate

a consistent root estimator of the form Eq. (20). Given Pn, the scalars an, bn and cn are products of vectors

and matrices, so the computational cost of Eq. (20) or (21) is minimal.

The asymptotic distribution of the consistent root ρ̂n can be derived from a first order expansion of

gn(ρ̂n) = 0 at ρ0. As gn(ρ0) is quadratic in the disturbances, the central limit theorem for linear and

quadratic forms is applicable.

12Note that using Pn = G′n − tr(G′
nMZn )

n−d MZn and Pn = G′n − tr(G′
nMZn )

n−d In generate the same root estimator. We use Hn

for narrative convenience, but we may use G′n − tr(G′
nMZn )

n−d In when calculating a root estimate.
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Proposition 2. The consistent root ρ̂n in Proposition 1 has the asymptotic distribution that

√
n(ρ̂n − ρ0)

D−→ N
(
0,Ω

)
,

where Ω = VρΣ
−2
ρ with Vρ = limn→∞

1
n

{
σ2

0(Znθ0)′PnMZn
P ′n(Znθ0)+2E(ε3ni)(Znθ0)′PnMZn

Diag(PnMZn
)ln

+ [E(ε4ni)− 3σ4
0 ]
∑n
i=1 p

2
n,ii + 1

2σ
4
0tr(P

s
nP

s
n)
}

and Σρ = limn→∞
1
n [(Znθ0)′PnMZn

Gn(Znθ0) + 1
2σ

2
0tr(P

s
nG

s
n)]

being assumed to exist and be non-zero.

The Vρ in the above proposition is the limit of the variance of 1√
n
gn(ρ0), so it is generally positive.

When E(ε3ni) = E(ε4ni) − 3σ4
0 = 0, e.g., εni’s are i.i.d. normal, the asymptotic variance of ρ̂n reduces to

Ω = limn→∞ n
σ2
0(Znθ0)′PnMZnP

′
n(Znθ0)+ 1

2σ
4
0tr(P

s
nP

s
n)

[(Znθ0)′PnMZnGn(Znθ0)+ 1
2σ

2
0tr(P

s
nG

s
n)]2

. Then, by applying the Cauchy inequality, Hn is the best

Pn matrix such that the asymptotic variance of this consistent root estimator is the smallest. As pointed out

earlier, with the best Pn(= Hn) matrix, the consistent root estimator has the form (bn−
√
b2n − 4ancn)/(2an)

when an/n 6= oP (1).

Proposition 3. When E(ε3ni) = E(ε4ni)− 3σ4
0 = 0, suppose that limn→∞

1
n{(Znθ0)′GnMZn

Gn(Znθ0)

+ 1
2σ

2
0 [tr(GsnG

s
n)− 1

n tr
2(Gsn)]} exists and is non-zero, the best root estimator is

ρ̂b,n =
bn −

√
b2n − 4ancn
2an

, (22)

where an = y′nW
′
nHnMZn

Wnyn, bn = y′n(HnMZn
)syn and cn = y′nHnMZn

yn, in the sense that
√
n(ρ̂b,n −

ρ0)
D−→ N(0,Ωb) with Ωb ≤ Ω, where Ωb = σ2

0

{
limn→∞

1
n

[
(Znθ0)′GnMZn

Gn(Znθ0) + 1
2σ

2
0

(
tr(GsnG

s
n) −

1
n tr

2(Gsn)
)]}−1

.

When E(ε3ni) = E(ε4ni) − 3σ4
0 = 0, the asymptotic variance Ωb for the best root estimator in the above

proposition is the same as that for the QMLE (Lee, 2004a). When the condition E(ε3ni) = E(ε4ni)− 3σ4
0 = 0

does not hold, the root estimator ρ̂b,n may lose efficiency. Note that no matter whether the condition holds

or not, ρ̂b,n in the above proposition is the consistent root estimator when Hn is used as the Pn matrix.

As Hn involves the unknown parameter ρ0, it can be estimated by using an initial consistent estimator

for ρ0. An estimated Hn would generate a root estimator with the same limiting distribution as ρ̂b,n.

Proposition 4. Suppose that ρ̂n is a
√
n-consistent estimator of ρ0, and limn→∞

1
n [(Znθ0)′G′nHnMZn

Gn(Znθ0)+

σ2
0tr(G

′
nHnGn)] 6= 0. Then the root estimator

ρ̃b,n =
b̂n −

√
b̂2n − 4ânĉn

2ân
, (23)

where ân = y′nW
′
nHn(ρ̂n)MZnWnyn, b̂n = y′n

(
Hn(ρ̂n)MZn

)s
Wnyn and ĉn = y′nHn(ρ̂n)MZnyn, is consistent

and has the same limiting distribution as ρ̂b,n.
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An initial consistent estimator ρ̂n may be derived by using Hn(0) as the Pn matrix. Based on Hn(ρ̂n),

Eq. (23) is the best root estimator when E(ε3ni) = E(ε4ni)− 3σ4
0 = 0.13 We shall use the notation REsd for

this root estimator based on the SD model. Replacing Zn with Xn everywhere above, we obtain the root

estimator REsar specifically for the SAR model.

Note that the expression for Hn(ρ) involves a matrix inverse (In − ρWn)−1, which is computationally

intensive for large sample sizes.14 If ||ρWn|| < 1 with a matrix norm || · ||, then we have the expansion

(In−ρWn)−1 = In +ρWn +ρ2W 2
n + . . . and ||(In−ρWn)−1− [In +ρWn + · · ·+ρrW r

n ]|| = ||ρr+1W r+1
n (In−

ρWn)−1|| < ||ρWn||r+1/(1− ||ρWn||). In the second step of computing a root estimate, we may start from

using a few term approximation (In+ρ̂nW
′
n+· · ·+ρ̂rnW ′rn )W ′n−

tr[(In+ρ̂nW
′
n+···+ρ̂rnW

′r
n )W ′

nMZn ]
n−d MZn of Hn(ρ̂n)

in Eq. (23). If the change of the root estimate in absolute value is smaller than a chosen tolerance level, we

can stop and report the estimate; otherwise, we may use (r + 1) term approximation of Hn(ρ) and also use

the newly computed estimate from the last step in computing a new ρ̂n using Eq. (23). We could use more

and more terms to approximate Hn(ρ) until the tolerance criterion is met. This procedure turns out to be

very efficient in our Monte Carlo study.

3.2. A Root Estimator: Heteroskedastic Case

When there is unknown heteroskedasticity in disturbances, from Eq. (14), the expectation of the left-

hand side of the moment equation Eq. (19) over n is 1
n tr(PnMZnΣn), which generally does not converge to

zero even if tr(PnMZn
) = 0. In order to derive a consistent root estimator from solving Eq. (19), we require

PnMZn
to have a zero diagonal, so that the expectation of the left-hand side of Eq. (19) at ρ0 would be

zero.15

13Because an initial consistent estimator ρ̂n, e.g., derived with Hn(0)[= W ′n−
tr(W ′

nMZn )

n−d MZn ], has a closed form expression,

the feasible two step root estimator will also have a closed form expression as the analytical expression of the initial ρ̂n can be

substituted into Hn(ρ̂n) in its derivation. Li et al. (2007) have emphasized on closed form statistics for exploratory analyses.

They propose the APLE but dismiss Ord’s quadratic root estimator because of the need to solve the quadratic moment

equation (as well as its possible inefficiency). They have overlooked possible analytical solutions of a quadratic equation.
14The best GMM estimator in Lee (2007a) or Lee (2007b) also involves this matrix inverse.
15As in the homoskedastic case, if Pn, instead of PnMZn , is required to have a zero diagonal, then we can still ob-

tain a consistent GMM estimator, since the expectation of the moment equation over n at ρ0 converges to zero as n

goes to infinity in this case. We require PnMZn to have a zero diagonal so that better small sample properties may be

obtained. Let Pn = [Pn1, . . . , Pnn]′ and MZn = [Mn1, . . . ,Mnn], where Pni and Mni are n-dimensional vectors, then

PnMZn has a zero diagonal means that Pn satisfies P ′niMni = 0, i = 1, . . . , n. So we have many choices of the Pn ma-

trix. In particular, given any n-dimensional square matrix An, we may let Pn = An − Diag(AnMZn )[Diag(MZn )]−1 or

Pn = An −Diag(AnMZn )[Diag(MZn )]−1MZn , if every diagonal element of MZn is non-zero. In the case that some diagonal

elements of MZn are zero, we may simply let Pn = An−Diag(An), or adjust An to be A∗n such that the corresponding diagonal

elements of A∗nMZn are zero and let Pn = A∗n−Diag(A∗nMZn )[Diag(MZn )]− or Pn = A∗n−Diag(A∗nMZn )[Diag(MZn )]−MZn ,

where B− denotes a generalized matrix inverse for a matrix B.

11



Assumption 5. The constant n-dimensional square matrices {Pn}, which satisfy that PnMZn has a zero

diagonal, are bounded in both row and column sum norms.

We make the following assumption about the unknown heteroskedasticity.

Assumption 6. ε′nis in εn = (εn1, . . . , εnn)′ are independent (0, σ2
ni) and the moments E|ε4+η

ni | for some

η > 0 exist and are uniformly bounded for all n and i.

The consistent root is described in the following proposition. The regularity conditions are similar to

those in Proposition 1 after taking into account the heteroskedastic variance matrix Σn.

Proposition 5. Under Assumptions 2, 3, 5 and 6, if (Znθ0)′PnMZn
Gn(Znθ0) + tr(ΣnP

s
nGn) were non-

negative, the consistent root would be

ρ̂1n =
bn −

√
b2n − 4ancn
2an

, (24)

where an = y′nW
′
nPnMZn

Wnyn, bn = y′n(PnMZn
)sWnyn and cn = y′nPnMZn

yn; if (Znθ0)′PnMZn
Gn(Znθ0)

+ tr(ΣnP
s
nGn) were negative, the consistent root would be

ρ̂2n =
bn +

√
b2n − 4ancn
2an

, (25)

when limn→∞
1
n [(Znθ0)′G′nPnMZn

Gn(Znθ0) + tr(ΣnG
′
nPnGn)] 6= 0. In the case that

limn→∞
1
n [(Znθ0)′G′nPnMZnGn(Znθ0) + tr(ΣnG

′
nPnGn)] = 0, ρ̂3n = cn/bn is the unique consistent root if

limn→∞
1
n [(Znθ0)′PnMZn

Gn(Znθ0) + tr(ΣnP
s
nGn)] 6= 0.

The conditions that limn→∞
1
n [(Znθ0)′G′nPnMZn

Gn(Znθ0) + tr(ΣnG
′
nPnGn)] 6= 0 and

limn→∞
1
n [(Znθ0)′PnMZn

Gn(Znθ0) + tr(ΣnP
s
nGn)] 6= 0 are equivalent to none-zero probability limits of

an/n and bn/n, respectively.

Proposition 6. The consistent root ρ̂n in Proposition 5 has the asymptotic distribution that

√
n(ρ̂n − ρ0)

D−→ N(0,Ω),

where Ω = VρΣ
−2
ρ with Vρ = limn→∞

1
n [(Znθ0)′PnMZnΣnMZnP

′
n(Znθ0) + tr(ΣnPnΣnP

s
n)] and Σρ =

limn→∞
1
n [(Znθ0)′PnMZn

Gn(Znθ0) + tr(ΣnP
s
nGn)] being assumed to exist and be non-zero.

Note that Vρ is the limit of the variance of 1√
n
gn(ρ0). As contrary to the homogenous variance case, the

third and fourth moments of non-normal disturbances do not play a role in the asymptotic variance of the

estimator due to the design of PnMZn
having a zero diagonal.

Since the asymptotic variance of the consistent root in the above proposition involves unknown het-

eroskedasticity terms, the best selection of the matrix Pn may be unavailable. A possible choice of Pn in

practice might be the consistently estimated G′n − Diag(G′nMZn
)[Diag(MZn

)]−1, if none of the diagonal

12



elements of MZn is zero. To get an estimator for Gn, we may first derive an initial consistent estimator

ρ̂n for ρ0 based on the moment equation y′nS
′
n(ρ)

{
W ′n −Diag(W ′nMZn

)[Diag(MZn
)]−1

}
MZn

Sn(ρ)yn = 0.

Then using G′n(ρ̂n)−Diag[G′n(ρ̂n)MZn
][Diag(MZn

)]−1 as the Pn matrix in the moment equation, we derive

the root estimator ρ̂1n. We shall call this root estimator REsd. The root estimator specifically for the SAR

model is denoted by REsar.

4. Monte Carlo Study

We conduct some Monte Carlo experiments to investigate finite sample performances and computing

times of the QMLE and various versions of RE, APLE and ACME . The DGP is either the SAR or SE

model. For the QMLE, the likelihood function is derived as follows: ignore (unknown) heteroskedasticity

even though there might be and form the likelihood based on the SAR model if the DGP is the SAR process

or based on the SE model if the DGP is the SE process. For REsd, in the homoskedastic case, the initial

estimator ρ̂n is the root ρ̂1n of Eq. (19) with Pn = W ′n−
tr(W ′

nMZn )
n−d In, and REsd denotes the corresponding

root estimator Eq. (23) in Proposition 4 with Pn = G′n(ρ̂n)− tr[G′
n(ρ̂n)MZn ]
n−d In; in the heteroskedastic case, the

initial estimator is the root ρ̂1n of Eq. (24) with Pn = W ′n−Diag(W ′nMZn)[Diag(MZn)]−1, and REsd denotes

the corresponding root estimator ρ̂1n of Eq. (24) with Pn = G′n(ρ̂n) − Diag[G′n(ρ̂n)MZn
][Diag(MZn

)]−1.

The root estimate REsar specific for the SAR model is derived similarly.

We consider three different spatial weights matrices W1n, W2n and W3n. The W1n is the “circular world

matrix” considered in Arraiz et al. (2010). Specifically, each of the first n/3 and last n/3 rows except the

first and last rows only has two non-zero elements,16 which are in the positions (i, i− 1) and (i, i + 1) and

are equal to 0.5. For the first row, the non-zero elements are in the positions (1, 2) and (1, n) and they

are equal to 0.5; for the last row, the non-zero elements are in the positions (n, 1) and (n, n − 1) and they

are also equal to 0.5. Each of the middle n/3 rows has 10 non-zero elements, which are in the positions

(i, i−5), . . . , (i, i−1), (i, i+1),. . . , (i, i+5) and are equal to 0.1. The W2n and W3n are generated according

to, respectively, the queen and rook criteria on regular m ×m grids, leading to a sample size of n = m2.

We use the row-normalized W2n and W3n. The exogenous variable matrix Xn consists of an intercept

term, an exogenous variable drawn from the normal distribution N(3, 1), and the third one drawn from

the uniform distribution U(−1, 2). The true parameter vector corresponding to these exogenous variables is

β0 = (0.8, 0.2, 1.5)′. The design of exogenous variables and corresponding parameters has been used in Lin

and Lee (2010).

For the homoskedastic case, the error terms are randomly drawn from the normal distribution N(0, 0.52).

For the heteroskedastic case, two designs of heteroskedasticity are considered:

16When n/3 is not an integer, the smallest integer larger than n/3 is taken.
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• Heteroskedasticity design 1 (HD-1): For W1n, the standard deviation (STD) is equal to a constant

times the number of non-zero elements in each row;17 for W2 and W3, the STD is equal to a constant

times the absolute value of the second exogenous variable.18 The constants are chosen such that the

average STD is equal to 0.5.

• Heteroskedasticity design 2 (HD-2): For W1n, the STD is equal to a constant times the inverse of the

number of non-zero elements in each row; for W2n and W3n, the STD is equal to a constant times

the inverse of the absolute value of the second exogenous variable. Again the constants are chosen to

make the average STD be equal to 0.5.

We calculate various measures of the autoregressive coefficient by focusing on non-negative ρ0 values, as

this is usually the case in empirical applications. For each case of ρ0, the number of repetitions is 2000.

Figs. 1—6 compare the mean, STD and root mean square error (RMSE) of the QMLE and different

versions of RE, APLE and ACME . For these figures, we have n = 400.

Figs. 1 and 2 are the case when there is no unknown heteroskedasticity in the disturbances. When the

DGP is the SAR process, from Fig. 1, the QMLE and REsar have similarly small bias (in absolute value) for

different spatial weights matrices and ρ0’s, while the biases of APLEsar, ACME sar, APLEsd and ACME sd

are only small when ρ0 is close to zero and generally increase as ρ0 increases. In terms of bias, APLEsar has

not shown an advantage over APLEsd, though APLEsar is based on the DGP. The APLEsar and APLEsd

have similar bias for W1n and W2n, but APLEsar has large bias for large ρ0’s in the case of W2n. The

QMLE, REsar, APLEsar and ACMEsar have similar STD that is smaller than those of REsd, APLEsd

and ACMEsd, which is expected since the latter ones are based on the more general SD model. It is noted

that for W1n, the bias of ACME sd is significantly larger than that of other statistics. The RMSEs of different

statistics show similar patterns as their biases. When the DGP is the SE process, the bias, STD, RMSE

of the QMLE, REsd, APLEse, APLEsd and ACME sd are plotted in Fig. 2. The biases of statistics other

than APLEse have similar patterns as the corresponding ones in Fig. 1. The APLEse have not shown an

advantage over APLEsd in terms of smaller bias, which is obvious for W2n for which APLEse usually has

larger bias than APLEsd. The STDs of all statistics are very similar. The APLEse, APLEsd and ACME sd

have larger RMSEs than the QMLE and REsd for W1n and W3n, while all statistics have similar RMSEs

for W2n.

Figs. 3—6 show the results when there is unknown heteroskedasticity in the disturbances. Figs. 3 and 4

correspond to the DGP being the SAR process but with different designs of heteroskedasticity, and Figs. 5

and 6 correspond to the DGP being the SE process with different variances. In general, REsar and REsd

17This design is one used in Arraiz et al. (2010).
18ForW2n andW3n, (m−2)2 rows would have the same number of non-zero elements, which is approximately 100[(m−4)/m]%

of the total number of rows. If the same heteroskedasticity design as for W1n is used, there would be little heteroskedasticity.
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Figure 1: Comparison of the bias, STD and RMSE of the QMLE, REsar, APLEsar, ACMEsar, REsd, APLEsd and ACMEsd

when the DGP is the SAR model under homoskedasticity.

have the smallest bias in Figs. 3 and 4 and REsd has the smallest bias in Figs. 5 and 6. Since the QMLE

has ignored the heteroskedasticity, it may generate large bias in some cases, e.g., its bias is close to 0.2 when

ρ0 = 0.6 for W1n in Fig. 5. In most figures, however, the QMLE has relatively small bias. The statistics

derived from homoskedastic models—APLEsar, APLEse and APLEsd—generally have relatively small bias

when ρ0 is small and relatively large bias when ρ0 is large. We note that for W1n in Fig. 5, both APLEse

and APLEsd have very large bias for positive ρ0’s. In Figs. 3 and 4, like APLEsar and APLEsd, ACMEsar

and ACMEsd have large bias for large ρ0’s; in Figs. 5 and 6, ACMEsd have large bias for large ρ0’s except

for the case with W1n in Fig. 5, where the bias of ACMEsd is smaller than those of the QMLE, APLEse

and APLEse. The STDs and RMSEs in Figs. 3 and 4 are similar to the corresponding ones in Fig. 1, and

the STDs and RMSEs in Figs. 5 and 6 are similar to the corresponding ones in Fig. 2.

Table 1 compares the computing times and finite sample properties of different statistics when the

sample size is large. The DGP is the SAR model. We focus on the QMLE, REsar and APLEsar, as

computing the other statistics above are expected to take similar time. To compute REsar, we use the

procedure described in the last paragraph of Subsection 3.1 which starts from using a two term approximation

(In + ρ̂nW
′
n + ρ̂2

nW
′2
n )W ′n −

tr[(In+ρ̂nW
′
n+ρ̂2nW

′2
n )W ′

nMZn ]
n−d MZn

of Hn(ρ̂n) in Eq. (23). The tolerance criteria

for REsar and the QMLE are both set to be 0.0001. The reported results are from Matlab on a desktop

computer with Intel Core i7-2600 processor and 8 gigabyte memory. For the same sample size and spatial
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Figure 2: Comparison of the bias, STD and RMSE of the QMLE, REsd, APLEse, APLEsd and ACMEsd when the DGP is

the SE model under homoskedasticity.
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Figure 3: Comparison of the bias, STD and RMSE of the QMLE, REsar, APLEsar, ACMEsar, REsd, APLEsd and ACMEsd

when the DGP is the SAR model under heteroskedasticity (HD-1).
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Figure 4: Comparison of the bias, STD and RMSE of the QMLE, REsar, APLEsar, ACMEsar, REsd, APLEsd and ACMEsd

when the DGP is the SAR model under heteroskedasticity (HD-2).
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Figure 5: Comparison of the bias, STD and RMSE of the the QMLE, REsd, APLEse, APLEsd and ACMEsd when the DGP

is the SE model under heteroskedasticity (HD-1).
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Figure 6: Comparison of the bias, STD and RMSE of the QMLE, REsd, APLEse, APLEsd and ACMEsd when the DGP is

the SE model under heteroskedasticity (HD-2).

weights matrix in the DGP, while computing an APLEsar takes about the same time for different ρ0’s,

computing the QMLE and REsar take more time when ρ0 becomes larger. For moderate values of ρ0,

computing REsar only takes slightly longer time than computing the APLEsar and is at least 8 times faster

than computing the QMLE. The bias, STD and RMSE have the same pattern as we have seen in Fig. 1.

5. Conclusion

In this paper, an approximate measure of spatial dependence, the APLE, is generalized to the SD model

so that exogenous variables are directly taken into account and it may be used to detect spatial dependence

originating from either the SAR, SE or SD process. The APLE is derived from a first order approximation

of the first order condition for the SD model. Following the first order condition, we further construct a

moment condition quadratic in the autoregressive parameter of the SD model which generates a closed-form

root estimator. We specify conditions under which a root of the moment equation is consistent. With an

initial consistent estimator, a second step root estimator from a properly designed moment equation can

be asymptotically as efficient as that of the MLE under normality. Our root estimator involves minimal

computational burden. This estimator also applies to the SAR model as it is a constrained form of the SD

model.

When there is unknown heteroskedasticity, we adjust the first order condition to derive a modified APLE
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Table 1: Comparison of the computing time, bias, STD and RMSE of the QMLE, REsar and APLEsar when the sample size

is large.

n=4900 n=10000

ρ0 = 0 0.3 0.6 0.9 0 0.3 0.6 0.9

The spatial weights matrix is W1n in the DGP.

Time† QMLE 1.388 1.564 1.747 2.214 5.572 6.390 7.111 9.008

REsar 0.188 0.192 0.199 0.212 0.767 0.778 0.791 0.800

APLEsar 0.184 0.183 0.183 0.183 0.756 0.757 0.758 0.755

Bias QMLE -2.41E-04 2.03E-05 -2.07E-04 -4.14E-05 1.03E-04 -3.30E-05 -1.55E-04 -9.75E-05

REsar -1.71E-04 8.97E-05 -1.58E-04 -8.67E-06 1.37E-04 4.28E-08 -1.35E-04 -7.80E-05

APLEsar -2.37E-04 -8.18E-03 -6.45E-02 -2.01E-01 1.05E-04 -8.24E-03 -6.46E-02 -2.02E-01

STD QMLE 7.95E-03 7.07E-03 5.23E-03 1.85E-03 5.62E-03 5.03E-03 3.54E-03 1.29E-03

REsar 7.95E-03 7.07E-03 5.23E-03 1.90E-03 5.62E-03 5.03E-03 3.53E-03 1.36E-03

APLEsar 7.95E-03 6.49E-03 3.61E-03 7.31E-04 5.62E-03 4.61E-03 2.44E-03 5.14E-04

RMSE QMLE 7.95E-03 7.07E-03 5.23E-03 1.85E-03 5.62E-03 5.03E-03 3.54E-03 1.30E-03

REsar 7.95E-03 7.07E-03 5.24E-03 1.90E-03 5.62E-03 5.03E-03 3.53E-03 1.36E-03

APLEsar 7.95E-03 1.04E-02 6.46E-02 2.01E-01 5.62E-03 9.45E-03 6.47E-02 2.02E-01

The spatial weights matrix is W2n in the DGP.

Time† QMLE 1.786 1.971 2.219 2.658 6.944 7.586 8.467 10.115

REsar 0.197 0.213 0.258 0.391 0.787 0.826 0.889 1.014

APLEsar 0.184 0.184 0.184 0.185 0.760 0.765 0.759 0.760

Bias QMLE -4.06E-04 -2.86E-04 -3.59E-04 -1.84E-04 5.34E-05 -4.19E-05 -4.66E-05 -6.04E-05

REsar -2.28E-04 -1.03E-04 -1.85E-04 -4.02E-05 1.39E-04 4.77E-05 3.95E-05 1.57E-05

APLEsar -4.01E-04 1.42E-05 -1.49E-02 -7.30E-02 5.37E-05 2.55E-04 -1.47E-02 -7.31E-02

STD QMLE 1.38E-02 1.14E-02 8.52E-03 3.83E-03 9.41E-03 8.07E-03 5.94E-03 2.54E-03

REsar 1.38E-02 1.14E-02 8.52E-03 3.88E-03 9.41E-03 8.07E-03 5.94E-03 2.57E-03

APLEsar 1.38E-02 1.13E-02 7.64E-03 2.64E-03 9.41E-03 7.99E-03 5.32E-03 1.76E-03

RMSE QMLE 1.38E-02 1.14E-02 8.53E-03 3.83E-03 9.41E-03 8.07E-03 5.94E-03 2.54E-03

REsar 1.38E-02 1.14E-02 8.52E-03 3.88E-03 9.41E-03 8.07E-03 5.94E-03 2.57E-03

APLEsar 1.38E-02 1.13E-02 1.67E-02 7.31E-02 9.41E-03 7.99E-03 1.56E-02 7.31E-02

The spatial weights matrix is W3n in the DGP.

Time† QMLE 1.604 1.795 2.018 2.419 6.249 7.042 7.857 9.410

REsar 0.189 0.198 0.221 0.331 0.770 0.786 0.823 0.935

APLEsar 0.183 0.183 0.183 0.183 0.758 0.755 0.754 0.754

Bias QMLE -1.95E-04 -5.03E-05 -2.47E-04 -1.86E-04 -2.17E-04 -1.95E-06 -1.94E-04 -1.38E-04

REsar -1.06E-04 5.49E-05 -1.32E-04 -5.41E-05 -1.73E-04 5.05E-05 -1.36E-04 -5.45E-05

APLEsar -1.95E-04 -5.92E-03 -4.55E-02 -1.47E-01 -2.18E-04 -5.82E-03 -4.53E-02 -1.47E-01

STD QMLE 9.55E-03 8.97E-03 6.82E-03 3.20E-03 6.75E-03 6.21E-03 4.90E-03 2.17E-03

REsar 9.56E-03 8.97E-03 6.84E-03 3.30E-03 6.75E-03 6.21E-03 4.90E-03 2.26E-03

APLEsar 9.56E-03 8.45E-03 5.32E-03 1.69E-03 6.75E-03 5.85E-03 3.82E-03 1.15E-03

RMSE QMLE 9.55E-03 8.97E-03 6.83E-03 3.20E-03 6.75E-03 6.21E-03 4.90E-03 2.17E-03

REsar 9.56E-03 8.97E-03 6.84E-03 3.30E-03 6.76E-03 6.21E-03 4.90E-03 2.26E-03

APLEsar 9.56E-03 1.03E-02 4.58E-02 1.47E-01 6.76E-03 8.25E-03 4.54E-02 1.47E-01

† The average time in seconds to compute an estimate.
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statistic, the ACME , by a first order approximation. The moment equation can also be modified so that a

consistent root estimator under unknown heteroskedasticity is available.

Our Monte Carlo results show that the root estimator has similar bias and STD as the QMLE in

the homoskedastic case, and it also has small bias which is generally smaller than those of the QMLE

and various versions of APLE which ignore the heteroskedasticity in the unknown heteroskedastic case.

Different versions of APLE in the homoskedastic case and ACME in the heteroskedastic case can generate

small bias when the autoregressive parameter is not large in magnitude. The APLEsar and APLEse have

not shown advantages over APLEsd in terms of smaller bias when the DGPs are, respectively, the SAR and

SE models. For moderate true values of the autoregressive parameter, computing a root estimate only takes

slightly longer time than computing the APLE, and it is much faster than computing the QMLE.

Appendix: Lemmas and Proofs

Lemma 1. Suppose that n × n matrices {An = [an,ij ]} are bounded in both row and column sum norms.

Elements of n × k matrices {Xn = [xn,ij ]} are uniformly bounded and limn→∞
X′

nXn

n exists and is nonsin-

gular. Let MXn = In −Xn(X ′nXn)−1X ′n. Then

(1) matrices {MXn
} are bounded in both row and column sum norms,

(2) tr(MXn
An) = tr(An) +O(1),

(3)
∑n
i=1(MXn

An)2
ii =

∑n
i=1 a

2
n,ii +O(1).

Proof. See Lee (2004b).

Lemmas 2—5 are from, for example, Lin and Lee (2010).19

Lemma 2. Suppose that An = [an,ij ] and Bn = [bn,ij ] are two square matrices of dimension n and εni’s in

εn = (εn1, . . . , εnn)′ are independently distributed with mean zero (but may not be i.i.d.). Then,

(1) E(εn · ε′nAnεn) = (an,11E(ε3n1), . . . , an,nnE(ε3nn))′,

(2) E[Anεn(Bnεn)′] = AnΣnB
′
n, and

(3) E(ε′nAnεn·ε′nBnεn) =
∑n
i=1 an,iibn,ii[E(ε4ni)−3σ4

ni]+
(∑n

i=1 an,iiσ
2
ni

)(∑n
i=1 bn,iiσ

2
ni

)
+
∑n
i=1

∑n
j=1 an,ij(bn,ij+

bn,ji)σ
2
niσ

2
nj =

∑n
i=1 an,iibn,ii[E(ε4ni)− 3σ4

ni] + tr(ΣnAn)tr(ΣnBn) + tr[ΣnAnΣn(Bn +B′n)],

where Σn = Diag(σ2
n1, . . . , σ

2
nn) with σ2

ni = E(ε2ni), i = 1, . . . , n.

Lemma 3. Suppose that n-dimensional square matrices {An} are bounded in both row and column sum

norms and εni’s in εn = (εn1, . . . , εnn)′ are independent (0, σ2
ni). Sequence of the variances {σ2

ni} and fourth

moments {E(ε4ni)} are bounded. Then, E(ε′nAnεn) = O(n), var(ε′nAnεn) = O(n), ε′nAnεn = OP (n) and

1
nε
′
nAnεn − 1

nE(ε′nAnεn) = oP (1).

19The (3) of Lemma 2 has corrected an error in a matrix expression in Lin and Lee (2010). Lin and Lee (2010) have the

right result in the summation form, but an error occurs when the summation is transformed into the trace of matrix products.
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Lemma 4. Suppose that An is an n× n matrix with its column sum norm being bounded, elements of the

n× k matrix Cn are uniformly bounded, and elements εni’s of εn = (εn1, . . . , εnn)′ are independent (0, σ2
ni)

with finite third absolute moments, which are uniformly bounded for all n and i. Then 1√
n
C ′nAnεn = OP (1)

and 1
nC
′
nAnεn = oP (1). Furthermore, if the limit of 1

nC
′
nAnΣnA

′
nCn exists and is positive definite, where

Σn = Diag(σ2
n1, . . . , σ

2
nn), then 1√

n
C ′nAnεn

D−→ N(0, limn→∞
1
nC
′
nAnΣnA

′
nCn).

Lemma 5. Suppose that {An} is a sequence of symmetric n× n matrices with row and column sum norms

bounded and bn = (bn1, . . . , bnn)′ is an n-dimensional column vector such that supn
1
n

∑n
i=1 |bni|2+η1 < ∞

for some η1 > 0. Furthermore, suppose that εn1, · · · , εnn are mutually independent with zero means and the

moments E(|εni|4+η2) for some η2 > 0 exist and are uniformly bounded for all n and i.

Let σ2
Qn

be the variance of Qn where Qn = ε′nAnεn + b′nεn − tr(AnΣn). Assume that 1
nσ

2
Qn

is bounded

away from zero. Then, Qn

σQn

D−→ N(0, 1).

Lemma 6. Suppose that the sequence {||S−1
n ||}, where || · || is a matrix norm, is bounded. Then the sequence

{S−1
n (ρ)} is uniformly bounded in a neighborhood of ρ0.

Proof. See Lee (2004b).

Proof of Proposition 1. yn = S−1
n (Znθ0+εn), so an = (Znθ0+εn)′An(Znθ0+εn), bn = (Znθ0+εn)′Bn(Znθ0+

εn) and cn = (Znθ0+εn)′Cn(Znθ0+εn), where An = G′nPnMZn
Gn, Bn = G′nPnMZn

S−1
n +S

′−1
n PnMZn

Gn =

G′nPnMZn +PnMZnGn+2ρ0An, and Cn = S
′−1
n PnMZnS

−1
n = PnMZn +ρ0(G′nPnMZn +PnMZnGn)+ρ2

0An,

using the fact that S−1
n = In+ρ0Gn. The MZn is bounded in both row and column sum norms by Lemma 1.

Then, An, Bn and Cn are bounded in both row and column sum norms as Gn, Pn, MZn
and S−1

n are bounded

in both row and column sum norms.

By Lemma 4, 1
n (Znθ0)′Anεn = oP (1), 1

n (Znθ0)′Bnεn = oP (1) and 1
n (Znθ0)′Cnεn = oP (1). As elements

of Zn are uniformly bounded, we have a1n ≡ (Znθ0)′An(Znθ0) = O(n), b1n ≡ (Znθ0)′Bn(Znθ0) = O(n),

and c1n ≡ (Znθ0)′Cn(Znθ0) = O(n). The fact MZn
Zn = 0 can be used to simplify the expressions for b1n

and c1n.

As elements of matrices bounded in either row or column sum norms are uniformly bounded, a2n ≡

E(ε′nAnεn) = σ2
0tr(An) = O(n), b2n ≡ E(ε′nBnεn) = σ2

0tr(Bn) = O(n), and c2n ≡ E(ε′nCnεn) = σ2
0tr(Cn) =

O(n). We can simplify the expression for c2n by using tr(PnMZn
) = 0. In addition, 1

nε
′
nAnεn = 1

na2n +

oP (1) = OP (1), 1
nε
′
nBnεn = 1

nb2n + oP (1) = OP (1) and 1
nε
′
nCnεn = 1

nc2n + oP (1) = OP (1), by Lemma 3.

Then we have

1

n2
b2n −

4

n2
ancn =

[ 1

n
b1n +

1

n
b2n + oP (1)

]2 − 4
[ 1

n
a1n +

1

n
a2n + oP (1)

][ 1

n
c1n +

1

n
c2n + oP (1)

]
=
[ 1

n
(Znθ0)′PnMZnGn(Znθ0) +

1

n
σ2

0tr(G
s
nPnMZn)

]2
+ oP (1)

=
[ 1

n
(Znθ0)′PnMZnGn(Znθ0) +

1

2n
σ2

0tr(P
s
nG

s
n)
]2

+ oP (1),
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where the last equation follows by Lemma 1.

1) When limn→∞
1
n [(Znθ0)′G′nPnMZn

Gn(Znθ0) + σ2
0tr(G

′
nPnGn)] 6= 0, i.e., 1

nan does not converge to

zero in probability,

ρ̂n ≡
[
bn/n−

(
(Znθ0)′PnMZn

Gn(Znθ0)/n+ σ2
0tr(P

s
nG

s
n)/(2n)

)]
/(2an/n)

=
[
(b1n + b2n)/n−

(
(Znθ0)′PnMZnGn(Znθ0)/n+ σ2

0tr(P
s
nG

s
n)/(2n)

)
+ oP (1)

]
/[2(a1n + a2n)/n+ oP (1)]

= ρ0 + oP (1).

If (Znθ0)′PnMZn
Gn(Znθ0) + 1

2σ
2
0tr(P

s
nG

s
n) were non-negative, ρ̂1n = ρ̂n + oP (1), thus ρ̂1n is the consistent

root; if (Znθ0)′PnMZnGn(Znθ0) + 1
2σ

2
0tr(P

s
nG

s
n) were negative, ρ̂2n = ρ̂n + oP (1), thus ρ̂2n is the consistent

root.

2) When 1
nan = oP (1), Eq. (19) over n is linear in ρ asymptotically. As limn→∞

1
n [(Znθ0)′PnMZn

Gn(Znθ0)

+ 1
2σ

2
0tr(P

s
nG

s
n)] 6= 0,

ρ̂3n = cn/bn

= [(c1n + c2n)/n+ oP (1)]/[(b1n + b2n)/n+ oP (1)]

=
[
ρ0

(
(Znθ0)′PnMZnGn(Znθ0)/n+ σ2

0tr(P
s
nG

s
n)/(2n)

)
+ ρ2

0(a1n + a2n)/n
]
/
[(

(Znθ0)′PnMZnGn(Znθ0)/n

+ σ2
0tr(P

s
nG

s
n)/(2n)

)
+ 2ρ0(a1n + a2n)/n

]
+ oP (1)

= ρ0 + oP (1).

Proof of Proposition 2. We still use the notations in the proof of Proposition 1. As gn(ρ) = y′n(In −

ρW ′n)PnMZn
(In−ρWn)yn = anρ

2−bnρ+cn, ∂
∂ρgn(ρ) = 2anρ−bn. gn(ρ0) = (Znθ0+εn)′PnMZn

(Znθ0+εn) =

(Znθ0)′PnMZn
εn + ε′nPnMZn

εn. According to the mean value theorem, 0 = gn(ρ̂n) = gn(ρ0) + ∂gn(ρ̄n)
∂ρ (ρ̂n−

ρ0), where ρ̄n is between ρ0 and ρ̂n. Then
√
n(ρ̂n − ρ0) = −[ 1

n (2anρ̄n − bn)]−1 1√
n

[(Znθ0)′PnMZnεn +

ε′nPnMZnεn].

From the proof of Proposition 1, 1
n (2anρ̄n−bn) = 1

n (2ρ0an−bn)+2(ρ̄n−ρ0) 1
nan = − 1

n [(Znθ0)′PnMZn
Gn(Znθ0)

+ 1
2σ

2
0tr(P

s
nG

s
n)] + oP (1) = −Σρ,n + oP (1).

As E[ 1√
n

(Znθ0)′PnMZnεn + 1√
n
ε′nPnMZnεn] = σ2

0
1√
n
tr(PnMZn) = 0, by Lemma 5,

[
(Znθ0)′PnMZnεn/

√
n+ ε′nPnMZnεn/

√
n
]
/V

1
2
ρ,n

D−→ N(0, 1),

where, by Lemmas 1 and 2,

Vρ,n = var
( 1√

n
(Znθ0)′PnMZn

εn +
1√
n
ε′nPnMZn

εn
)

=
1

n
σ2

0(Znθ0)′PnMZnP
′
n(Znθ0) +

2

n
E(ε3ni)(Znθ0)′PnMZnDiag(PnMZn)ln

+
1

n
[E(ε4ni)− 3σ4

0 ]

n∑
i=1

p2
n,ii +

1

2n
σ4

0tr(P
s
nP

s
n) + o(1).
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Therefore,
√
n(ρ̂n − ρ0)

D−→ N(0,Ω) with

Ω = lim
n→∞

(Vρ,nΣ−2
ρ,n) = VρΣ

−2
ρ .

Proof of Proposition 3. For any n× n symmetric matrix An = [A1n, . . . , Ann], where Ain’s are column vec-

tors, tr(A2
n) = tr(A′nAn) =

∑n
i=1A

′
inAin. In addition, (Znθ0)′PnMZn

P ′n(Znθ0) = [MZn
P ′n(Znθ0)]′MZn

P ′n(Znθ0)

and (Znθ0)′HnMZnH
′
nZnθ0 = (MZnH

′
nZnθ0)′MZnH

′
nZnθ0. Therefore, by the Cauchy inequality,

[(Znθ0)′PnMZnP
′
n(Znθ0) +

1

2
σ2

0tr(P
s
nP

s
n)][(Znθ0)′HnMZnH

′
n(Znθ0) +

1

2
σ2

0tr(H
s
nH

s
n)]

≥ [(Znθ0)′PnMZn
H ′n(Znθ0) +

1

2
σ2

0tr(P
s
nH

s
n)]2,

i.e.,

(Znθ0)′PnMZn
P ′n(Znθ0) + 1

2σ
2
0tr(P

s
nP

s
n)

[(Znθ0)′PnMZnGn(Znθ0) + 1
2σ

2
0tr(P

s
nG

s
n)]2

≥
(Znθ0)′HnMZn

H ′n(Znθ0) + 1
2σ

2
0tr(H

s
nH

s
n)

[(Znθ0)′HnMZnGn(Znθ0) + 1
2σ

2
0tr(H

s
nG

s
n)]2

,

using the facts MZn
H ′n(Znθ0) = MZn

Gn(Znθ0), tr(P snG
s
n) = tr(P snH

s
n), and tr(Hs

nG
s
n) = tr(Hs

nH
s
n).

Hence, using Hn as a quadratic matrix in the moment equation can generate a consistent root that has

the smallest asymptotic variance. It follows from Proposition 1 that the consistent root is Eq. (20) when

Pn = Hn, if limn→∞
1
n [(Znθ0)′G′nHnMZnGnZnθ0 + σ2

0tr(G
′
nHnGn)] 6= 0, since (Znθ0)′HnMZnGn(Znθ0) +

1
2σ

2
0tr(H

s
nG

s
n) = (Znθ0)′HnMZn

H ′n(Znθ0) + 1
2σ

2
0tr(H

s
nH

s
n) ≥ 0. In addition, 1

n tr(H
s
nH

s
n) = 1

n tr(G
s
nG

s
n) −

4 tr
2(Gn)
n2 + oP (1), by Lemma 1. Thus we have the expression for Ωb.

Proof of Proposition 4. Let an, bn and cn be as given in Proposition 3. According to the proof of Proposi-

tion 1, ân = (Znθ0 +εn)′Ân(Znθ0 +εn), b̂n = (Znθ0 +εn)′B̂n(Znθ0 +εn) and ĉn = (Znθ0 +εn)′Ĉn(Znθ0 +εn)

with Ân = G′nĤnMZnGn, B̂n = G′n(ĤnMZn)sS−1
n and Ĉn = S′−1

n ĤnMZnS
−1
n . By the mean value the-

orem, Ĥn − Hn =
(
G′2n (ρ̄n) − tr[G′2

n (ρ̄n)MZn ]
n−d MZn

)
(ρ̂n − ρ0), where ρ̄n is between ρ̂n and ρ0. Writing

Ân = G′nHnMZn
Gn +G′n(Ĥn −Hn)MZn

Gn and substituting the expression for Ĥn −Hn into Ân, we have

1
n ân = 1

nan + 1
n (ρ̂n − ρ0)(Znθ0 + εn)′G′n · [G′2n (ρ̄n)− tr[G′2

n (ρ̄n)MZn ]
n−d MZn

]MZn
Gn(Znθ0 + εn). By Lemma 6,

Gn(ρ̄n) is bounded in both row and column sum norms for large enough n. As in the proof of Proposi-

tion 1, expanding the second term in the expression for 1
n ân, we obtain 1

n ân = 1
nan + oP (1). Similarly,

1
n b̂n = 1

nbn + oP (1) and 1
n ĉn = 1

ncn + oP (1). Then, it follows by the continuous mapping theorem (see, e.g.,

Proposition 2.30 in White (1984)) that
b̂n−
√
b̂2n−4ânĉn
2ân

=
bn−
√
b2n−4ancn
2an

+ oP (1) if limn→∞
an
n 6= 0.

For the asymptotic distribution, by the mean value theorem,
√
n(ρ̃b,n−ρ0) = −( 1

n
∂ĝn(ρ̄b,n)

∂ρ )−1 1√
n
ĝn(ρ0),

where ρ̄b,n is between ρ̃b,n and ρ0 and ĝn(ρ) = ânρ
2− b̂nρ+ ĉn. As ∂ĝn(ρ)

∂ρ = 2ânρ− b̂n, the above argument

suggests that 1
n
∂ĝn(ρ̄b,n)

∂ρ = 1
n
∂gn(ρ̄b,n)

∂ρ + oP (1), where gn(ρ) = anρ
2 − bnρ + cn. In addition, 1√

n
ĝn(ρ0) =

1√
n

(Znθ0 + εn)′ĤnMZn
(Znθ0 + εn) = 1√

n
gn(ρ0) + 1√

n
(Znθ0 + εn)′(Ĥn −Hn)MZn

εn = 1√
n
gn(ρ0) +

√
n(ρ̂n −

ρ0) 1
n (Znθ0)′

(
G′2n (ρ̄n)MZn−

tr(G′2
n (ρ̄n)MZn )
n−d MZn

)
εn+
√
n(ρ̂n−ρ0) 1

nε
′
n

(
G′2n (ρ̄n)MZn−

tr[G′2
n (ρ̄n)MZn ]
n−d MZn

)
εn =

1√
n
gn(ρ0) +oP (1). It follows that ρ̃b,n has the same asymptotic distribution as the consistent root estimator

ρ̂b,n in Proposition 3, which is derived from solving gn(ρ) = 0.
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Proof of Proposition 5. To prove this proposition, we only need to slightly modify the proof of Proposition 1

to take into account the presence of unknown heteroskedasticity. An, Bn, Cn, a1n, b1n and c1n have the

same expressions as in Proposition 1. Because of heteroskedastic disturbances, a2n, b2n and c2n now have

different forms: a2n ≡ E(ε′nAnεn) = tr(ΣnAn) = O(n), b2n ≡ E(ε′nBnεn) = tr(ΣnBn) = O(n), and

c2n ≡ E(ε′nCnεn) = tr(ΣnCn) = O(n). The expression for c2n can be simplified by using tr(ΣnPnMZn) = 0

as PnMZn
has a zero diagonal. As a result,

1

n2
b2n −

4

n2
ancn =

[ 1

n
(Znθ0)′PnMZn

Gn(Znθ0) +
1

n
tr(ΣnP

s
nGn)

]2
+ oP (1).

The rest of the proof is the same as the corresponding part of the proof of Proposition 1 except that different

expressions for a2n, b2n, c2n and 1
n2 b

2
n − 4

n2 ancn are used.

Proof of Proposition 6. We modify the proof of Proposition 2 to account for unknown heteroskedastici-

ty. Since the error terms are heteroskedastic,
√
n(ρ̂n − ρ0) = −[ 1

n (2anρ̄n − bn)]−1 1√
n

[(Znθ0)′PnMZnεn +

ε′nPnMZn
εn], where 1

n (2anρ̄n− bn) = − 1
n [(Znθ0)′PnMZn

Gn(Znθ0)+ tr(ΣnP
s
nGn)]+oP (1) = −Σρ,n+oP (1).

As PnMZn
has a zero diagonal, E[ 1√

n
(Znθ0)′PnMZn

εn + 1√
n
ε′nPnMZn

εn] = 0, then by Lemma 5,

[
(Znθ0)′PnMZn

εn/
√
n+ ε′nPnMZn

εn/
√
n
]
/V

1
2
ρ,n

D−→ N(0, 1),

where, by Lemmas 1 and 2,

Vρ,n = var
[ 1√

n
(Znθ0)′PnMZn

εn +
1√
n
ε′nPnMZn

εn
]

=
1

n
(Znθ0)′PnMZnΣnMZnP

′
n(Znθ0) +

1

n
tr(ΣnPnΣnP

s
n) + o(1).

Therefore,
√
n(ρ̂n − ρ0)

D−→ N(0,Ω), where

Ω = lim
n→∞

(Vρ,nΣ−2
ρ,n) = VρΣ

−2
ρ .
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