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Abstract

This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregres-
sive models with autoregressive disturbances when there are endogenous regressors with many valid instruments.
Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in
finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases
with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE) that
account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected
GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs.

Monte Carlo experiments are provided to show the performance of our procedure of choosing K.
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1 Introduction

This paper considers the instrumental variable (IV) estimation of the spatial autoregressive (SAR) model with
SAR disturbances (SARAR model) in the presence of endogenous regressors and many instruments. We study the
case where the number of instruments increases with the sample size and derive asymptotic distributions of the
generalized spatial two stage least squares (GS2SLS) estimator and a bias-corrected GS2SLS (CGS2SLS) estimator
based on the leading-order many-instrument bias. Using many moments may improve the asymptotic efficiency but
can make inference inaccurate in finite samples. Donald and Newey (2001) propose to minimize an approximate
mean square error (MSE) as that of Nagar (1959) for choosing the number of instruments in a cross section data
model with endogenous regressors. The MSE takes into account an important bias term, so the method can avoid

cases where asymptotic inferences are poor due to the bias being large relative to the standard deviation.



Liu and Lee (2013) have derived the approximate MSEs of the two stage least squares (2SLS) and bias-corrected
2SLS (C2SLS) estimators for the SAR model with endogenous regressors and many instruments, but that SAR
model has not included a SAR process in the disturbances. We extend the analysis to the SARAR model with
endogenous regressors. The SARAR model combines spatial lag with spatial error dependence. The latter reflects
spatial autocorrelation in measurement errors or in variables that are otherwise not crucial to the model (Benirschka
and Binkley, 1994; Anselin and Bera, 1998). It has a broader application than the simpler SAR model. It has been
applied to empirical studies, e.g., Case’s work (Case, 1987, 1991, 1992; Case et al., 1993; Besley and Case, 1995).
Due to the presence of the spatial error dependence in addition to the spatial lag dependence, we consider the
GS2SLS estimation of the model as in Kelejian and Prucha (1998).! The estimation has taken into account the
spatial error structure, based on a transformed equation. Because the transformation uses an initial consistent
estimator of the spatial error dependence parameter, the impact from this initial estimator creates extra complexity
which should be investigated. The approximated MSEs of the GS2SLS and CGS2SLS estimators turn out to be
more complicated than those of the corresponding 2SLS and C2SLS estimators for the SAR model but are still
tractable for empirical use.

We consider the following SARAR model:
Yn = )\Wnyn + Z2n’7 + Up, Up = pMnun + €n, (1)

where n is the number of spatial units, y, is an n-dimensional vector of observations on the dependent variable,
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the n-dimensional vector of disturbances €, = (€n1,...,€n,)" has i.i.d. elements with mean zero and variance o
and Zs, is an n X m matrix of variables that are possibly correlated with €,, W,, and M,, are n X n spatial weights
matrices that can be equal or different from each other, scalars A and p are spatial autoregressive parameters, and
~ is a parameter vector for Zs,,. Let Zoy, = Zop, + vy, where Zo,, = E(Z2,). The Zoy is assumed to be an unknown
function of X,,, which is an n x k, matrix of exogenous variables, and spatial lags of X,,;: W, X,,, W2X,,, and so on.
Model (1) can be an equation of the spatial simultaneous system as in Kelejian and Prucha (2004). In this case, y,
is a vector of observations on one of, say, k, endogenous variables, and the equation for y,,, similar to those for other
endogenous variables, is y, = AW, y, + X1nv1 + Yaye + 4y, where X7, is the included exogenous variable matrix,
Y,, is the endogenous variable matrix including all observations on the other (k, — 1) endogenous variables and v;
and 7, are parameter vectors, then Zy, = Zfio WX, 11;, where II;’s are matrices of parameters. Alternatively,
Zay, or some elements of Zs, may be generated by an unknown nonlinear model (Kelejian and Prucha, 2007), and
thus we have an unknown nonlinear functional form for the conditional mean Zs, (Donald and Newey, 2001). For
U = (V15 .-+, h,) s we assume that vy;’s are i.i.d. with mean zero and E(v),vn;) = Xy, Up; is independent of e,;
for j # i, but E(vpi€n;) = 0ve. That is, v,,; and €,; are correlated except with the exogenous explanatory variables.
The ith variable in Zy, is exogenous if the ith element of o, is zero. Let Z, = (W,yn, Z2,) and § = (A,7’)’, then
Yn = Zn0 + Up.

IDrukker et al. (2013) have extended the estimation method in Kelejian and Prucha (1998) to the SARAR model with endogenous

regressors. Our focus here is on choosing the number of instruments by minimizing the approximated MSEs.



We are interested in the parameter §. As in Kelejian and Prucha (1998), the final generalized estimator for § is

based on the Cochrane-Orcutt transformed equation:

where R, (p,) = I, — pnM, with p, being a consistent estimator of p. We consider the problem of choosing
the number of instruments for R, (p,)Z,, which can be many due to the unknown functional form of Zop for its
endogenous components. To derive p,,, we may first estimate the equation y,, = Z,6 + u,, by the 2SLS with a fixed
number of instruments to obtain an initial estimator 8,, of §, and then estimate p with a fixed number of quadratic

moment equations that have the form €, (p,d,,)Dp €en(p,9n) = 0, where the n x n matrix D,,; has a zero trace,
and €,(p,0n) = Rn(p)(Yn — Zndn).> The estimation thus involves three stages and the derivation of approximated
MSEs is more complicated due to the presence of many terms with different orders. In Kelejian and Prucha (1998),
the asymptotic distribution of the third stage estimator Sgslsm is not affected by the estimators in the first two
stages as long as p, is a consistent estimator of p. For the approximate MSE of our GS2SLS estimator in the third
stage, one may expect that it involves the asymptotic distributions of the first two stage estimators, since we use
higher-order asymptotic theory for IV. However, it turns out that the variance of the dominant component related
to the first two stage estimators in the expression for the GS2SLS estimator has a smaller order compared to other
terms because of the i.i.d. property of €,;’s. As a result, the leading order component of the MSE does not depend
on the asymptotic distributions of the first two stage estimators and the expression for the approximate MSE is
similar to that in Liu and Lee (2013). However, for the CGS2SLS estimator, the expression for the approximate
MSE is more complicated than that in Liu and Lee (2013), because the term resulting from the estimation error
of the leading order bias involves the asymptotic distributions of the first two stage estimators and an additional
term appears due to the estimation of the spatial autoregressive parameter in the error process.

As Zs,, is an unknown function of X,,, W, X,, W,QLX,L, etc, we may assume an infinite series approximation for
Zop, and, in practice, use a known n x ¢ matrix v, , to approximate Zon, where 1q,n depends on X,,, W, X,, and so
on. To closely approximate Zs, with a linear combination of 1, ,,, we may need a large column number ¢ as well
as appropriate form of v, ,. The instruments for W,y, can be based on 9, . Denote the true parameters for §
and p by d¢ and pg respectively. As model (1) represents an equilibrium model, (I, — A\gW,,) can be assumed to be
invertible, where I,, is the n x n identity matrix. Then if ||[A\¢W,|| < 1 for some matrix norm || - ||, the equilibrium
vector Y, = (I, —AoWi) ™1 (Z2nv0 +uy) can have an expansion Y .o AyW} (Za,70+un). Therefore, the instruments

for Wy,yn can be Wy1)g n, W,%Q/qun and so on, and the instruments for Z,, can be taken as the n x K matrix

FK,n = ["/}q,nv Wn"/}q,nv ey W£¢q,n]v (3)

where K = (p+ 1)g > m + 1. As an extension, we use the instrument matrix

QK,n = [FK,na MnFKm] (4)

2The equation €, (p,0n)Dnjen(p,dn) = 0 is a valid moment equation since E(e,Dnjen) = o2tr(Dnj) = 0 and

%[eg (£0,0n)Dnjen(po,dn) — €, Dnjen] = 0p(1) under regularity conditions.



for Z,(pn) = (I, — pnMy,)Z,.> The asymptotic variance of the 2SLS estimator decreases when a linear combination
of IVs approximates the conditional mean of the endogenous variables more closely. The efficiency (lower bound)
of IV estimators is achieved when a linear combination of IVs equals the conditional mean (Chamberlain, 1987).
Under regularity conditions, a linear combination of [I,,, W,,, W2, ..., WP] can approximate (I,, — pW,,) ! arbitrarily
well as p — oo. Thus, if a linear combination of v, , can approximate Zoy, well as n, ¢ — 00, a linear combination
of Qk n can approximate Z,(py) arbitrarily well in probability as n,p, ¢ — oco. On the other hand, if the number
of instruments increases too fast relative to the sample size, they will lead to a bias of certain order for the
corresponding IV estimators. The tradeoff between variance and bias can be summarized by the MSE of the
estimator. So, minimizing the (approximated) MSE can reduce inaccurate inference due to the presence of many
instruments. Following Donald and Newey (2001), we consider the case that the number of instruments K increases
with, but at a rate slower than, the sample size n, which facilitates the investigation of the high order asymptotics
of the MSEs.

The rest of the paper is organized as follows. Section 2 establishes asymptotic properties of the GS2SLS and
CGS2SLS estimators. Section 3 derives the approximated MSEs for the estimators and gives a criterion function
to choose the optimal number of IVs using the approximated MSEs. Section 4 presents some Monte Carlo results
on the performance of the instrumental variable selection procedure in finite samples. Section 5 concludes. A list

of notations, lemmas and proofs are collected in the appendices.

2 Properties of the GS2SLS and CGS2SLS Estimators

We establish the properties of the GS2SLS and CGS2SLS estimators in this section. Let R, (p) = I, — pM,,
Gn(\) = Wo(IL, — A\W,), Zy, = Zy, + (, with Z,, = E(Z,), and ||A|| = \/tr(A’A) be the Frobenius matrix norm
for a matrix A. UB stands for boundedness of the sequences of both row and column sum matrix norms for a
sequence of matrices. For simplicity, denote yn(p) = Rpn(p)Un, Zn(p) = Rn(p)Zn, un(p) = Rn(p)tn, Zan(p) =
R,(p)Zan, Ry = Ru(po), and Gy, = Gr(No). As yn = (In — MoWon) " H(ZanYo + Ry Yen), Zn = [GnZanyo, Z2n) and

Cn = [Gnonyo + G R, ten, v,]. The following are some basic regularity conditions.

Assumption 1. {e,;,vn:}’s, i = 1,...,n, are i.i.d. with mean zero, E(e2,) = 02, E(v),vni) = Xy and E(vpi€ni) =

Ove. The moments E |e,;|*T7, E||vni||* and E ||vnieni||? are finite, where T is some positive constant.
Assumption 2. (i) The sequences of matrices {Wy,}, {My,}, {(I, — \oWx)"'} and {R;'} are UB;
(i) Wy, and M, have zero diagonals.

Since we use quadratic moments to estimate p in model (1), existence of a moment of €,; higher than the fourth

order is required to properly apply the central limit theorem for linear-quadratic forms of disturbances in Kelejian

3Due to technical difficulties in the presence of many IVs which involve estimated parameters in the literature, we do not use
(In — pnMn)Fk pn as the instrument matrix for Z,(pn) (see Lee and Yu, 2012). If W,, = My, then M, Fk , generates some identical

IVs as those in Fg . In this case, we can simply take Qg n = [FK n, W£+1wq,n]~



and Prucha (2001). Some moment conditions are also imposed on v,; and vn;€,; in Assumption 1. Assumption 2
(i), originated in Kelejian and Prucha (1998, 1999), is a condition that bounds the degree of spatial dependence.
Assumption 2 (ii) implies that no spatial unit is viewed as its own neighbor.

Let Fy, be a full rank n x k¢ instrument matrix for Z,, in the first stage of the GS2SLS estimation. The
number ky of IVs is at least as large as the number (m + 1) of columns of Z,, but is fixed for all n. Denote
Pr, = Fon(F) , Fon)” Fy ,, where A is a generalized inverse for the matrix A. The first stage 2SLS estimator for

5is b, = (Z! Pr, Zn) "' Z] Pr,y,. The following assumption about Fp , is maintained.

Assumption 3. The instrument matriz Fy ,, has full column rank kf > m+1 for all n, lim,_, o %Fé}nFoyn is finite
and nonsingular, and lim, . %Féwzn is finite and has full column rank, where Zo, in Z, has uniformly bounded

elements.

Proposition 1. Under Assumptions 1-3, \/n(0, — 6p) = (L2, Pp,Z,)~ Z! Pr. R Ye, + Op(n=1/?) 4,

1.1
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N(0,1imy, o0 (L 2, Pry, Z,) 1% Z!, P, Ry VR Pp, Z (2 20 Pr, Z,) 7).

In the second stage of the GS2SLS estimation, we use a fixed number, say kg, of quadratic moments to estimate

p in model (1). Let g, (p, dn) = %[e’n(p, On)Dn1€n(p,0n), .., €,(p,0n)Dn k€0 (p, 0n)] s where €,(p, 0n) = Rn(p)(yn —
Z,0,) and n x n matrices D,,;’s have zero traces. The D,;’s can be, e.g., M, and M2 — I, tr(M2)/n. We maintain

the following regularity condition on D,,;.
Assumption 4. The sequences of matrices {Dy;}, j =1,...,kq, have zero traces and are UB.

Consider a generalized moments estimator p,, of p which is

Pn = arg Per[n—ilea] g; (p, 571)971(/” Sn) (5)

for some a > 1 so that [—a, a] contains pg. It can be shown that g/, (p, 0rn)gn(p, 0n) —E g, (p, 00) E gn(p, do) converges

to zero in probability uniformly over [—a, a]. For the identification of py, it requires E g/,(p, do) E gn(p, d0) to be zero

2
uniquely at pg. Let A® = A+ A’ for any square matrix A. Note that E g,(p,d0) = %En[(po — p), (po — p)?]’, where

tr[(Mp Ry 1)*Dyy] er[(My R Dy (M Ry )]

- 1
En =

tr[(Mn R 1) D5y, 1 (Mo R Dy, (M R
Assumption 5. The smallest eigenvalue of =/, =, is bounded away from zero.

—_
=

Assumption 5 is satisfied if the limit of the 2x 2 matrix =/ =, exists and is nonsingular. With Assumption 5, there

exists some 7 > 0 such that E g, (p, d0) E gr(p, d0) > n for any p # po. Thus for any p # po, g;,(p; 0n)gn(p; 0n) > 1/2

with probability approaching 1 as n — oc.

Proposition 2. Under Assumptions 1-5, p, is a consistent estimator of po, and

V(pn — po) = (enDnen + Frep) + OP(nil/z)

1
NG



18 asymptotically normal with a finite variance, where

2 ka kq
S 1 S
D, = ( Ztr (D5, M, R, Zﬁ r(Dg ;MR Y) D (6)
and
o2 il b
_ € 2 s s s / 17/ —1
F, = —(ﬁ;tr (D3 ;MR Zﬁ (D5 M, R, )n E(e, D;; ngn)( Z! Pp, Z,)"'Z! Pr, R (7)

with E(e%DijRnCn) = [tr(DfljRnGn)aq,gyO + o2 tr(DijRnGnRgl), tr(D;";jRn)om].

In the expression for v/n(p, — po) above, the term ﬁlﬁ‘nen with the order Op(1) is due to the usage of the
first stage estimator d,,. That is to say that the asymptotic distribution of 4, has implication on the asymptotic
distribution of p,.

We now consider the GS2SLS estimator using the transformed equation (2). With the instrument matrix Qx ,

n (4), the GS2SLS estimator of J is
Sastsin = 123 (Pn) Prc.n Zn ()~ 23, () Pitntyn (), (8)

Where PKJL = QKJL(Q/I(,nQKJ’L)_Q/I(,n'

Assumption 6. (i) H = lim,_,., H,, where H, = %Z;(po)zn(po), is a finite nonsingular (m + 1) x (m + 1)

matriz; (i) for each Q. in (4), there exists Tx . such that 2||Z,(p) — QrmTrnl|* = 0 as n, K — oo.

Assumption 6 (i) gives a sufficient condition for the identification of &y in (2). Assumption 6 (ii) requires Z,(p)
to be approximated arbitrarily well by a linear combination of Qx , for large enough K and n, which is implied by
Lemma 1 in Appendix B under some other basic assumptions. For analytical tractability, we maintain the following

assumption.

Assumption 7. The elements of Qx.n in (4) are uniformly bounded constants, and lim, %LQ/K,nQK,n exists

and is nonsingular for each K.

The GS2SLS estimator Sgsls’n is characterized by the first order condition + ~Z},(pn) P n[Yn(pn) — Zn(ﬁn)ggsls’n] =
0. By a Taylor expansion of this condition at gy, the first term is %Zﬁl(ﬁn)PKmun(ﬁn), which has the dominant

component L Z/ (po) Pk n€n by Lemma 8. The expectation of this dominant component is 171, (K), where
TH(K) = E(C’:LR;lPK,TLEn) = [tr(FnK,Z)Uve’VO + 0—52 tr(FnK,B)atr(FnK,l)ave]/ = O(K), (9)
with
FnK,l = PK,ana FnK,Q = PK,anGna and FnK,S = PK,anGnRgl (10)

Thus when K/n — ¢ # 0, the GS2SLS estimator Sgsls’n is generally inconsistent. When K/n — 0, stlsyn is
consistent, but if the number of instruments K grows somehow fast relative to the sample size n, the asymptotic

distribution may not center at the true dyg. The following proposition provides more information on this issue.



Proposition 3. Under Assumptions 1-7,
(i) if K/n — c+#0, then 32515,71 — 80 D limy, oo BnK,l, where
burc,1 = [23,(p0) Zn(po) + Q1 (K)] 7 T (K) = O(K/n)
with

in(K) = E(C’II’LR:’LPK7TLR7ZCTL)

. ’7(/)21)'70 tr(]-—vanFnK,Z) + 062 tr(F:’LK,gl—‘nK,S) + 2047 tr(]-—vnKﬁFnK,Z) *
S0 tr(I7, g 1 Tnkc2) + 0 tr(D g 1 T ) Sy tr(, k1 Tnkc 1)
(11)
might converge to a nonzero constant;
(i) if K/n — 0, then \/’E(Sgslsm — 00— b i) 4, N(0,02HY), where
bn,xc = [Z3,(5n) PrcnZn(pn)] ™ T (K) = burc2 + op(K/n) (12)

with BnK,? = [Z;L(pO)Zn(PO)]_lrn(K) = O(K/n).

From the above proposition, when K/n — 0, 52315,.% is consistent of dg, but whether its asymptotic distribution
is centered at dp or not depends on the ratio K/v/n as v/nb, x = Op(K/y/n). The following corollary shows various

scenarios.
Corollary 1. Under Assumptions 1-7,

(Z) ’LfK2/TL — 0, \/ﬁ(S2sls,n - 50) i) N(Ovo

(ii) if K*/n — ¢ < oo and ¢ # 0, \/ﬁ(ggslsm — 00 — buk.2) 4, N(0,02H1);
(iii) if K2/n — oo but Kt /n — 0 for some 0 < n < 1, K"(dgs15.m — 80) = 0.

When K?2/n — 0, the number of instruments K increases slow relative to the sample size n and the asymptotic
variance matrix o2H ~! achieves the efficiency lower bound for the class of IV estimators. When K?/n goes to a
non-zero limit as n goes to infinity, \/’E(Sgslsm — 8o) is centered at lim,,_,o v/Nby i 2, Which might be a non-zero
finite constant and is a many instrument bias. Due to the spatial error dependence, the matrices I'y, k1, I'nx 2 and
I'nhk 3 in (10) of the bias component in (9) play important roles. Without spatial error dependence, these matrices
reduce to Pk, and Pk ,G,. Although the GS2SLS estimation is based on the spatial Cochrane-Orcutt transformed
model (2), the asymptotic distribution of the estimator g, in the transformation does not affect the asymptotic
distribution of 528157774, as usual for the GS2SLS estimation.

To correct the many instrument bias, we consider a bias corrected estimator based on the estimation of the

leading order bias by, x in (12). Let Qg be an instrument matrix with a fixed number of instruments and P ,, =

QO,n (Qé,nQO,n)iQé),n'



Assumption 8. The instrument matriz Qo.n has full column rank kg > m + 1 for all n, lim,_ %ngQom 18

finite and nonsingular, and lim,, _, o %Qg’nZn(po) 1s finite and has full column rank.

The GS2SLS estimator

Sn = [Z;L(ﬁn)PO,nZn(ﬁn)rlZvll(ﬁn)PO,nyn(ﬁn) (13)

and p,, together can be used to estimate b, x. Let an,l = P nRn(pn), an,z = PK,an(ﬁn)Gn(S\n), an,g =
bias-corrected GS2SLS ( CGS2SLS) estimator is

6c2sls,n = 825ls7n - bn,K7 (14)

where En,K = [Z;L(ﬁn)PK’nZn(ﬁn)]_lTn(K) with TH(K) = [tr(f‘nKyg)&M'?n + 652 tr(f‘n}(’g),tr(f‘nK’l)&ye]/.

Proposition 4. Under Assumptions 1-8, if K/n — 0, then \/ﬁ(gcgslsm — o) 4, N(0,02H™1).

Note that the asymptotic distribution of chsl&n in (14) when K/n — 0 is the same as that of Sgsls)n in (8)
when K2/n — 0. So the bias correction procedure has effectively relaxed some requirement on K in order for
the corrected estimator to have a properly centered asymptotic distribution. The asymptotic distributions of the
initial estimators 4, in (13) and p,, in Proposition 2 used for the bias correction do not enter into the asymptotic
distribution of 5025137,“ when only the first order asymptotic expansion is considered. But when we investigate the
approximated MSE of SCQSlSm later, as high order asymptotic expansions are considered, the asymptotic distributions

of the estimators 6, and pn used for the bias correction will generate additional terms for the approximated MSE.

3 Approximated MSE and Optimal K

For an estimator 6, satisfying \/n(6, — o) = H; 'h,, Donald and Newey (2001) have derived a lemma that gives
conditions on the decompositions of H,, and h,, such that the leading order term of the MSE depending on K is
Sp(K), in the sense that

1(0n, — 00) (0 — 00) = Ln(K) + 7 (K), (15)

where E[L, (K)] = 02H; ' + S,,(K) + T,,(K), and T,,(K) and #,(K) are remainder terms that diminish faster than
Sp(K), such that [f,(K) + T, (K)]/ tr(Sn(K)) = op(1) as K,n — oco. A criterion function for the optimal K can
be Sy ¢(K) = &S, (K)E, the leading order MSE depending on K for a linear combination ¢'6,. In particular, one
may use the unweighted version tr(S,(K)) as a practical criterion. Let S,(K) be an estimator of S,,(K), then K
can be chosen by minimizing the function S, ¢(K) = €'S,,(K)E.

In this section, we first derive the expression for S, (K) for both the GS2SLS and CGS2SLS estimators and then
show that the chosen K by minimizing Sn,g(K ) is asymptotically optimal in a sense in (20) originated in Donald
and Newey (2001). Intuitively, this indicates that the error in the use of the feasible S’mg(K ) criterion in place of

the actual ideal S, ¢(K) is asymptotically negligible.



Assumption 9. (i) % tr(Tyk,1) — ¢, where ¢ # 0, as n, K — oo;
(i1) max; |Tpijii| — 0 for j =1,2,3, as n, K — oo, where Iy ki is the (i,1)th element of Ty j;
(iii) p3 = E(e3.) =0 and E(e2,v,;) = 0.

Assumption 9 (i) is for analytical tractability. Assumption 9 (ii) simplifies the expression for S, (K) by imposing
a restriction on the rate at which K increases with n. Assumption 9 (iii) is also a condition that simplifies S, (K).

These simplifications are adopted in Donald and Newey (2001) and Liu and Lee (2013).4

Proposition 5. Under Assumptions 1-9, if K?/n — 0 and o, # 0, then (15) for the GS2SLS estimator 82515’” 18
satisfied with

n

SH(K) = %anl[o,?Z;(pOXIn - PK,n)Zn(pO) + QHQ(K)]Hil (16)
where Qo (K) = T (K)Y (K).

Note that S, (K) above has a similar form as that in Liu and Lee (2013) except for the transformation R,
involved due to the spatial error dependence. The S, (K) has a similar interpretation as that in Liu and Lee
(2013): %H;lzé (po)(In, — Pr.n)Zn(po)H,  is a variance term, which becomes smaller as a linear combination

1 is the leading order term in the MSE of

n

of Qk,n approximates the mean of Z,(po) better; ~H Qs (K)H,,
ﬁH,j ¢! R! Pk €, with the dominant component being from its expectation, which stands for the many instrument
bias and increases as K increases. The minimization of a criterion function &S, (K )¢ thus takes into account the

trade-off between the bias and variance.

Proposition 6. Under Assumptions 1-9, if K/n — 0 and o,c # 0, then (15) for the CGS2SLS estimator chsls)n
1s satisfied with

1 - 5 _
Sn(K) = EH" 1[032;(90)(171 = Prn)Zn(po) + Un1 (K) + Hna(K) + Hns (K)]H, g (17)
where Iy, (K), Ipo(K) and I,3(K) are given in (21), (22) and (25) respectively.

n

The first term in (17) is the same as that in (16). The second term 1 H 'II,;(K)H, ' is the leading order
term in the variance of ﬁH;l[C;LR;LPK’nen — E((}, R}, Pk n€n)]. The third term 2H L,5(K)H, ' is due to the
estimation error of the lead order bias of the GS2SLS estimator. This term becomes much more complicated than
that for the SAR model because of the spatial error dependence. The last term %Hn_ M,,3(K)H, ! is an additional

term compared to S, (K) in Liu and Lee (2013), which is due to the estimation of p.> The S,(K) is a sum of

different variance terms, because the bias terms have smaller orders compared to the variance terms.

4Without Assumption 9 (iii), Sp(K) for the GS2SLS will have an additional term %H{l{Z;I(pg)[E(e%ivm)'yo vecp (Tnk,2) +
ps veen (Ink,3), B(€2,vn:) vecD(FnKJ)}}SH;l, and S, (K) for the CGS2SLS has an additional term which is much more complicated
due to the estimator of p in the second stage of the GS2LS estimation and its use to correct the many instrument bias. Without
Assumption 9 (ii), Sp (K) for the GS2SLS is not affected, but Sy, (K) for the CGS2SLS has an additional term. Those additional terms

can be estimated along with other terms, but they are not included here for simplicity.
5Thus, the F,, in I1,,2(K) is from pp used for the bias correction, and the Fy, in II,,3(K) is from g, in the spatial Cochrane-Orcutt

transformation of the GS2SLS estimation.



We now consider the estimation of S, ¢(K) = &S5,(K){. Estimators for the parameters in S, ¢(K) can be
constructed using a GS2SLS estimator. For the GS2SLS estimator, let the first stage IV matrix be Ff ,, with K

instruments, the matrices for the quadratic moments in the second stage be D,1,...,D and the last stage

n,lé,ﬁ
IV matrix be Qg ,, = [Fi n, MnFi ,].° Then the first stage estimator for § is b= (Z),Ps, Zyn) "' Z], Pp, yn with

Pp = FKn(FII'(,nFKn)_FII?,m and the last stage estimator for d is 8, = [Z},(pn) Pi o Zn ()]~ Z}, () Pr Y ()

with Pg ,, = Qg ,(Q% , Qg ) Q% , and p, being the estimator for p in the second stage. Let the estimators for

2 : IS T I 2P [PVIPN S 1asa . A N
oc, oye and X, be, respectively, 67 = € &,, Gy = -€,0, and X, = ~-0;,0,, Where €&, = y,(pn) — Zn(pn)0n and

Up = (In — Pg,)Z2n. An estimator for ,2(K), Qo (K), can be derived by replacing the parameters with their

)
respective estimators. An estimator for H, is H, = L2} (pn) P 1 Zn(pn)- For 22/ (po)(In — Pi.n)Zn(po), note

that
~EIZ,(p0) (I = Prcn) Za(po)] = 1 B2 (00) + Rl (In = Picn) Za(p0) + Baal)
= 20T — Pica)Za(po) + 1 BGRRAG) = = (),

where Q,1(K) is in (11), thus 2 Z/, (po)(In — Pk .n) Zn(po) can be estimated, up to an additive constant not depending
on K, by L7/ (p,)(In, — Px,n)Zn(pn) + %in(K), where 2,1 (K) is an estimator for ,,;(K), derived by replacing
the parameters in 2,1 (K) by their estimators. Hence, for the GS2SLS, S, ¢(K) = £'S,(K){ can be estimated, up

to an additive constant not depending on K, by

Sne(K) = %ﬁ’ffﬂafzuﬁn)un = Prcn) Zn(pn) + 621 (K) + Qua(K)H, €. (18)

Similarly, for the CGS2SLS, S,, ¢(K) can be estimated, up to an additive constant not depending on K, by

S’n,i(K) = %f/ﬁrjl[&fzé(ﬁn)(]n - PK,n)Zn(ﬁn) + &?in(K) + Hnl(K) + Hn2<K) + Hn3(K)]Hr:1§7 (19)

where ﬁnl(K ) is an estimator of IL,;(K) derived by replacing the parameters in IL,;(K) by their estimators,
I1,2(K) is given in (26) and II,5(K) is given in (27).
The optimal choice of K is the minimizer K of S, ¢(K). The K is optimal in the sense that S, ¢(K) is

asymptotically as small as ming S, ¢(K), i.e.,

Suc(B)
_ onell) py 9
ming Spe(K) (20)

Assumption 10. (i) /n(pn — po) = Op(1), 6, 2 80, 62 B 02, 6pc 2 0pe and £, B B,;

(ii) For the GS2SLS, |Sn¢(K)|/(K?/n+ Ank,1) > ¢, and for the CGS2SLS, |Sn ¢(K)|/(K/n+ Ank.1) > ¢, for

some constant ¢ > 0, where Apx1 = %tr[Z,’l(po)(In — PK,n)Zn(pO)].
Assumption 11. For both the GS2SLS and CGS2SLS, > ;- [nSn¢(K)]~! — 0.

We assume the /n-consistency of p, and consistency of other preliminary estimators in Assumption 10 (i).

Assumption 10 (ii) and Assumption 11 are similar to those in Liu and Lee (2013). For the GS2SLS, from the proof

6The K needs to increase with m so that the estimators for Ove, Ly and H defined below are consistent.
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of Proposition 5, the trace of the positive semi-definite matrix S, (K) has exactly the same order as (K?/n+ A k1),
then S, ¢(K) has the order O(K?/n+ A,k 1). Assumption 10 (ii) requires S, ¢(K) for the GS2SLS to have exactly
the same order as (K?/n + A,k.1). A similar condition on S, ¢(K) for the CGS2SLS is imposed. Assumption 11

imposes a restriction on the set of possible K.

Proposition 7. Under Assumptions 1-11, for K = argming S'n,g(K), (20) is satisfied for both the GS2SLS and
CGS2SLS.

4 Monte Carlo Study

We demonstrate the finite sample performance of our instrument selection procedure with Monte Carlo experiments.
Except for the additional spatial error dependence, most parts of the experimental design follow Liu and Lee (2013).

The model considered is
Yn = )\OWnyn + 702271 + up, Up = pOMnun + €n, Z2n = nﬁO + vy,

where €, = (€n1,--y€nn)’, Vn = (Un1,...,0nn) and Za, is a vector. The (€,;,v,;)’s are i.i.d. normal with mean
7ero, €,; and v,; both have unit variance, and the correlation coefficient between ¢,; and v,; is o, which will
be varied by design. In the experiments, 79 = 1, Ay = 0.6, and py = 0.1 or 0.5. Elements of the n x § matrix
X, are random samples from the standard normal distribution. The specification implies a theoretical first stage
coefficient of determination R} = 50/ (850 + 1) (with the spatial dependence being ignored), according to Hahn
and Hausman (2002). The g will be designed later on.

As in Liu and Lee (2013), we consider two models with different specifications of 8y. In Model 1, the coefficients

are decreasing, i.e., the jth element of Sy is
_ J o4 ) _
i=c 1l———) , forj=1,...,q,
Boj = (@) ( s 7) j q
where ¢(q) is chosen such that Rfc is equal to some specified value in the experiments; in Model 2, the coefficients

are all equal, i.e.,
2
Ry
q(1 - R3)

These two specifications stand for, respectively, the case that some instruments are more important than others,

Boj = ,forj=1,...,q.

and the other case that no instrument should be preferred to others (Donald and Newey, 2001). In the experiments,
R? is equal to 0.02 or 0.1, o, is equal to 0.1, 0.5 or 0.9, and n = 98 or 490. The W,, is a block diagonal matrix
with each block in the diagonal being the row normalized matrix used for the study of crimes across 49 districts in
Columbus, OH in Anselin (1988). The spatial weights matrix M,, in the error process is set to be the same as the
spatial weights matrix W,,. The number of Monte Carlo repetitions is 2000.

Let X4 be a matrix consisting of the first ¢ columns of X,,, and Q, , = [X4, W, X2,... WPX1] forp=1,2,...,p
and ¢ = 1,2,...,4. For n =98, we set p = 4 and ¢ = 5; for n = 490, we set p = 10 and ¢ = 10. The following

estimators are considered:

11



(i) GS2SLS-min: the GS2SLS with Q11 (as the instrument matrix in the third stage);
(ii) GS2SLS-max: the GS2SLS with Qp.g;
(iii) GS2SLS-op: the GS2SLS with Q,, 4, where (p,¢) minimizes S, ¢(K) in (18) with & = (1,1);
(iv) CGS2SLS-max: the CGS2SLS with Qp.4;
(v) CGS2SLS-op: the CGS2SLS with Q,, 4, where (p, ¢) minimizes S, ¢(K) in (19) with € = (1,1)".

The leading order bias for the CGS2SLS and the approximated MSEs are estimated using the GS2SLS with Q2 5 as
the instrument matrix in the third stage. For all the GS2SLS and CGS2SLS estimators considered, the instrument
matrix used in the first stage is 2,5, and the matrices used for the quadratic moments in the second stage are W,
and W2 — I, tr(W2)/n.”

For each estimator, the following robust measures of central tendency and dispersion are reported:® the median
bias (MB), the median of the absolute deviations (MAD), the difference between the 0.1 and 0.9 quantiles (DQ) in
the empirical distribution, and the coverage rate (CR) of a nominal 95% confidence interval.

The summary statistics of the estimators for Model 1 are reported in Tables 1-4. We first compare GS2SLS-min,
GS2SLS-max and GS2SLS-op. The GS2SLS-max has the largest median bias in most cases, and the GS2SLS-op
has the smallest median bias for half of the cases when n = 98 but it has the intermediate medium bias when
n = 490; The GS2SLS-max has the smallest MAD and DQ in all cases, the GS2SLS-op of A\g has the intermediate
MAD and DQ, and GS2SLS-op of 7 has the intermediate MAD and DQ when R?c = 0.02 but largest MAD and
DQ when R% = 0.1; the CR of GS2SLS-op is closest to the nominal level in most cases, while the CR of GS2SLS-
max is significantly lower than the nominal level in many cases. The CGS2SLS-max generally reduces the bias of
GS2SLS-max significantly, has similar magnitudes of MAD and DQ to those of GS2SLS-max, and has a CR closer
to the nominal level compared to GS2SLS-max but still significantly lower than the nominal level in many cases.
Compared to the GS2SLS-op, in most cases, the CGS2SLS-op has much larger MAD and DQ), similar CR, and has
smaller median bias for Ag but larger median bias for .

Tables 5-8 report the summary statistics of the estimators for Model 2. Among GS2SLS-min, GS2SLS-max and
GS2SLS-op, in most cases, the GS2SLS-max has the largest median bias, the GS2SLS-op of Ay has the smallest
median bias, and the GS2SLS-op of g has the intermediate median bias; the GS2SLS-max has the smallest MAD
and DQ, and the GS2SLS-op has the intermediate MAD and DQ; the CR of GS2SLS-op is closest to the nominal
level, while the CR of GS2SLS-max is significantly lower than the nominal level in many cases. The performance
of CGS2SLS-max for Model 2 is similar to that for Model 1. Compared to the GS2SLS-op, the CGS2SLS-op has
much larger MAD and DQ in most cases, similar CR, and has smaller median bias in more than half of the cases

when pg = 0.5 but larger median bias in most cases when pg = 0.1.

7As q is relatively large compared to the sample size, for the first stage estimator of the GS2SLS estimation and the estimator for

the bias correction, we use p = 2 as suggested by Kelejian and Prucha (1998).
8There are some outliers in the GS2SLS and CGS2SLS estimates, thus the mean and variance of the estimators are not reported.
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From the Monte Carlo results of both models, we can see that the proposed CGS2SLS estimator can effectively
reduce the many instrument bias, and the estimators derived by choosing the number of instruments to minimize
their respective approximated MSEs, GS2SLS-op and CGS2SLS-op, have coverage rates closer to the nominal level
than the estimators using very few or many instruments, i.e., GS2SLS-op and CGS2SLS-op can make inference
more reliable. Between GS2SLS-op and CGS2SLS-op, no one is always better than the other in terms of central
tendency or coverage rate, but the GS2SLS-op has much smaller dispersion in most cases.

The summary statistics of the estimated p and ¢ are presented in Tables 9 and 10. Consistent with Liu and Lee
(2013), in most cases for both models, only the first spatial lag (p = 1) is used. For Model 1, in most cases, ¢ is
1 or 2 with n = 98, and is larger with n = 490 but is smaller than the maximum number of instruments ¢ = 10.
For Model 2, ¢ tends to be larger, which might be due to the fact that the variables in X,, of Model 2 are equally
important but the importance of the variables in X,, of Model 1 is in decreasing order. For both models, ¢ tends

to be larger with a larger R7.

5 Conclusion

In this paper, we derive an approximated MSE of the GS2SLS estimator and a bias corrected GS2SLS (CGS2SLS)
estimator for the SARAR model in the presence of endogenous variables and many instruments. We propose a
instrument selection procedure by minimizing the approximated MSEs. Our Monte Carlo experiments show that
the CGS2SLS can effectively correct the many instrument bias and the instrument selection procedure generally

makes inference in finite samples more accurate.
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Table 1: Estimation of Model 1 with R2 = 0.02 and n = 98

A =0.6 Y = 1.0

MB MAD DQ CR MB MAD DQ CR

pPo = 0.1
ope = 0.1  GS2SLS-min 0.174 0375 2327 1.000 -0.011  0.612 3.618 1.000
GS2SLS-max 0.242 0.083 0.323 0.810 -0.065 0.175 0.654 0.992
GS2SLS-op 0.171  0.297 1.702  0.999 0.015 0.468 2.307 1.000
CGS2SLS-max  -0.046  0.125 0.667 0.870 0.098 0.295 1.248 0.974
CGS2SLS-op -0.375  0.581 10.489 0.991 0.332 0.719 8.277 1.000
0.5 GS2SLS-min 0.157 0.428 2.917 1.000 0.188 0.582 3.415 1.000
GS2SLS-max 0.156  0.071 0.279 0.921 0.347 0.154 0.609 0.932
GS2SLS-op 0.129 0.235 1.357 1.000 0.333 0382 1.883 0.999
CGS2SLS-max  -0.008 0.081  0.374 0.958 0.407 0.246 0.983 0.824
CGS2SLS-op -0.190 0.383  5.713 0.999 0.501 0.531 4.274 1.000
0.9 GS2SLS-min 0.148 0.295 2.039 1.000 0.293 0.456 3.633 0.982
GS2SLS-max 0.064 0.031  0.120 0.968 0.791 0.081 0.306 0.033
GS2SLS-op 0.074 0.129  0.814 1.000 0.700 0.291 1.492 0.782
CGS2SLS-max  0.032 0.034  0.136 0.997 0.723 0.152 0.608 0.189
CGS2SLS-op 0.011  0.160 1.544  1.000 0.628 0.355 2.091 0.820

po =0.5
ope = 0.1  GS2SLS-min 0.349 0.342 2413 0.992 0.026 0.572 3.234 1.000
GS2SLS-max 0.344 0.059 0.241 0.414 -0.070  0.176 0.696 0.992
GS2SLS-op 0.310 0.272 1.755  0.984 0.031 0.428 2.375 1.000
CGS2SLS-max  0.057  0.160 1.432  0.720 0.049 0.330 1.544 0.967
CGS2SLS-op -0.137  0.730 10.221 0.972 0.203 0.810 7.607 1.000
0.5 GS2SLS-min 0.262 0.347 2225 1.000 0.195 0.556 3.487 1.000
GS2SLS-max 0.261  0.053 0.208 0.503 0.335 0.155 0.578 0.934
GS2SLS-op 0.227 0.208 1.342 0.991 0.350 0.403 2.108 1.000
CGS2SLS-max  0.092 0.077  0.401 0.855 0.400 0.254 1.022 0.848
CGS2SLS-op -0.085 0.368  6.524 0.996 0.464 0.565 4.658 1.000
0.9 GS2SLS-min 0.228 0.219 1.672  0.992 0.339 0.460 3.461 0.973
GS2SLS-max 0.181 0.027  0.103 0.224 0.775 0.066 0.264 0.023
GS2SLS-op 0.191 0.114 0.659 0.952 0.690 0.262 1.390 0.768
CGS2SLS-max  0.140 0.029  0.124 0.546 0.705 0.127 0.542 0.165
CGS2SLS-op 0.115 0.133 1.600 0.966 0.639 0.310 2.055 0.809

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 2: Estimation of Model 1 with B2 = 0.1 and n = 98

)\0 =0.6 Yo = 1.0
MB MAD DQ CR MB MAD DQ CR
pPo = 0.1
oye = 0.1  GS2SLS-min 0.081 0.283 1.528 1.000 -0.024 0.240 1.026 1.000
GS2SLS-max 0.225 0.076 0.302 0.835 -0.062 0.135 0.548 0.995
GS2SLS-op 0.116 0.254 1.437 1.000 0.001 0.288 1.365 1.000

CGS2SLS-max  -0.033 0.109 0.558 0.887 0.039 0.197 0.829 0.979
CGS2SLS-op -0.212 0.379 5.158 0.997 0.211 0.461 3.997 1.000

0.5 GS2SLS-min 0.082 0.231 1.368 1.000 -0.031  0.255 1.127 1.000
GS2SLS-max 0.149 0.066 0.263 0.903 0.206 0.136 0.534 0.965
GS2SLS-op 0.078 0.213 1.203 0.998 0.147 0.312 1.452 1.000
CGS2SLS-max -0.004 0.080 0.361 0.961 0.174 0.174 0.693 0.949
CGS2SLS-op -0.155 0.283 3.963 0.999 0.312 0.381 2418 1.000

0.9 GS2SLS-min 0.103 0.270 1.683 1.000 0.027 0.298 1.763 0.995
GS2SLS-max 0.075 0.044 0.171 0.914 0.595 0.095 0.368 0.207
GS2SLS-op 0.071 0.182 1.185 0.998 0.284 0.357 1.671 0.928
CGS2SLS-max  0.022 0.049 0.210 0.985 0.407 0.153 0.605 0.598
CGS2SLS-op -0.034 0.190 2.795 1.000 0.374 0394 2.175 0.913
po =0.5

ope = 0.1 GS2SLS-min 0.253 0.313 1.991 0.996 0.021 0.273 1.243 1.000
GS2SLS-max 0.327 0.059 0.237 0.412 -0.058 0.146 0.568 0.995
GS2SLS-op 0.257 0.253 1.611 0.983 0.019 0.290 1.374 1.000
CGS2SLS-max  0.055 0.127 1.086 0.766 0.020 0.229 1.014 0.981
CGS2SLS-op -0.159  0.472 6.950 0.972 0.144 0.557 5.132  1.000

0.5 GS2SLS-min 0.197 0.280 1.646 0.997 0.002 0.278 1.253 1.000
GS2SLS-max 0.268 0.055 0.213 0.444 0.214 0.138 0.527 0.959
GS2SLS-op 0.217 0.232 1415 0.991 0.166 0.316 1.515 1.000
CGS2SLS-max  0.087 0.083 0.421 0.826 0.197 0.192 0.802 0.941
CGS2SLS-op -0.047 0.309 4.120 0.987 0.282 0.400 2.706 1.000

0.9 GS2SLS-min 0.222 0.262 1.671 0.994 0.013 0.239 1.165 0.995
GS2SLS-max 0.217 0.030 0.118 0.156 0.488 0.080 0.322 0.334
GS2SLS-op 0.216 0.190 1.288 0.958 0.148 0.246 1.216 0.968
CGS2SLS-max  0.140 0.043 0.185 0.669 0.310 0.129 0.527 0.753
CGS2SLS-op 0.077 0.185 2.591 0.966 0.249 0.327 1.756 0.947

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 3: Estimation of Model 1 with B2 = 0.02 and n = 490

A =0.6 Y = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
ope = 0.1  GS2SLS-min 0.124 0.348 2.079 1.000 0.000 0.383 1.736 1.000
GS2SLS-max 0.245 0.040 0.147 0.168 -0.116  0.094 0.360 0.958
GS2SLS-op 0.158 0.210 1.203 0.995 -0.009 0.307 1.431 1.000
CGS2SLS-max  -0.023  0.056 0.310 0.866 0.046 0.149 0.603 0.904
CGS2SLS-op -0.326  0.433 7.033 0.993 0.265 0.425 4.096 1.000
0.5 GS2SLS-min 0.145 0.322 1.972 1.000 0.024 0.364 1.766 1.000
GS2SLS-max 0.156 0.031 0.117 0.367 0.306 0.080 0.302 0.587
GS2SLS-op 0.117 0.166 0.984 1.000 0.301 0.276 1.301 0.998
CGS2SLS-max  0.014 0.035 0.138 0.978 0.299 0.135 0.502 0.587
CGS2SLS-op -0.128  0.269 4.360 1.000 0.364 0.360 1.961 0.999
0.9 GS2SLS-min 0.143 0271 1.772 0.999 0.016 0.295 1.569 0.995
GS2SLS-max 0.067 0.016 0.061 0.514 0.757 0.041 0.155 0.000
GS2SLS-op 0.089 0.183 1.014 0.998 0.348 0.274 1.361 0.898
CGS25LS-max  0.038  0.019 0.076 0.934 0.558 0.088 0.342 0.043
CGS2SLS-op -0.011  0.163 1.762 1.000 0.423 0.284 1.513 0.850

po =0.5
ope = 0.1  GS2SLS-min 0.241 0333 2.121 0.996 0.009 0.382 1.682 1.000
GS2SLS-max 0.338 0.029 0.111 0.001 -0.111  0.098 0.370 0.948
GS2SLS-op 0.248 0.220 1.452 0.978 0.015 0.331 1.472 1.000
CGS2SLS-max  0.057 0.079 0.723 0.634 0.015 0.188 0.860 0.855
CGS2SLS-op -0.241  0.530 9.160 0.936 0.218 0.572 5.418 1.000
0.5 GS2SLS-min 0.241 0.266 1.641 0.996 0.030 0.315 1.491 1.000
GS2SLS-max 0.265 0.025 0.094 0.002 0.308 0.079 0.311 0.552
GS2SLS-op 0.230 0.163 0.956 0.971 0.274 0.284 1.231 1.000
CGS2SLS-max  0.106  0.038 0.179 0.575 0.302 0.140 0.551 0.572
CGS2SLS-op -0.077  0.292 4.467 0.984 0.344 0.358 2.332 0.999
0.9 GS2SLS-min 0.218 0.263 1.7656 0.994 0.075 0.294 1.820 0.995
GS2SLS-max 0.184 0.012 0.046 0.000 0.754 0.037 0.138 0.000
GS2SLS-op 0.204 0.161 0.961 0.963 0.377 0.256 1.220 0.887
CGS2S5LS-max  0.142  0.015 0.058 0.032 0.580 0.084 0.319 0.031
CGS2SLS-op 0.111 0.151 2.019 0.950 0.421 0.287 1.530 0.836

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 4: Estimation of Model 1 with R2 = 0.1 and n = 490

A =0.6 Y = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
ope = 0.1  GS2SLS-min 0.032 0.154 0.801 0.999 -0.016  0.131 0.526 1.000
GS2SLS-max 0.214 0.037 0.144 0.257 -0.068 0.076 0.274 0.984
GS2SLS-op 0.126 0.211 1.258 0.999 -0.004 0.296 1.475 1.000
CGS2SLS-max  0.007 0.044 0.176 0.970 0.009 0.093 0.362 0.979
CGS2SLS-op -0.172  0.301 3.807 0.999 0.209 0.388 2.928 1.000
0.5 GS2SLS-min 0.045 0.150 0.834 0.999 -0.015 0.136 0.553 1.000
GS2SLS-max 0.165 0.031 0.121 0.290 0.199 0.067 0.260 0.792
GS2SLS-op 0.097 0.221 1.402 1.000 0.110 0.301 1.433 1.000
CGS2SLS-max  0.029 0.035 0.139 0.967 0.112 0.086 0.328 0.922
CGS2SLS-op -0.113  0.258 3.874 1.000 0.248 0.338 2.203 1.000
0.9 GS2SLS-min 0.0563 0.147 0.975 1.000 -0.003 0.136 0.574 0.998
GS2SLS-max 0.114 0.019 0.073 0.144 0.503 0.044 0.167 0.003
GS2SLS-op 0.107 0.182 1.080 0.996 0.106 0.220 0.980 0.986
CGS25LS-max  0.060 0.026 0.103 0.861 0.217 0.075 0.273 0.643
CGS2SLS-op -0.046  0.216 2.924 1.000 0.280 0.364 2.083 0.957

po =0.5
ope = 0.1  GS2SLS-min 0.072 0.189 1.255 0.996 0.003 0.131 0.525 1.000
GS2SLS-max 0.316 0.030 0.115 0.006 -0.054 0.073 0.287 0.983
GS2SLS-op 0.211 0.238 1.563 0.986 0.020 0.2v6 1.241 1.000
CGS2SLS-max  0.079  0.054 0.277 0.718 0.014 0.108 0.431 0.957
CGS2SLS-op -0.137  0.382 5.654 0.967 0.205 0.453 3.517 1.000
0.5 GS2SLS-min 0.097 0.173 1.275 0.993 -0.006 0.140 0.595 1.000
GS2SLS-max 0.264 0.025 0.101 0.006 0.200 0.068 0.263 0.776
GS2SLS-op 0.191 0.219 1.377 0.991 0.116 0.258 1.184 0.999
CGS2SLS-max  0.110 0.034 0.150 0.570 0.108 0.092 0.361 0.910
CGS2SLS-op -0.028 0.291 4.901 0.985 0.206 0.330 2.157 1.000
0.9 GS2SLS-min 0.098 0.156 1.341 0.989 -0.005 0.148 0.638 0.999
GS2SLS-max 0.210 0.017 0.064 0.000 0.482 0.044 0.167 0.004
GS2SLS-op 0.150 0.180 1.114 0.977 0.120 0.191 0.833 0.996
CGS25LS-max  0.138  0.022 0.088 0.183 0.195 0.078 0.300 0.702
CGS2SLS-op 0.039 0.213 3.970 0.974 0.205 0.307 1.865 0.969

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 5: Estimation of Model 2 with R2 = 0.02 and n = 98

)\0 =0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

PO = 0.1
ope = 0.1  GS2SLS-min 0.246 0.611  3.434 1.000 0.046 0.774 4.234 1.000
GS2SLS-max 0.250 0.082  0.317 0.797 -0.079  0.177 0.661 0.994
GS2SLS-op 0.198 0.326  2.034 0.999 0.069 0472 2364 1.000
CGS2SLS-max  -0.055 0.132  0.730 0.849 0.107 0.299 1.340 0.967
CGS2SLS-op -0.391  0.602 10.313 0.992 0.360 0.766 7.293 1.000
0.5 GS2SLS-min 0.160 0.354  2.317 1.000 0.408 0.796 4.989 1.000
GS2SLS-max 0.155 0.065 0.250 0.910 0.338 0.146 0.576 0.943
GS2SLS-op 0.128 0.216  1.228 1.000 0.399 0.393 1.964 1.000
CGS2SLS-max  -0.008  0.078  0.354 0.960 0.418 0.233 0.949 0.845
CGS2SLS-op -0.204 0.361  6.722 0.998 0.572 0.531 4.621 1.000
0.9 GS25LS-min 0.050 0.210 1.433 1.000 0.741 0.523 3.243 0.963
GS2SLS-max 0.063 0.032 0.133 0.968 0.793 0.080 0.316 0.038
GS2SLS-op 0.051 0.121  0.699 1.000 0.763 0.238 1.278 0.775
CGS2SLS-max  0.030 0.036  0.155 0.993 0.721 0.147 0.609 0.193
CGS2SLS-op -0.006 0.148  1.445 1.000 0.714 0.286 2.544 0.800

PO = 0.5

ope = 0.1  GS2SLS-min 0.289 0.363 2.264 0.994 0.059 0.829 5.260 1.000
GS2SLS-max 0.342 0.061 0.238 0.367 -0.091 0.180 0.712 0.991

GS2SLS-op 0.267 0.274  1.645 0.985 0.071 0.523 3.235 1.000
CGS2SLS-max  0.063 0.160  1.484 0.698 0.023 0.356 1.665 0.958
CGS2SLS-op -0.167  0.675  9.228 0.966 0.254 0.807 7.433 1.000
0.5 GS2SLS-min 0.277 0.342 2408 0.997 0.303 0.694 4.551 1.000
GS2SLS-max 0.264 0.052  0.203 0.449 0.330 0.151 0.585 0.934
GS2SLS-op 0.226 0.196 1.324 0.986 0.356 0.394 2.001 0.999
CGS2SLS-max  0.100  0.073  0.372 0.844 0.356 0.242 1.027 0.853
CGS2SLS-op -0.098 0.362  7.297 0.989 0.475 0.584 5.336 1.000
0.9 GS25LS-min 0.182 0.181  1.172 0.992 0.689 0470 2.978 0.962
GS2SLS-max 0.184 0.027  0.105 0.240 0.777 0.073 0.285 0.024
GS2SLS-op 0.179 0.109  0.682 0.969 0.762 0.220 1.184 0.779
CGS2SLS-max  0.144 0.030  0.130 0.568 0.710 0.137 0.559 0.183
CGS2SLS-op 0.099 0.146 1.737 0.972 0.700 0.299 2.223 0.812

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 6: Estimation of Model 2 with B2 = 0.1 and n = 98

A =0.6 Y = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
ope = 0.1  GS2SLS-min 0.199 0439 2.673 1.000 -0.001 0.482 2.470 1.000
GS2SLS-max 0.230 0.076 0.295 0.804 -0.064 0.151 0.573 0.996
GS2SLS-op 0.190 0.290 1.703 0.999 0.017 0.364 1.702 1.000
CGS2SLS-max  -0.039  0.115 0.562 0.892 0.069 0.209 0.839 0.983
CGS2SLS-op -0.285 0.461 6.720 0.994 0.206 0.479 3.688 1.000
0.5 GS2SLS-min 0.002 0.385 2.408 1.000 0.198 0.669 4.025 1.000
GS2SLS-max 0.137 0.068 0.266 0.907 0.217 0.135 0.531 0.963
GS2SLS-op 0.058 0.217 1.323 1.000 0.198 0.337 1.710 1.000
CGS2SLS-max  -0.003 0.076 0.335 0.964 0.177 0.178 0.709 0.942
CGS2SLS-op -0.173  0.302 4.685 0.999 0.263 0.364 2.475 0.999
0.9 GS2SLS-min 0.0568 0.364 2.209 0.999 0.260 0.504 3.843 0.992
GS2SLS-max 0.102 0.042 0.170 0.887 0.522  0.085 0.333 0.311
GS2SLS-op 0.103 0.231 1.521 0.999 0.369 0.282 2.034 0.958
CGS25LS-max  0.039  0.053 0.220 0.982 0.331 0.134 0.528 0.728
CGS2SLS-op -0.023  0.197 2.793 1.000 0.339 0.268 1.738 0.955

po =0.5
ope = 0.1  GS2SLS-min 0.290 0.364 2.446 0.998 0.053 0.601 3.690 1.000
GS2SLS-max 0.319 0.068 0.265 0.454 -0.064 0.162 0.632 0.989
GS2SLS-op 0.252  0.278 1.901 0.991 0.056 0.443 2.357 1.000
CGS2SLS-max  0.063  0.120 1.088 0.777 0.016 0.251 1.169 0.966
CGS2SLS-op -0.149  0.495 7.195 0.970 0.220 0.642 5.969 1.000
0.5 GS2SLS-min 0.244 0309 1.949 0.997 0.329 0.728 4.353 1.000
GS2SLS-max 0.268 0.051 0.203 0.440 0.233 0.129 0.507 0.961
GS2SLS-op 0.243 0.214 1.317 0.986 0.222 0.366 1.924 1.000
CGS2SLS-max  0.091 0.082 0.445 0.825 0.213 0.182 0.780 0.944
CGS2SLS-op -0.052  0.321 5.613 0.988 0.259 0.395 2.986 1.000
0.9 GS2SLS-min 0.163 0.261 1.781 0.984 0.088 0.387 2.616 0.991
GS2SLS-max 0.196 0.038 0.150 0.307 0.487 0.086 0.330 0.371
GS2SLS-op 0.149 0.184 1.207 0.970 0.290 0.247 1.503 0.965
CGS25LS-max  0.117  0.050 0.220 0.774 0.291 0.141 0.556 0.787
CGS2SLS-op 0.049 0.195 3.284 0.978 0.279 0.270 1.742 0.970

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 7: Estimation of Model 2 with B2 = 0.02 and n = 490

A =0.6 Y = 1.0

MB MAD DQ CR MB MAD DQ CR

pPo = 0.1
ope = 0.1  GS2SLS-min 0.193 0416 2.823 1.000 0.070 0.704 4.351 1.000
GS2SLS-max 0.242 0.037 0.145 0.160 -0.100  0.093 0.351 0.967
GS2SLS-op 0.169 0.218 1.220 0.998 0.014 0.347 1.673 1.000
CGS2SLS-max  -0.017  0.056 0.273 0.893 0.040 0.144 0.580 0.919
CGS2SLS-op -0.348  0.468 11.234 0.992 0.321 0.517 5.647 1.000
0.5 GS2SLS-min 0.130 0.354 2272 1.000 0.259 0.652 3.957 1.000
GS2SLS-max 0.154 0.031 0.120 0.389 0.316 0.078 0.297 0.557
GS2SLS-op 0.104 0.171  0.980 1.000 0.349 0.288 1.408 0.999
CGS2SLS-max  0.015 0.033  0.136 0.977 0.303 0.132 0.502 0.581
CGS2SLS-op -0.153  0.293  3.525 1.000 0.405 0.384 2.560 0.999
0.9 GS2SLS-min 0.100 0.263 1.769 1.000 0.412 0.541 4.162 0.986
GS2SLS-max 0.070 0.015  0.059 0.472 0.748 0.041 0.159 0.000
GS2SLS-op 0.086 0.155  0.995 1.000 0.546 0.263 1.447 0.860
CGS2SLS-max  0.041 0.020  0.074 0.925 0.538 0.083 0.338 0.051
CGS2SLS-op -0.008  0.169 2.335 1.000 0.490 0.247 1.964 0.863

po =0.5
ope = 0.1  GS2SLS-min 0.322 0398  2.574 0.997 -0.0056 0.723 3.984 1.000
GS2SLS-max 0.338 0.029  0.110 0.002 -0.115 0.099 0.382 0.940
GS2SLS-op 0.271 0.243 1.508 0.976 -0.008 0.407 2.041 1.000
CGS2SLS-max  0.060  0.082 0.657 0.634 0.014 0.189 0.862 0.855
CGS2SLS-op -0.300  0.587 11.233 0.939 0.252 0.675 6.906 1.000
0.5 GS2SLS-min 0.251 0.281 1.692 0.997 0.291 0.661 3.651 1.000
GS2SLS-max 0.263 0.025 0.096 0.004 0.306 0.082 0.307 0.553
GS2SLS-op 0.239 0.172 1.055 0.971 0.337  0.295 1.385 0.998
CGS2SLS-max  0.104 0.038  0.181 0.576 0.302 0.140 0.554 0.580
CGS2SLS-op -0.086 0.316 6.578 0.984 0.375 0373 2944 0.999
0.9 GS2SLS-min 0.252  0.236 1.595 0.991 0.240 0.400 3.186 0.988
GS2SLS-max 0.184 0.012 0.046 0.000 0.754 0.037 0.142 0.000
GS2SLS-op 0.212 0.134 0.943 0.961 0.534 0.256 1.511 0.831
CGS2SLS-max  0.142  0.015  0.059 0.035 0.584 0.082 0.320 0.026
CGS2SLS-op 0.098 0.156 2.048 0.958 0.503 0.263 1.808 0.823

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 8: Estimation of Model 2 with R2 = 0.1 and n = 490

A =0.6 Y = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
ope = 0.1  GS2SLS-min 0.138 0.318 1.886 1.000 0.019 0.342 1.584 1.000
GS2SLS-max 0.215 0.038 0.147 0.246 -0.073 0.075 0.282 0.983
GS2SLS-op 0.123 0.241 1.339 1.000 0.000 0.295 1.242 1.000
CGS2SLS-max  0.008 0.044 0.182 0.956 0.002 0.099 0.368 0.982
CGS2SLS-op -0.261  0.416 7.521 0.998 0.128 0.393 2.719 1.000
0.5 GS2SLS-min 0.143 0.2v9 1.654 1.000 0.037 0.322 1.661 1.000
GS2SLS-max 0.164 0.032 0.121 0.286 0.201 0.072 0.269 0.784
GS2SLS-op 0.094 0.223 1.218 0.999 0.120 0.273 1.162 1.000
CGS2SLS-max  0.028 0.035 0.138 0.970 0.108 0.091 0.343 0.912
CGS2SLS-op -0.181 0.357 7.336  1.000 0.129 0.384 2.341 1.000
0.9 GS2SLS-min 0.193 0.206 1.298 1.000 0.056 0.316 1.821 0.997
GS2SLS-max 0.118 0.019 0.075 0.117 0.476 0.045 0.182 0.005
GS2SLS-op 0.117 0.185 1.127 0.997 0.236 0.196 1.018 0.981
CGS25LS-max  0.059  0.027 0.106 0.854 0.200 0.071 0.285 0.703
CGS2SLS-op -0.073 0.284 5.465 0.998 0.069 0.275 1.452 0.994

po =0.5
ope = 0.1  GS2SLS-min 0.236 0.269 1.706 0.992 0.026 0.275 1.236 1.000
GS2SLS-max 0.319 0.030 0.113 0.008 -0.057 0.071  0.275 0.982
GS2SLS-op 0.224 0.220 1.365 0.988 0.030 0.237 1.036 1.000
CGS2SLS-max  0.078 0.054 0.306 0.724 0.009 0.102 0.402 0.967
CGS2SLS-op -0.160  0.389 6.310 0.962 0.065 0.298 1.734 1.000
0.5 GS2SLS-min 0.255 0.245 1.559 0.993 0.082 0.374 1.865 1.000
GS2SLS-max 0.267 0.026 0.098 0.005 0.215 0.073 0.267 0.740
GS2SLS-op 0.202 0.216 1.233 0.987 0.139 0.253 1.200 1.000
CGS2SLS-max  0.109 0.037 0.162 0.566 0.136  0.097 0.385 0.882
CGS2SLS-op -0.112  0.372 7.572 0.988 0.091 0.406 2.593 1.000
0.9 GS2SLS-min 0.250 0.200 1.235 0.986 0.060 0.271 1.456 0.996
GS2SLS-max 0.211 0.015 0.059 0.000 0.492 0.042 0.158 0.001
GS2SLS-op 0.186 0.160 0.987 0.973 0.247 0.172 0.857 0.978
CGS2S5LS-max  0.142  0.022 0.089 0.164 0.211 0.076 0.299 0.667
CGS2SLS-op 0.022 0.249 4.416 0.985 0.078 0.266 1.447 0.993

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and

0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 9: The Distributions of p and ¢ in Model 1

CGS2SLS

GS25LS

MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ

n =98

1

0.02, po = 0.1, gpe = 0.1

2
P =

0.5

0.9

R% =0.02, po = 0.5, 0pe = 0.1

1

1

0.5
0.9

0.1, po = 0.1, orye = 0.1

1

1

2
-

0.5
0.9

0.1, po = 0.5, pe = 0.1

1

1

2
=

0.5
0.9

n = 490

1

1

R} =0.02, po = 0.1, 0pe = 0.1

0.5

0.9

0.02, po = 0.5, 0 = 0.1

1

1

2
r=

0.5
0.9

0.1, po = 0.1, orye = 0.1

1

1

2
=

0.5
0.9

0.1, po = 0.5, pe = 0.1

1

1

2
=

0.5
0.9

MO: mode; LQ: 0.1 quantile; ME: median; UQ: 0.9 quantile.
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Table 10: The Distributions of p and ¢ in Model 2

GS2SLS CGS2SLS
D q p q
MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ
n =98

R?=0.02,p=01,00=01 1 1 1 4 1 1 1 5 1 1 2 4 5 1 3 5
05 1 1 1 4 1 1 2 5 1 1 1 4 1 1 2 5
09 1 1 1 4 1 1 2 5 1 1 1 4 1 1 1 5
R}=0.02,p0=050,=01 1 1 1 4 1 1 1 5 4 1 2 4 5 1 3 5
05 1 1 1 4 1 1 2 5 1 1 1 4 1 1 2 5
09 1 1 4 11 1 5 1 1 1 4 1 1 1 5
R? =01,p0=01,0,=01 1 1 4 1 1 2 5 1 1 2 4 5 1 4 5
05 1 1 3 11 3 5 1 1 3 5 1 4 5
09 1 1 1 2 1 1 1 3 1 1 1 2 5 1 4 3
R}=01,p0=050,=01 1 1 1 3 1 1 2 5 1 1 2 3 5 2 5 5
05 1 1 1 3 1 1 2 5 1 1 1 3 5 1 4 5
09 1 1 1 2 1 1 1 3 1 1 1 2 5 1 4 3

n = 490
R7=10.02,p=01,00=01 1 1 2 9 1 1 4 10 1 1 2 9 1 1 4 10
05 1 1 2 9 1 1 4 10 1 1 1 9 1 1 4 10
09 1 1 1 3 1 1 2 4 1 1 1 3 1 1 4 4
R} =10.02,p0=050,=01 1 1 1 6 1 1 2 9 1 1 2 6 10 1 5 9
05 1 1 8 1 1 3 10 1 1 1 38 1 1 4 10
09 1 135 1 1 4 1 1 135 1 1 2 4
R}=0.1,p0=01,0, =01 1 1 5 10 3 9 10 1 1 1 5 10 8 10 10
05 1 1 1 10 2 6 10 1 1 1 1 10 8 10 10
09 1 1 1 1 3 1 2 5 1 1 1 1 10 8 10 5
R}=01,p0=050,=01 1 1 1 1 10 1 7 10 1 1 1 1 10 8 10 10
05 1 1 1 1 4 2 4 10 1 1 1 1 10 8 10 10
09 1 1 1 1 3 1 2 4 1 1 1 1 10 8 10 4

MO: mode; LQ: 0.1 quantile; ME: median; UQ: 0.9 quantile.
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A Notations

A = A+ A’ for a square matrix A.
[|A|| = y/tr(A’A) is the Frobenius matrix norm for a matrix A.
vecp(A) is a column vector whose elements are the diagonal elements of a square matrix A.
R, = R,(po) and G,, = G,,(X\g), where R, (p) = I,, — pM,, and G,,(\) = W, (I,, — A\W,,)~ L.
Yn(p) = Rn(p)Yn, Z2n(p) = Ru(p)Z2n, Zn(p) = Ru(p)Zy and un(p) = Ru(p)un.
Zon = Zon + vn, where Zo, = E(Za,,).
Zp = [Winln, Zon) = Zp + Cn, where Z, = B(Z,,) = [GnZan0, Zon] and (= [Grvnyo + G Ry Yen, vy
Prn = Qrn(Q ,,Qr.n)” Qk n» Where (Qf ,,Qrn)” is a generalized inverse of Q' ,Qx n-
niri = PxnBn, Tnk o= PxnRyGy and Ty k3 = P n RyGr R
Ank1 = 2 t20[Z] (po)(In — Pr,n)Zn(po)] and Ay o = L tr[Z) M) (I, — P,n) My Zy).
hy = ﬁZ,;(po)en and H,, = 2 Z/ (po) Zn(po)-

For the GS2SLS,

Su(K) = L H (022, 00) (s ~ Prca) Zulpo) + Qun (K,

where

with
TH(K) = E(<7/1R;1PK,n6n) = [tr(FnK,Q)Uve'VO + 052 tr(FnK,Ii)a tr(FnK,l)Uve]l~
For the CGS2SLS,
1 - _
Sn(K) = EHrjl[UEZ;L(PO)Un — Px ) Zn(po) + In1 (K) + Mo (K) + HnB(K)}Hrjla
where II,,; (K) is a symmetric matrix equal to

0 (K) V00100V T (Ca g o) + 0290200 tr(Cnse 2T o) + 02 tr(Tnke 3T g 3) + 2020070 tr(Tn 2lp e 3) %
nl =

0'1/}60-1)670 tr(FnK,lrnK,Q) + 0-6221)70 tr(F;K’lrnK,Q) + 0-520-;5 tr(FnK,?)FfLK,l) *

with the (2,2)th block being o}, ove tr(Th g 1) + 025, tr(T) 5 1 Tore 1),

o (K) = =21 (K), Mg 2 (K)]* — 2070 (K), (22)

where

_ YoXv0 tr(F;LK,anK,Q) + 052 tr(FInK,?,FnK,B) + 20470 tr(F;LK,?,FnK,?) *

S0 v 1 T 2) + 00 tr(Dy i 1 Do 3) Sy tr(l g1 Tnkc 1)
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Hn2,1(K) = Vm[gf tr(FnK,?)MnR;l) - 0'52 tr(PK,nMnGnR;Ll) - tr(PK,nMnGn)O'Ue'YO]

(23)
+ Vv2n [tr(FnK,QGn)UvE'YO + 062 tr(FnK,QGnR;I)a Oye tr(FnK,Q)]/ + ‘/37170 tr(FnK,Q) + ‘/471 tr(FnK,S)a
and
Hn2,2(K) - _Vlnave tr(PK,nMn) + VBn tr(FnK,l)a (24)
with Vi = % 2! (p0)F,, Van = 0L 1,
062 7! 4 0-62 ~! / —1 0-62 ~! !/ 7 / li
Van = n n(pO)Z% - ﬁzn(pO)anve tr(Man ) — ;(ZanZ% + [Zv’YO tr(Rn,Gn) + Oye tr(Gn), Xy tr(Rn)] )
and
2‘7? >/ / -1 2‘73 2 ’
Vin = —an(Po)Fn tr(Man ) - T[tr(RnGn)O’UGVO + o, tr(Gn)a Ove tr(Rn)] y
and
2
o _
s (K) = =5 {25 (p0) P [E(uf, My Prcn B Gn) + Bl Prcn MG )]} (25)
with
E(ul, M} Pk RnCp) = [ovevo tr(Rl P M Thxco) + o2 tr(R M T 3), 0ve tr(Ry M Tk 1))
and

E(GLLPK,nMnCn) = [O.'UEPYO tr(PK,nMnGn) + 0'62 tr(PK,nMnGnR:Ll)a Ove tr(PKm,Mn,)]~

Let Vi = 22 2! (pn)F%, Van = 6211,

. 5’2 . 6’2 R . 6’2 .

Van = ;e[Z;L(ﬁn)Z% — B(¢, Ryvn)] — 7762 o (Pn) I, G tr(M, R Y) — iZT/IR/TLZQ"L’
and

¥ 2&3 I(a N H—1 25—52 5 A \a & ~92 A ~ A ’

Vin = — n2 Zn(pn)IFn tr(Man ) - n [tr(RnGn)UUE’yn +0¢ tI‘(Gn), Tve tr(R")] ’

where R, = Ry, (pn), Gn = Gul(pn), B RLv,) = [SoAn tr(R,Gr) + 6/ tr(G), B, tr(R,)]" and F,, is an estimator
of F,, in (7) derived by replacing Z,, by Z,, and true parameters by their estimators. An estimation for IT,o(K) is

Mo (K) = —[Mn21 (K), 22 (K)]* — 262001 (K), (26)

where ﬂng’l(K), ﬂng,g (K) and Q1 (K) are derived respectively from II,,2 1 (K), IL,,2 2(K) and Q,1(K) by replacing
Vjn’s by Vjn’s and the rest of involved parameters by their respective estimators.

An estimator for II,,3(K) is

)
g 0 I 9 L s
I,3(K) = _;;{Z;’L(pn)]F;’L [E(U;LM;PK,nRHCn) + E(elnpK,nMnCn)]} ) (27)

where E( ! R Pk nMyuy,) are ]:]((;M,’LPK,nen) are derived by replacing the parameters in, respectively, E(¢), R), P n Mpty)

and E(¢, M Pk n€,) by their estimators.
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B Lemmas

The following lemma gives sufficient conditions under which Z,,(p) can be approximated arbitrarily well by a linear
combination of Qk , as n, K — co. When the approximation of Z,,(p) becomes better as the number of instruments

K increases, the variance part of the MSE becomes smaller.

Lemma 1. Suppose that sup,, || AW, ||eo < 1, elements of ¥q n are uniformly bounded constants, and there exists
wg such that || Za, — ¢q,n7T2Hoo — 0 asn,q — 00. Then, for Fi ., = [Ygn, Wnlgn,-- -, WEen], where p,q — 0o as

n — 0o,
(i) there exists T, such that || Z, — Fi nmip||> — 0 as n, K — oo,

(i) %||Zn(p) —Qrnmrnil)? < %||Zn — Fg nTinl|? for some ¢ > 0, where w1 = [7r'K,n, fp7r’K7n]', which implies

that 2|12, (p) — Qrnmrn1l|> = 0 as n, K — oc.

Proof. (i) is Lemma 2.1 in Liu and Lee (2013). The argument is as follows. Let

0 (7‘(’8’)’0)/ ()\071’2’}/0)/ . ()\g_lﬂg’}/())/
79 0 0 ... 0

q

TKn =

Then, FxnTxn = [Wn Zf;é Agwrj;wq,nﬂglyqu,nﬂg] = [(In - A%))Wg)anq,nwg’VOawq,nwg] and

Ly — FK7n7TK,n = [)\SW}:G’H,Z??I’YO + (In - )\IO)WTIZ)Gn(ZZn - "/’qmﬂ-g)’}’Ov ZQn - 1pq,nﬂ'g]-
Thus

HZH - FK,nﬂ-K,nHoo

< [AoWallbl|Gnllssl| Zanvolloo + (1 + [[AoWal ) |Ginlloo | Z2n — tgnmglloclVolloe + 11220 = Wgnmglloc — 0,

as n,p,q — 00. Since +||Zan — g nmol|? < (|| Z2n — q,n7l|o)?, the result follows.

(ii) Let R, (p)Rn(p) = R}, (p)R2n(p)R1n(p) be an eigenvalue-eigenvector decomposition, where Ra,(p) is a
diagonal matrix whose diagonal elements are the eigenvalues of R),(p)R,(p) and Ry, (p) is a orthonormal matrix
whose columns are eigenvectors of R/ (p)Ry(p). Then,

1 _
EHRH(P)(ZTL - FK,nT"K,n)HQ

1 -
EHZn(p) - C?K,nTrKn,lH2

1
o tr((Zy — FrnTrn) By (p) Ri(p)(Zn — FicnTr,n)]

1 _ _
n tr((Zn — Frnmn) Rip () Ron(p) Rin(p)(Zn — Fr nTi n)]
1 - _
S —Tn,max tr[(Zn - FK,nTFK,n)/(Zn - FK,7L7TK,7L)];
n
where 7y, max is the largest eigenvalue of R], (p)R.(p). By the spectral radius theorem,
Tnmax < |[Ry(0) Bn(p)llse < |1R7(P)llool [ B (p)]]oc < €

for some ¢ > 0 and all n. Thus (ii) holds. O
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The following lemma, Lemma A.1 in Donald and Newey (2001), gives conditions on the decomposition of an

estimator, such that the dominant component of the MSE depending on the number of instruments can be derived.

Lemma 2. For an estimator given by \/ﬁ(gn —dp) = ﬁ;lﬁn, suppose that there is a decomposition, h, = h, +

Th+ 2zl H, = H, + TH + 21,
(h + T2 (hyy + T = ho bl H VT — THH By b, = A, (K) + ZE(K),

such that

(i) Th = op(1), hy = Op(1), H, = O(1),

(ii) the determinant of H, is bounded away from zero,

(iii) prn = tr(Sn(K)) = o(1),

(iv) ITP = op(prn), TN = op(pxcn). [|Z31] = op(pr.n)., 1121 || = op(pxn), ZiH(K) = op(px.n),

(v) E[A,(K)] = 02H,, + H,,Sn(K)Hy + 0(picn).-
Then (15) is satisfied.
Lemma 3. Let A, = [an ;] and B, = [b,j] be n x n matrices, then

(1) E(e), Anvn) = ope tr(Ay),

(ii) B(e, Anen) = 02 tr(Apn),

(iii) E(v), Anvy) = X, tr(4,),

(iv) E(v), Apenel, Buvn) = [E(€2,0),0ni) — 20, 0pe — 025, | veen'(Ay) veen (By) + 00 oy [tr(Ay) tr(B,) +tr( A, BL)]+
2%, tr(A,By),

(v) E(e, Anenel, Buvn) = [E(€3,00:) — 3020, veep' (A,) veen (By) + 020, [tr(A,) tr(By,) + tr(A,BE)],
(vi) B(e, Anenel,Bpey) = (g — 302) veep' (A,) veep (By) + o[tr(A,) tr(B,,) + tr(A,B2)],

(vii) E(v], Apv,vl, Bpug) = [E(v;”»vm)Zng—E(v;nvnjv%jvm)fE(v;”»vnj)Q] vecp' (A ) veep (By)+X2 tr(A,) tr(B,)+
E(v;ivnjviljvm) tr(AnBp) + E(v),;vn;)% tr(A, By).

Proof. For (i), (ii) and (iii), we only prove (i), as the other two follow similarly; for (iv), (v), (vi) and (vii), we only
prove (iv) for the same reason.
For (i), €, Antn = Y1 | Gnii€nilni + 2y Zj# (n,ij€niUnj. AS E(€nivni) = oye and E(e,v,;) = 0 for ¢ # 7,

the result follows. For (iv),

n n n
!/ !/ /
E(’UnAnEnGanUn) = g g g an,ijbn,rs E(Univnsenjen”r’)a



where E(v],vps€nj€nr) # 0 in one of the following situations: ¢ = j =r =s;i = j and r = s, but ¢ # r; ¢ = r and
j=s,butis#j;i=sand j=r, buti+# j. Then
E(v), Anénel, Bnvy)

n

n

/ 2 / / 2

= E an,iibn,ii E(Univnieni) + E E E[(an,iibn,jj + afn,ijbn,ij)Unienivnjﬁnj + an,ijbn,jivnivnienj]
i=1 i=1 j#i

= [E(€2,0),;0ni) — 20%.00e — 025, ] veep' (An) veep (By) + ol oy [tr(Ay) tr(By,) + tr(A, BL)] + 028, tr(A,B,). O

Lemma 4. Suppose that nxn matrices {A,} and {B,} are UB, C,, = Pk , Ay = [cn.ij] and Dy, = Pk By, = [dy ;]
Then

(i) tr(Prn) = K,
(ii) [tx(Cp)| = O(K), | tx(CR)| = O(K) and 37, ¢, ;; = O(K),
(iii) [tr(CyDy)| = O(K) and 37| ¢piidnii = O(K).
Proof. (i) and (ii) are Lemma B.2 in Liu and Lee (2010). (iii) By the Cauchy-Schwarz inequality,

tr?(C,D,,) < tr(C,C") tr(D,,D’)

and
(Z Cniidn,ii)? < Z i Z 2 i,
i=1 i=1 i=1
where tr(C,C}) = tr(Pk nAnA},) and tr(D,, D] ) = tr(Pk , By, B)), thus the results follow by (ii). O

Lemma 5. Suppose that {A,} and {B,} are n x n matrices that are UB and C,, = A, Pk B, then
(i) Lel, Anen = Op(1), L€, Ayv, = Op(1), and Ll Av, = Op(1);

(i) ﬁ[G/nAnen — E(e,Ane,)] = Op(1), —=[¢,, Apv, — E(e,Anv,)] = Op(1), and

NG [U%Anvn — E(U;Anvn)] =
OP(l);

S

(i) ﬁ[e;CnenfE(e;C’nen)] =Op(y/K/n), in[e’nC’nvn—E(e;,Cnvn)] = Op(y/K/n), and ﬁ[v;CnvnfE(v;lCnvn)] =
OP(\/ K/n)
Proof. All the results follow by Chebyshev’s inequality and Lemmas 3—4. We only prove the last result in (iii). Let
e; be the ith column of the m x m identity matrix. Then the variance of the (i, j)th element of [v),Cpv, —E(v],Cpv,)]
is L E{€}[v],Cpvy, — E(v;,Cpvn)lejel[vy,Cron — E(v;,Cpvy)]'e; }, which is smaller than or equal to
1
= E{e;[v],Cpvy — E(v],Crvp)][vs,Crvn — E(v),Cron)] e}
n
1
= —e[E(v),Cropvl,Clvy) — E(v],Chvy) E(v),Clvy)]e;
n
= O(K/n)7
by Lemmas 3-4. Thus, the (7, j)th element of ﬁ[e;C’nvn — E(€,,Cpvp)] is Op(+/K/n) by Chebyshev’s inequality.

The result follows as 7 and j are arbitrary. O

28



Lemma 6. Suppose that {A,} is a sequence of n X n matrices that are bounded in the column sum matriz norm,
the elements of the n x k matriz C,, are uniformly bounded, and €,;’s in €, = (€n1,...,€nn) are i.i.d. with zero
mean and finite variance o2. Then ﬁC’,’lAnen =Op(1).

Furthermore, if the limit of %C;AnA;C’n exists and is positive definite, then

Lt Anen & N(O, Tim T4 AL Cy)
\/ﬁnnn 7n—)oonnnnn.

Proof. See Lee (2004). O

The following two lemmas show the orders of relevant terms in deriving the decompositions for the GS2SLS and

CGS2SLS estimators.
Lemma 7. Suppose that n X n matrices {A,} are UB, then

(i) Anka = % (27, (p0) (In — Pi.n) Zn(po)] = o(1),

(’LZ) AnK’Q = %tr[Z;LM,’L(In — PK,n)MnZn] = 0(1),

(iii) %HZ’II’LMT/L(I"L - PK,n)Zn(PO)H = O(\/ AnK,lAnK,Q) and %Z;LM;«L(In - PK-,n)AnZn(PO) = O(\/ AnK,2);

(i) <=21,(p0)(In—Pi ) Anen = Op(A,/2 1), 2= Z1(p0) (In—Pic.n) Antn = Op (A2 1), =20 M}, (In—Pic ) Anén =
Op(AY ) and 2= Z1 M (I, — Pi ) Anvn = Op(A)2 ),

(v) Ltr[Z M} (I, — Pk ) An AL (I — Pr ) MpZy) = O(Ank ),

(vi) JAnk1/n = o(K/n + Apk1), VAnk2/n = o(K/n + Apko), VEKAk1/n = o(K?/n + An,k1) and
\/KAnKyg/n:0(K2/n+AnK,2).

Proof. (i) By Assumption 6, there exists 7 ,, such that %HZ}(po) — QrnTrnl||> = 0 as n, K — co. Then

~1Z(p0) — Qrcmicall
= o(1).
(ii) As pM, Z,, = Z,(0) — Z,,(p), there exist m,x 1 such that %HMnZn — Qrnmnrl> — 0asn, K — co. Then
(ii) holds by an argument similar to that for (i).

(iii) By the Cauchy-Schwarz inequality,

1

1 ,- _ _ 1, - _
‘Ee;Z»;LM»,/;(In - PK,n)Zn(pO)ej|2 < ;Z;LM;L(In - PK,n)MnZnei . Ee;Z;L(pO)(In - PK,n)Zn(pO)ej < AnK,lAnK,%

—e
n
where e; denotes the ith column of the (m 4+ 1) x (m 4+ 1) identity matrix. Thus the first result follows. The second

result in (iii) follows by

1, - 1, 1, -
|ﬁe;Z;LMrlL(In - PK,n)AnZn(pO)ej|2 < EB;Z;’LM;L(ITL - PK,n)MnZnei : Eeg'Zwlz(pO)A;LAnZn(pO)ej = O(AnK,2)-
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(iv) By Chebyshev’s inequality,

for some n > 0. Let A,A]

P(| =€/ Z, (o

f i“n )(In gin(po)(ln

- PK,n)Anen‘ > 7]) S

= AlnAQnA/

In>

- PK,n)AnA;l(

In - PK,n)Zn(po)ei

where Aj, is an orthonormal matrix whose columns are A,A!’s

eigenvectors and Asg, is a diagonal matrix with the diagonal elements being A, A} ’s eigenvalues. Then

—€;Z3,(po)(In — Prcn) An AL (In — Prc.n) Zn(po)e
= L2, p0) I~ Prc) Arn Ao AL (1 — Prc) Zapo)es
< %Lnegzé(ﬂo)(fn — Picn) Zn(po)ei

L An A o Zh (o) I~ Prc ) Za(po)e
=0(Anka),

where ¢,, is the largest eigenvalue of A, A/ and the last inequality follows by the spectral radius theorem. Thus

\/ﬁezZ;l(

p0)(In = Prca)Anen = Op(8,52,) and 21 (po)(In — Picn)

similarly.

(v

) Use the expression A, A}, = A1, A2 A}

in

L2 M (1, = Pren) An AL (

1 _
—tp tr[Z) M} (I, — Prn)A1n Al (
n

1 _ —
—in tr[Z), M (I, — Pk )My Zy]
n

O(AnK)Q).

A€, = Op(A:L/Iil). Other results follow

as in the proof of (iv), then

In - PK,n)MnZn]

(vi) The first two results are Lemma A.3 (vi) in Donald and Newey (2001). For the third result, either A, k1 =0,

in which case \/KAnr1/n/(K?/n+Ank1) =0, or /KA, k1 /n/(K2/n+ Ank1) = L

1

2VK

— 0, by the inequality of arithmetic and geometric means. Thus

similarly.

<
Kz/\/nKAnKJ%*\/TLAnK,l/K -
the result follows. The last result follows

O

Lemma 8. With A, k1 and A, k2 defined, respectively, in Lemma 7 (i) and (i1),

(1)

+Z1(p0) Pic.nZn(po)

where

=H,+TE +THE + T +TH

(a) Hy = L7 (po) Zn(po) = O(1),
(b) TH = =17/ (po)(In = Pr.n) Zn(po) = O(Ank 1),
(c) TH = L(Z!,(po) Ruln + (Rl Zn(po)] = Op(n=1/2),

L Rl Pk nRnCy = Op(K/n) and

= — 121, (po)(In = Prcn) Rn + G R (In = Prcin) Zn(po)]

30
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(’LZ) %Z%(PO)PK,nMnZn % (po)M Z + O(\/ nK,lAnK,Q) + Op(nil/z) + Op(K/n) + OP(K/’H + AnK,l) +
OP(\/AHK,Q/TL).
(iii) L2} M), Pg My Zy = 22 M} My Z, + O(Apic2) + Op(n™Y%) + Op(K/n) + Op(\/Dpk.2/n).

(ZU) ﬁz/ (pO)PKnGn _h + T +T2hni
where hy, = fZ;L(PO)en =0p(1), T, = 7% Z(p0) (In—Prcn)€n = OP(A:L/I?J) and T}, =
Op(K/y/n).

ﬁC;LR;LPK,nEn ==
(1) 2=21,(p0) Pic.n Mutiy, = == 20, (p0) Mty + Op (A1 1) + 2=C Ry Py My,
where ﬁC;R;PK,nMnun = Op(K/y/n).

(1) <=2, M, Pic.nn = J=Z4, M, — =21, M}, (In = Pic.n)en + 2=Gl M, Pic nen,

where = Z1 M}, (I, — Picn)en = Op(AVR ) and =, M}, Pic ey = Op(K/v/).
(vii) = 21, M, Pic o My, = =20, M}, My + Op (A1 ) + Op (K /y/n).

where A, = M}, Pk, Rl Px.n or R, P ,M,R,".

Proof. (i) Because Z,, = Z, +(,, we have the decomposition that %Z;L(po)PK)nZn(po) =H,+TE+THE+TH +T].
Since elements of Z,, are uniformly bounded, H,, = O(1). By Lemma 7 (i), T = O(A,k.1). By Lemma 6,
TS = Op(n~'/?). By Lemmas 3 and 4, E(T4]) = O(K/n), and, hence, T§l = Op(K/n) by Markov’s inequality.
By Lemma 7 (iv) and (vi), T, = Op(\/Ank,1/n) = op(K/n + Api 1)

(ii) and (iii) follow similarly to (i).

(iv) Because Z, = Z, + (,, we have ﬁZﬁL(pO)PKﬂun = hp + T}, + Th,. By Lemma 6, h, = Op(1). By
Lemma 7 (iv), T}, = OP(A:L/;J)- As Cn = [Gponyo + GuR; Yen, vy, by Lemmas 3 and 4, E(TE,TE) = O(K2/n),
and, hence, T, = Op(K/+/n) by Chebyshev’s inequality.

(v), (vi) and (vii) follow similarly to (iv). (viii) follows directly by Lemma 5. O

The following lemma shows the orders of some expectation terms, which are helpful in determining the approx-

imated MSEs of the GS2SLS and CGS2SLS estimators.
Lemma 9. (i) E[(e)Dpe, + Fren)enel] is UB, where D, and F,, are given in Proposition 2.

1) Let the elements of nxXn matrices { Ay} be uniformly bounded, then elements o €n€n, Antn) an €n€, An€n
i) Let the el f ) A,} b i ly bounded, th l fE rA dE A

are uniformly bounded.

(iii) Let the elements of n x m matrices {Bp} be uniformly bounded, where m is a finite fixzed number, then

E(ene, Byvl,) is UB.

(iv) Let the elements of n-dimensional vectors {Cy} be uniformly bounded, then E(e,e€,Cpel) is UB.
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Proof. (i) Let Dy, = [dy 5] and F,, = [fp1, ..., fan]. The (i,4)th element of E[(e), D€, + Fp€,)enel,] is
E(eii)dn,ii + p3 fni + U?[tr(Dn) —dp i) = [E(Efu) - U?]dn,ii + pafni

and the (4, 7)th element for i # j is 02(dy,ij + dp ji). Since D, is UB and elements of F,, are uniformly bounded,
E[(e,,Dpen + Fre,)ene,] is UB.

(ii) Let Ay, = [an,qj], then the ith row of E(en€l, Apvy) is Yon_y Dot anrs B(€ni€nrtns) = @i E(€2,05:). Thus
elements of E(e e, A,v,) are uniformly bounded. Similarly, elements of E(e €, Ay€,) are uniformly bounded.

(ili) Let By = [by,1, -, b},,]', then the (i, j)the element of E(e,€;, Byvy,) is 2, bny E(€ni€nivy,;), which is equal
to by; E(e2,v!,;) when i = j and 0 otherwise. Thus E(e, ¢, B,v/,) is UB.

(iv) follows similarly to (iii). O

Lemma 10. The sequence of matrices {(I, — A\W,,)~1} is UB in a neighborhood of Ao and {R,*(p)} is UB in a

neighborhood of pg.
Proof. See Lee (2004). O

The following lemma shows the dominant components of estimation errors for parameters of the model or for

T, (K) in (9), which help to derive the approximated MSE of the CGS2SLS estimator.
Lemma 11. Let Ly, = ﬁ(e’nDnen + Fnen) as in Proposition 2, then

(i) the GS2SLS estimator Oy = (Z] (Pn) Po.nZn(pn)] "1 21 (5n) Po.nyn(pn) satisfies \/E(Sn —00) = Lan + 0p(1),

where Lo, = [%Z;(PO)PO,nZn(PO)]ilﬁ 7(P0) Ponén,

(1) /n(Gype — Ove)’ = Lan + op(1), where

1 ' ’ 1 1 01/16 -1 1
L?m = \/ﬁ(f’unen - Uve) + 7227#” N 7 tI‘(Man )Lln -
n

vn
with E(v),RnCpn) = [tr(RnGrn) w0 + tr(Gr)ol ., Xy tr(Ry)],

ve)

[ZéanZn + E(U%RnCn)]LQn

n

(iii) /n(6% — 0?) = L4, + op(1), where

1, / 20-62 -1 2 ’
L4n = \/ﬁ(fenen — Uve) — tI(Man )Lln - — E(GanCn)Lgn
n n n

with B(e), RpCn) = [t1(RyGr)oveyo + t1(Gr)o?, oue tr(R,)],

(iv) [T (K) — Ya(K)] = L(ah,ab) + 0p(K/n) = Op(K/n), where

T n

ay = [02tr(Tpr 3sMu R, ) — 02 tr(Pr o MG Ry ) — t1(Pren My G0 wev0] L
+ [tr(FnK72Gn)UUE’}/0 + O'E2 tI‘(FnKQGnR;l), Oye tI‘(Fan)]Lgn + tI‘(FnKvg)’y(/)Lgn + tI‘(FnKyg)Lzln

and ag = —ol, tr(Pr o Mp) L1y + tr(Tng 1) Lan-
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Proof. (i) The 4, satisfies
N 1/~ 1/ 1/ ~—11/~ 1/ —11/ ~
\/ﬁ(én —dp) = [EZn(pn)QO,n(ﬁQO,nQO,n)ﬁQO,nzn(pn)} EZn(pn)QO,n(ﬁQo,nQO,n) %Qo,nun(pn)-
Note that ﬁQ{J,nun(ﬁn) = ﬁ@gmen + %Q{),nMnR;len\/ﬁ(po — pn) and
1, 1, - 1, 1, _o1 i
gQO,nZn(pn) = gQO,nZn(PO) + gQO,anCn + [gQO,nMnZn + gQO,nMnCn](PO ~ Pn)-

By Lemma 6, 2Qf ,, RnCn = 0p(1), 2Qf , Mn(, = 0p(1) and 1Qf , MR, e, = 0p(1). By Proposition 2, v/n(pn —
po) = L1 + 0op(1) = Op(1). Furthermore, %Qg’nzn(po) = 0(1) and %ngMnZn = O(1). Thus

Vii(B — 60) = [~ Z(p0) Pon Zn(p0)] ™ = Z,(p0) Poen + 0p(1).

1
n vn
(i) Write &7, as

o i

1 1 5 1 1 -
= EZénen + EZénMnun(pO —pn) + ﬁzéanZn((SO —6n) + EZénMnZn((SO — 0n)(P0 = Pn)-

By Lemmas 5 and 6,

(2) 224, Myu, = L (0, Myu,) + op(1) = 2= tr(M, R; 1) + 0p(1) = Op(1),

n

(b) %ZéanZn =
O(n), and

E(ZL, R Zy)+op(1) with E(Z5, R, Z,) = Zb, Ry Zn+[tr (R Gn) oo +tr(Gr) ol ., Sy tr(R,)] =

1
n

(c) 125, M,Z, = Op(1).

Then

1 1 - ! 1 -
\/ﬁ(&ve - Uve)/ = \/ﬁ(%v;en - Uql;e) + %Zénfn + % tr(MnRgl)\/ﬁ(pO —pn)+ n E(ZéanZn)\/ﬁ((SO —6n)+op(1).

The result follows as \/n(jn — po) = Lin + op(1) by Proposition 2 and /1 (8, — 80) = Lan + 0p(1) by (i).
(iii) Note that
Ry (pn)(yn — ann) = [Rn + (po — ﬁn)Mn] [“n + Zn (60 — Sn)]

= €n + (,00 - ﬁn)Mnun + RnZn(50 - 5n) + MnZn(§0 - 5?1)(:00 - ﬁn),
then by an argument similar to that for (ii),

1 2 2
Vn(e? —o?) = \/ﬁ(géﬁn —0l)+ EGLMHR;:LGH\/ﬁ(pO = pn) + EEZRnZn\/ﬁ((sO —6n) +op(1),

E(e, M, R e,) + op(1) with E(¢/,M, R, ¢,) = o2 tr(M, R;;!) = O(n), and

1
n

(b) %e;Rn n = %E(e;Rngn) + o0p(1) with E(e/, () = [tr(RnGn)oweyo + t1(Gp)o?, Sye tr(R,)] = O(n).
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The result follows by using the expressions for \/n(d, — o) and /n(pn — po).

(iv) By the mean value theorem,

T K)]
t( P R G2 )G 0eHm + 62 tr(Pr n Ry G2 RV Gye tr(Prcn R Ghn) ~
\/ﬁ(én - 50)
0 0
1 (= tr(Pgn My G)Guein + 62— tr(Pgo My, G RV 4 tr( Py Ry G R M, R N
1 K, n)Gue [ ("/K, ) + tr(Pk, )] Jalin — po)
—Oye tr(PK,nMn)

N l (tr(PK,anGanl

n 0

1 <tr(PK,anénw
n

)> Vn(e? — o)+ = tr(meRn)Imn) Vi(Gue — o)’

where G, is between G, and oy, 552 is between &62 and 062, An is between 4, and 7o, Rn = R, (pn) with p,, being
between pg and py,, and G,, = G,L(;\n) with A, being between )¢ and M. Let tr(PKynAn) stand for a trace term
appeared in the above equation and tr(Px ,A,) be the term evaluated at the true dp and pg. Using the mean value
theorem once again, then l[tr(PKmAn) — tr(Pg nAy)] = op(K/n) by Lemmas 10 and 4. Thus by (ii), (iii) and

Propositions 1 and 2, W[T (K) = To(K)] = L(a},db) + op(K/n), where a; = Op(K) and az = Op(K). O

The following lemma, Lemma A.9 in Donald and Newey (2001), gives a sufficient condition that the chosen K

by the minimization of S’n,é (K), say K, is asymptotically optimal.

Lemma 12. If supy 15n.c(K)=Snc(K)| P 5(K)g(f§f“‘)‘ = 0, then 71“;55(1(() ) LN

The following is a central limit theorem for linear-quadratic forms of disturbances from Kelejian and Prucha

(2001).

Lemma 13. Suppose that {A, = [an.j]} is a sequence of symmetric n X n matrices that are UB, b, g =
(bnk1s- -+ bnn) is a vector such that sup, n~* Z?zl |bril?2T™ < oo for somemn > 0, and €,;’s in €, = (€p1, -+ 5 €nn)’
are mutually independent, with mean zero, variance o2, and finite moment of order higher than four such that
E(|ens|*T2) for some na > 0 are uniformly bounded for all n and i. Let Uén be the wvariance of @, where
Qn =€) Aney, +blen — >0 | ani02;. Assume that O’én /n is bounded away from zero.

Then, Qn/00, % N(0,1).

C Proofs
Proof of Proposition 1. As b, = 6o+ (Z! Pr, Z,) ' Z! Pr, R; ‘e

1 _
ﬁFé’anlﬁn

By Lemma 6, 2F ¢, = Op(n~'/%) and Ry en 4 N(0,limp o0 2 8 F0 WRiIRILE, ). Hence,

y 1 1 1 1 1
O —00) = [—Z' Fon(—F, Fon) '=F. Z'=Z' Fon(—F, Fyn) !
\/ﬁ( 0) [n n+0, <7’L 0,nt0, ) n 0,n ] nom 0, (TL 0,nt°0, )

< 1 - _
Vibn = 80) = (= 2,,Pr, Zn)" TZ,QPF R;'e, + Op(n=1/?)

2
_ _ 1 = _
& N(0, Tim (27 Pp, Z,) 7€ 2! Pp RV R P, (22 Pp, Z0) 1)
n n

n—oo N
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by Slutsky’s lemma. O

Proof of Proposition 2. The consistency of g, follows from the uniform convergence that

9n(p,00)9n(p,0n) = Eg;,(p,80) E gn(p, 60) = op(1) uniformly in p € [—a, a]

and the identification uniqueness condition (White, 1994, Theorem 3.4).

To prove the uniform convergence, we first show that g, (p,0n) — gn(p, d0) = op(1) uniformly in p € [—a,a]. As

6n<p7 5n) = Rn(p)(yn - ann) = Rn(ﬂ)[un + Zn((SO - Sn)]v
1 N s N 1 s
%G;z(pv 5")Dnjen(pv 571) - %6;(@ 50)Dnj€n(pv 50)
1 ) < 1 - -
= 562(97 50)D2jRn(p)Zn(50 —0p) + %(50 - 5n)/Z7/zR/n(p)szjRn(p)Zn(50 — On)-

Note that Z, = Zn + Cny =€0,(p,00) D5 Rn(p)Zn = Op(1) and +Z) R}, (p) D5 R,(p)Zy, = Op(1) by Lemmas 5 and

6. Then 5-€/, (p, Sn)Dijen(p,Sn) — o€, (p, 0) Dy, €n(p, 00) = op(1), as 6n — 60 = op(1). Since g,(p,d) is quadratic

in p, it follows that

gn(p,0n) = gn(p, o) = op(1) uniformly in p € [~a,al.

By Lemma 5, g,(p,00) — E gn(p,d0) = op(1) uniformly in p € [—a, a]. Thus,

9n(p,0n) — E gn(p,0) = op(1) uniformly in p € [~a,a].
Furthermore, E g, (p, dg) = O(1) uniformly in p € [—a,a]. Hence,

9n(p:60)9n(p:0n) — E g}, (p, 60) E gn(p. 60)
= 2[gn(p.0n) — Egn(p,60)] E gn(p,60) + [9n(p, 0n) — E gn(p, 50)]'[9n(p. 0n) — E gn(p, o))
=op(1)

uniformly in p € [—a,al.

We now show that the identification uniqueness condition holds. Note that E g, (p, ) = %zEn[(po —p), (po —
p)?)'. Let 7,1 and 7,2 be the eigenvalues of =/ =,. Write Z,Z, = =,,,Z2,Z1,, where Za, is a 2 x 2 diagonal
matrix with diagonal elements 7,1 and 7,2, and =y, is an orthonormal matrix containing the eigenvectors of
=/ Z,. By Assumption 5, there exists some constant 17 > 0 such that 7,1 > 1 and 7,5 > 7 for all n. Obviously,

E g,,(po,0) E gn(po,d0) = 0. Then,

E g,,(p,00) E gn(p,d0) — E g;,(p0. 0) E gn(po, do)

3~

(
4

Q

[P0 — p, (o — P)*]E1E2nZ1nlp0 — p, (Po — )]

3 =l
S

€

>

[P0 — P, (po — P)* 121, E1nlp0 — p, (po — p)?)

3
S
IS

="[(po— p)* + (po — p)"]

-]

>0

for any p # pg. Thus the identification uniqueness condition holds.
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The consistency of p,, follows from the uniform convergence and identification uniqueness.

For the asymptotic distribution, by the mean value theorem, we have

_ 89;;([)7“5”) ~ %y 89;;([%7(%) IS agn(ﬁmsn) ~
O - ap gn(ﬂm 5n) - 8p [gn (PO, 5n) + ap (pn PO)L

where p,, is between p,, and py. Then

~ _ 89:’L(ﬁn75n) agn(pnagn) —189’/@(p~’n)5n) N
Vi(pn = po) = —( op ap ) ap V1gn(po; 0n)-

The ith element of %;’5") is —%e%(ﬁn, Sn)D;jMn(yn — Zn(;n), which can be expanded by using y, — Zn0, =
Up + Zn (00 — 5n) and €, (pn, Sn) = [Rn + (po — pn) My [tr, + Z1n (50 — Sn)] By Lemmas 5 and 6, the terms involving
(60 — 0p) or (po — pn) are Op(n—'/2). Therefore,

1 . 1 1
—fe 2 (P ) Dy Moy (Y — Znb) = —Ee;D;jMnRglenJrop(n—l/?) = —EU?tr(DflenRgl)—l-Op(n_l/Q) =0p(1)

by Lemma 5. Thus, 222ndn) — g ag"(po %) 4 Op(n=1/2) = Op(1), where

Op
991 (po, 6 o? s -
E(ag 0 _ —;[tr(DnanRnl),...,t r(D ., MuR,

Similarly, agn(g;,én) =E ag”(appo’éo) +Op(n~1?) = Op(1). Thus,

Vil — po) = —(E 99,,(po, 60) 8gn(po,50)) (E 59&(P0,5O)>\/ﬁgn(p075n) + Op(n=112),

Jdp dp dp
For \/ngn(po, 0 ), the ith element is
1 < < 1 1 -
ﬁ[en + RnZn(80 — 00)) Dnjlen + RnZn (80 — d,)] = %E;Dm-en + EE;LD;jRnZn\/ﬁ(ao —6n) +O0p(n~12).

By Lemmas 5 and 6,
l Y _ l /I s 74 _ l /I s —-1/2\ _
nenDannZn = nenDann(Zn +¢n) = - E(e, Dy, RiuGn) +Op(n )=0p(1),

where
E(e, D ; RnCn) = [tx(D}; RnGr)oveyo + 07 tr(D5; RyGr Ry 1), tr(D5 Ry ) oe-
By Proposition 1,
Vit = 80) = (Z0Pr, Z0) " =2 Pr Bt + Op(n ™).
Then the ith element of \/ng,(po, 5n) is A, +Op(n=1/?), where

1
Api = — EE(G;LDS n(n)( Z’ ! Pp, Z,)"! Z’ Pr R, €.

1
%%Dnﬁn Nonk

Hence,

A“

% (D5, MRy ) Ani + Op(n™1?)

2 ka
Vinlpn = po) = (75 > 0*(Dy; Mo Ry ) Z
j=1

1
(annen + ]Fnen) + Op(n71/2),

= ﬁ
where D,, and F,, are in, respectively, (6) and (7). Note that tr(D,,) = 0, then \/n(p, — po) is asymptotically normal

with a finite variance by Lemma 13. O
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Proof of Proposition 8. The GS2SLS estimator 52315’,1 satisfies
. 1 . o 1 - _
\/ﬁ(é%ls,n —do — bn,K) = [EZ;z(pn)PK,nZn(Pn)] lﬁ[Z;L(pn)PK,an(pn)un - E(C;R;LPKmen)],

where
E(C;R’IRPK,nen) - [tr(FnK,Q)O've’YO + 0'62 tr(FnK,3); tr(FnK,l)ave]/ - O(K)

by Lemma 4. Write Z,,(pn) = Zn(po) + (po — pn) My Zp, then

1 B ~ 1 1 s - -
EZ;L(pn)PK,nZn(p ) = EZ;L(pO)PK,nZn(iOO) + E[Z;LM;LPK,HZn(pO)] (Po — pn) + EZ’:LM'IILPKy"LMnZn(pO - Pn)2

By Lemma 8 (i), (ii) and (iii),
(a) 1 K /0 ¢ £ 0, 2, (00) Pecn Za(po) = Hot 2GRy Pic R +op(1) = Op(1), 120 M),Pre.u Zu(po) = Op(1)

and %Z;lM{ALPK’nMnZn = Op(1);

(b) if K/n — 0, £ Z! (po) P ,nZn(po) = Ho+op(1) = Op(1), L 2/, M}, Pk nZ,,(po) = Op(1) and L Z! M P ,M,, Z,, =

Op(1).
By Lemma 5, L(/ Rl P, Ry — 21 (K) = Op(VK /n), where Q,,1(K) = O(K) by Lemma 4. By Proposition 1,

vn(6o — 0,) = Op(1). Hence,
(c) if K/n—c#0, 2! (pn)PrnZn(pn) = Ho + Q01 (K) + 0p(1) = Op(1) and b,k — bpx1 = op(1);

(d) if K/n— 0, 22/ (pn)Pr,nZn(pn) = Hyp + op(1) = Op(1) and by k — bpk,2 = op(K/n).

Zn(po) + (po — pn)MnZy and Ry, (pn) = Ry + (po — pn) Mn,

As Rnun = €n, Zn(ﬁn)

1 - -
7[Z;z(pn)PK,an(Pn)“n - E(C’;LR;LPK/”E”)]
1 7! 1 7! 1 ! / ! / 1 ! !
= %Zn(po)en - %Zn(p())(—rn - PK,n)en + %[CanPKynen - E(CanPK,nen)] + ﬁZnMnPK,nen\/ﬁ(pO ~ pn)
1 _ ~ 1 _
+ EZ:z(pO)PK,nManlen\/ﬁ(pO — pn) + EZ’:ZM’:LPK7nMan16n\/ﬁ(pO ~ Pn)

The terms on the right hand side have the following properties:
1/2

Z = Op(1) and ﬁ _;L(pO)(In — Pgn)en = OP(AnK,l) = op(1);

1) By Lemma 8 (iv), ﬁ ! (po)en =

2) by Lemma 8 (viii), ﬁ[ ! Rl P nen — E(C, R, Pk nen)] = Op(/K/n);

3) by Lemma 8 (vi), %Z;M;PK,nen =0p(n=?) + Op(v/Anga2/n)+ Op(K/n);

4) by Lemma 8 (v), %Z;L(po)PK,nMnRglen = Op(n’l/Q) +O0p(\/Ank1/n)+Op(K/n);

5) by Lemma 8 (vii), %Z;LM,’LPKmMnR;len = Op(nfl/Q) + Op(\/Ank,2/n) +Op(K/n).

Therefore,

(e) if K/n — ¢ #0, %[Z{l(ﬁn)PKﬂRn(ﬁn)un — E(¢, R, Pk nen)] = op(1), and 52515,,1 — 60 — bnr. 20,
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(f) if K/n — 0, ﬁ[Zvlz(ﬁn)PK,an(ﬁvb)un_E(CvlzR;LPK,nen)] = ﬁ 7(po)en+op(1), and ﬁ(gZSIS,n_50_bn,K) i>
N(0,02H~') by Lemma 6. O

Proof of Proposition 4. By Proposition 3, it is sufficient to show that \/ﬁ(l;n;{ — by, k) = op(1). Furthermore,
as %Z,’L(ﬁn)PK’nZn(ﬁn) = Op(1), we only need to show that

%mm - %rnm — op(1).
By Lemma 4, as p, — po = Op(n~1/?),
L[tr(an,l) —tr(Thra)] = ! (po — pn) tr(Pr nM,) = Op(K/n) = op(1).

vn S n

By the mean value theorem,

%[tr(f‘nK,Q) —tr(Chk2)] = %(ﬂo — pn) t1[Prcn My G (An)] + %

as Ppnp— po = Op(n’l/z), A — Ao = Op(?fl/z)7 and Gn()\n) is UB in probability by Lemma 10, where A\, is between

(A = X0) t1[Prcn R (53) G (An)] = Op (K /)

Ao and A, and pn is between pg and p,,. Similarly,

%[m(mﬁ) — tr(Tares)] = Op(K/n) = op(1).
By Lemma 11, 62 —02 = Op(n~'/?) and G,c —0yc = Op(n~'/?). Furthermore, tr(T,,x 1) = O(K), tr(Tyx.2) = O(K)

e =

and tr(T'yx2) = O(K). Then

1 ~ .. . ~ ~ . 1
7[tr(1—‘nK,2)o—ve’Yn + 052 tr(FnK,S)a tr(FnK,l)Jve] - 7[tr(FnK,2)0’ve'YO + 052 tr(FnK,B)v tr(FnK,l)Jve] - OP(]-)

vn vn

and the result in the proposition holds. O

Proof of Proposition 5. We find a decomposition for \/ﬁ((ggslsm — 0p) as in Lemma 2 and show that all the
conditions in the lemma are satisfied.

Let pg.n = tr(Sp(K)), where S(K) is in (16). We first establish some order properties for pg . The pg n is
equal to

o2 = = 1
picn =~ t((In = Prc.n) Zn(po) Hyy ' Hyy ' 21 (po) (In = Prcon)] + =00, (K) Hy  H 00 (K)

T2 TH max > > TH,max
< T r{(1, — Pic) Za(p0) 20 (p0) (In — Prc)) + 2250 (K)o (),

where Ty max is the largest eigenvalue of H, !, which is bounded from above because lim,,, H, is finite and
nonsingular. Furthermore, as Y, (K)Y,,(K) < K?c for some constant ¢ > 0 by Lemma 4, px., = O(K?/n+Apk1).
By a similar argument but with a lower bound for pg ,, by using the smallest eigenvalue of H,, ' and by Assumption 9
(i), as ope # 0, limy—yo0 prcn/(K2/n + Apk.1) > c for some constant ¢ > 0. These together mean that pg , has
exactly the same order as (K?/n + A,k,1). This order of pg ., together with K2/n — 0 are helpful to determine

the orders of the terms in the decomposition of \/ﬁ(stls,n —dp).
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The 52515771 satisfies

\/ﬁ(glels,n - 60) = IA{»;l}ALn;

where iln = ﬁz;z(ﬁn)PK,nun(ﬁn% and

- 1

1 -
Hn = ﬁZ;(pO)PK,nZn(pO) + (pO - pn)2Z7/zMr/LPK,nMnZna

1 ~
(0 = ) 24 (p0) P M Zo + Zo M, Prtn Zo o)) +

n
because Z,,(pn) = Zn(po) + (po — pn)MnZ,. By Lemma 8 (i)—(iii) and Lemma 7 (vi),

1
ﬁZ;L(PO)PK,nZn(pO) =H, + Tlﬁlz + TQI;II + T?ilz + TAfrIw

where Hn = O(l), Tﬁ, = O(AnK,1)7 T;{l = Op(n71/2), Tgli, = OP(K/’IL) = Op(me) and Tz{rIL = OP(K/TL+A”K71) =

or(pK.n);

1 1 - = /
mzjm(pO)PK,nMnZn = mZL(pO)MnZn + O( AnK,lAnK,2/n) + OP(nil) + OP(Kn73/2)

+ OP(Kn*?’/2 + nil/zAnK,l) + OP(M/”)
1 - _
= mziz(pO)MnZn + OP(PK,n);

and 5 Z M}, Pic My, Z, = Op(1/n) + Op(K/n?) = op(pr,n). As
- 1 _
\/ﬁ(pn - PO) = ﬁ(dn]D)nGn + ]Fnen> + OP(n 1/2) = Op(l),

it follows that
1

n

where TgL = fﬁ(e;Dnen +Fpen) 2! (po)MpZ, + Z! M! Z,,(po)] = Op(n71/2). Then, H, = H, + TH 4 or(pK.n)

(pO - ﬁn)[Z;z(pO)PKmMnZn + Z;zMrlzPK,nZn(pO)] = T5}TIL + OP(pK7”)’

with TH =T + T + TH .

For h,,, we have

1 1 1
=2, P n€n = — Pn Z, M, P ntn A P nMn n = — Pn QZ/ M, P, nMn ")
\/7’77, n(po) K,nt + \/ﬁ(PO P )[ ntip 'K n€ + n(po) K, u ]+ \/ﬁ(po P ) nttnd K, U

where, by Lemma 8 (iv)—(vii) and Lemma 7 (vi),

i

(8) <=2, (po) P nen = hn + Ty, + Th, with by, = Op(1), Tl = Op(A}/¢ ) and T, = Op(K//n),
(b) 17/ M/, P nen = 22! M! Py e, + Op(K/n) = Op(n=1/?),

(¢) +2),(po)Pr.nMptn = +21,(p0) Mpun + 0p(px.n), and

(d) n_?’/QZ;LMijK,nMnun = op(pK.n)-

Thus, hy = hy + T + 0p(prcn), where T! = T} +Th + TP + TP with

T, = (e, Dnen + Fren) Z4 (p0) Mutin = Op(1/v/0)
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and

Th = —n=32( Dypen + Fren) 2! M., P e, = Op(1/3/n).

Corresponding to the terms of the decomposition in Lemma 2, we have Z" = - ~Th ZH = H,—H,— TH,
An(K) = (h + T, + T3, (b + T, + T3,)" + (T8, + Th)H) — (habr, BT )

and

ZMNEK) = [(T], + T5) (T4, + Ti)'1* + (T4, + Ty ) (T4, + Th) = op(px.n)-

We shall check that all conditions in Lemma 2 are satisfied and derive the explicit expression for E[A,,(K)]. As

hy +Th +Th = ﬁ 7! (p0) Prc.n€n + ﬁQR%PK,nGm then under the assumption that us = E(e2,v,;) = 0, we have

3|,

Z3,(00) Prc.nZn (po) + %E(C%R/TLPK,nGnEZPKmRnCn)-
Since ¢, = [GrvnYo + G Ry, Yen, vy], the matrix E(C), R], Pk nen€y Pr nRnCn) — Qn2(K), where

Qna(K) = E((, R, P nen) E(€, P n RnGn),
can be expanded as a 4 x 4 block matrix, with each block being of the order O(K) by Lemmas 3 and 4. Thus,

E(¢) R, Px nenen Pr n RnCn) = Qna(K) + O(K).

Then,
E[(hn + Tty + Tg) (i + Ty + T3,)'] = %2 Z3(P0) Pic.nZn(p0) + Q2 (K) + 0P (prcn).
Note that
B(T, M) = 5 Za(o0) Mo By EI(€,Dueo + Fuen)eneh]Za(po),
and

1 _ _
E(Tilnhln) = _EZ’I/’LM’:LPKJL E[(G;anen + Fnen)eneiz]zn(PO)v

where E[(e/, D€, + Fpep)enel,] is UB by Lemma 9 (i), then E(T% kL) = O(1/n) = o(pk.»), and

n

1 - _ 1 -
E(Tf,hy,) = 7EZ';1MT/L E[(e;,Dnén + Fnen)enen,] Zn(po) + ?Z’;LM’V/L(I'” — Picn) E[(€,Dnén + Fnen)enen] Zn(po)
=0(1/n)+ O/ Ank.2/n)
= o(px,n)

by Lemma 7 (ii). As E(hnh!,H; 'TH') = —22 7' (p0)(In — Pic.n)Zn(po), and, by Lemma 9, B(h,h!, H; TH') =
O(1/n) = op(px.n) and E(hnhy, H ' TH') = O(1/n) = 0p(pi.n), we have

2

2
s - _
Z;L(PO)(In = Px.n)Zn(po) + OP(PK,n)

s 052 = - 1
E[A,(K)] = ?Z;L(pO)PK,nZn(pO) + EQnQ(K) + -

o2 _ = 1
= U?Hn + iZq/m(PO)(In = Px.n)Zn(po) + ;QM(K) +op(pK.n)-

Let S, (K) be given by (16), then all conditions of Lemma 2 are satisfied. O
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Proof of Proposition 6. The proof follows by modifying that of Proposition 5. Now pg., = tr(S,(K)) =
O(K/n+ Ank,1). The chsls,n satisfies

S 120 Prcin () = Tl

By Lemma 8 (viii), T4, — E(T41) = op(K/n), where T4 = 1/ R! Pk ,,R,,(, is defined in Lemma 8 and E(T42)

~ ~ ~ ~ 1 ~
V(Oe2sism — 00) = Hy, thy, with H,, = —Z!(pn) Prc.nZn(pn) and hy, =
n

10,1 (K) with Q,1(K) given in (11).

Define T¢I = E(T4). Then, from the proof of Proposition 5,
H,=H,+T" + op(px.n), where TH =TH 4 TH + 78 L TH.

For h,,, we have

N 1 - 1 ~
hn = hn + Tlhn + T5hn - %[Tn(K) = Tn(K)] + ﬁ(po = pn)[Z, My, Pr n€n + Zy,(po) Prc.n Muun]
1 -
=+ %(Po - pn)2Z;LM;LPK,nMnuna

where T}, = ﬁ[%R%PK,nen — E(¢, R, Pk nen)] = Op(y/K/n) by Lemma 8 (viii). By Lemma 11 (iv),

1 - ) 1
== [Tn(K) = To(K)] = Tg,, + op(px.n) with Tg, = (a3, a5)" = Op(K/n),

E

where a; and ag are defined in Lemma 11 (iv). By Lemma 8 (v)—(viii), +Z, M Pk nén = +Z, M Pk nén +

LE(¢, M} Pk nen) + or(pr,n),
1 ! 1 7! 1 ! /
EZn(pO)PK,nMnun = ﬁZn(pO)Mnun + - E(¢, Ry, Pr.nMpuy) + op(pr.n)

and #Z%M;PK,nMnun = op(pK,n). Therefore,
}Aln = hn + TT}LL + OP(pK,TL)7 where Tj; = Tlhn + T5hn + T(?n + T?fln + Tfn + T7hn

with T, and T}, defined in the proof of Proposition 5; and

Th = —n=32( Dye, + Fren)[E(C, M., Px nen) + E(C, R, Pic.y Myuy )] = Op(K/n).
For the decomposition in Lemma 2, take ZA(K) = (hy, + T)(hy + T") — (hph!, H; ' TH')s — A, (K), and

Ap(K) = (hy + T (i + TL) + (T8, + Ty + T+ T, + TR + (T8I0 + Th T — (hhl, H ' TH).

Then ZA(K) = op(px.n). To check that the conditions in Lemma 2 are satisfied, we now investigate E(A,, (K)).

First,

1 _ _
E[(hy + Tlhn)(hn + Tlhn)/} = n E(Z;(pO)PKynendLPK,nZn(pO)) =

SERE

7;z(p0)PK,nZn(p0)'

By the proof of Proposition 5, E[h, (T4, + Tf,)] = op(pk.n). Under the assumption that E(e3,) = E(e2,v,;) = 0,
we have E(h,TI) = 0, E(T! TI) = 0,

Q
NN

E(h,Th) = —=< Z! (po)FL[E(C, M} P nen) + E(CL R, Prc.n Myun))

n
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and

B(haTl) =~ [B(na}), Bhna})] = — [ (K), Moo o ()],

n
where IT,,51 (K) and 1,5 5(K) are given in (23) and (24) respectively. The expression for E(T% T2') can be derived
by Lemma 3. Under Assumption 9 (ii), vecp’(T'ni i) veen(Tng ) = o(K) for 4,j = 1,2,3. Then E(TL TV =
L10,1(K) + o(K/n), where II,1(K) is given in (21). By the proof of Proposition 5, E[h,h), H, ' (T4l + TH)'] =
op(prn). Furthermore,

2
_ oZ 5 _
Bl Hy (T + Ton)') = === Z(p0)(In = Prcn) Zn(po) + 02T,

Therefore,

N 5 o? _, - 1 1 1

E(An(K)) = 0cHn + —=25,(p0)(In = Prn) Zn(po) + a1 (K) + —1ln2(K) + —Ins(K) + op(px.n),

where 11L,5(K) = E[(h,T{)°] — 20274 and 111,3(K) = E[(h,T%)*]. Let S,(K) be given by (17), then all
conditions in Lemma 2 are satisfied and the result in the proposition holds. O
Proof of Proposition 7. As Z,(pn) = Zn(po) + (po — pn)MnZ, and Z,, = Z,, + C,, we have

Zvlz(ﬁn)(ln - PK,n)Zn(ﬁn) = Z,’I(po)(fn - PK,n)Zn(pO) + (po — ﬁn)[Z?/’LM':L(In - PK,n)Zn(iOO)]S

+ (pO - ﬁn)QZ;zMrlz(In - PK,n)MnZna

where
Z;L(PO)(IH - PK,n)Zn(PO) = Z;L(PO)(In - PK,n)Zn(PO) + [Z;L(PO)(ITL - PK,n)Rngn}s =+ C;R;RnCn - C;LR'IILPKyanCn'

Let

A A2 A A
Sng(K) = Sne(K) = %f’Hﬁl[CéR;RnCn +(po = pn) (G My RnGa)® + (po — pn)Cr My M Gal H, €

As [S,.¢(K) = Sp.¢(K)] does not depend on K, argming Sy, ¢(K) = argming S, ¢(K). By Lemma 12, we only need

[Sn.e (K) =S, (K|
Sn,e(K)

Let e; be the ith column of the (m+1) x (m+1) identity matrix. Since 62 = 02 +0p(1) and H,, = H, +op(1) =

to show that supy 5.

Op(1), for the GS2SLS, by the triangular inequality, it is sufficient to show the following;:
(i) supg |€}Qna(K)e;|/[nSn.e(K)] < ¢ for some constant ¢ > 0 and sup |€;[Qna (K )= Q2 (K)]e;|/[nSn.e (K)] = 0;
(ii) supg [€;Z;,(po)(In — Prc.n)Zn(po)e;|/[nSn,e(K)] — 0;

(iti) supg |€;Qn1(K)]e;]/[nSne(K)] < ¢ for some constant ¢ > 0, supg |€5[Qn1 (K) — Q1 (K)]ej| /180 (K)] 2 0
and sup g [€;[C, Ry, P BnGn — Qn1 (K)]e;|/ [0S, (K)] = 0;

(iv) supg [e;Z},(p0)(In — Prc.n) RnGuesl/[nSn,e(K)] 7 0, and

(v) supg |ei{(po — pn)[ZL M} (I — Picn) Zn(po) — ¢l M RuGal®
+ (po — pn)?[ZL ML, (I — Prcn) MnZy — G ML M Coltej|/[nSn e (K)] 2 0.
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For the CGS2SLS, we need to show (ii)—(v) and

(i") supg |€;[ITn1 (K) + Mo (K) + I,3(K)]e |/ [nSn,¢(K)] < ¢ for some constant ¢ > 0
and sup ] [ﬂnl (K) + ﬁn?(K) + ﬂn?»(K) — Hp1 (K) — 2 (K) — s (K)]e;j|/[nSn,e(K)] — 0.

We first show (i) and (i’). By Lemma 4,
S I 2z (K)o 105, (O] < e 5up K [0S, (KO

for some constant ¢; > 0. By Assumption 10 (ii), for the GS2SLS, S, ¢(K) > K?cy/n for some ¢y > 0. Then

sup¢ |€/ Q2 (K)ej|/ [0Sy (K)] < ¢ for some constant ¢ > 0. For tr[Pr ,, Ry, (pn)Gr(An)], by the mean value theorem,

|tr[PK,an(ﬁn)Gn(5‘n)] - tr(FnK,2)| = |(5‘n - o) tr[PK,an(ﬁn)Gi(.).‘n)] — (Pn — PO)tr[PK,nMnGn(S‘n)H

< Ky O = 20 + (5u — p0)?

in probability for some constant ¢ > 0, by Lemmas 10 and 4. As all parameter estimates used in QnQ(K ) are
consistent, applying similarly the mean value theorem to other terms in Q,5(K), we can see that ||Q,2(K) —
Q,.2(K)|| < K?c, in probability, where c,, = op(1) does not depend on K. Thus (i) holds. For the CGS2SLS, (i’)
holds similarly.

The (ii) holds because |e}Z/, (po)(I, — Pr.n)Zn(po)e;] < c1Ank,1 for some ¢; > 0, and nS, ¢(K) > cA, k1 for
some constant ¢ > 0 by Assumption 10 (ii).

For (iii), the first two results are similar to those in (i), thus we only show that
Sup |€ (G B Prcn B = Qn (K| / [ ¢ (K] = 0.
By Chebyshev’s inequality, for any n > 0,

P(sup €3 [Ch R Pre.n R — Q1 (K) e |/ [0S e (K)] > 1)

<Y B{EC, R, Prcn R — Q1 (K)]ej€5[C) Ry, Pc.n RnGn — Qo (K)]ei}/ [n°n*S2 (K]
K

< Y E{eilG Ry Pren RuGo — Qi (K)][GLR) P R — Qua (K)]es}/ [0S (K
K

<D Ke/nPSE (K] < Y er/[n*nSne(K)]
K K

for some constants ¢ > 0 and ¢; > 0, where the third inequality follows by Lemmas 3 and 4, and the last
inequality holds since n.S, ¢(K) > K¢y for some constant ¢o > 0 by Assumption 10 (ii). The result then follows by

Assumption 11.
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For (iv), by Chebyshev’s inequality, for any n > 0,
P(sup [€;Z;,(po) (In — Prc,n) RuCnejl /[1Sn.¢ (K)] > 1)

Ele; Z,,(po)(In — PK,n)RnCneje;'GzR;z(In - PK,n)Zn(pO)]ei/[n2n2SrQL,§(K)]
€ Z3,(p0)(In — Prc.n) R E(CCp) Ry, (In — Prc.n) Zn(po)ei/ (170 S, ¢ (K))]
¢ max€; Zp (p0) (In — PK,n)Zn(pO)ei/[UQTLzSZ,f(K)]

¢/ [n*nSn ¢ (K)]

for some constant ¢, where 7¢ max denotes the largest eigenvalue of R] E((,.(, )Ry, and the last inequality holds
because R}, E((,(),)Ry is UB and S, ¢(K) > c1A, k.1 for some ¢; > 0. Thus the result holds.
For (v), as Z,, = Zn + (, and \/n(pn — po) = Op(1), we show the following:

(1) supg |€;Z}, M;,(In—Prc.n) Zn(po)e;| /[n/nSn e (K)| — 0 and sup |e;Z), My, (I~ Prc.n) My Zne;s| /[n* Sy ¢ (K)] —
0;

(2) supg |e;AnCne;l/[ny/nSy ¢ (K)] 2,0, where A,, = Z! M! (I, — Py )Ry, Z! (po) (I, — Py )M, or Z! M! (I, —
PK,n)Mn;

(3) sup €] E[G, My, Prc.n RnCnlejl /[nv/nSn e (K)] = 0, supy € E[G, My, Prcn M Gule;|/ [ny/nSn ¢ (K)] — 0,
sup ;{1 My, Pic.n RnGo — BIC,M;, Prc.n RuGal e |/ [nv/nSn e (K)] 0,
K

and sup |ei{¢}, M) Pk »M,(, — E[¢, M] Pk »M,(,)}ej|/[ny/nSn e (K)] 5o.

By Lemma 7 (iii), we have

Sup €} 2, M, (1 = Prc ) 2o (p0)es [/ ()] < 510 e/ A1/ S0 (K B o/ [ ()]

for some ¢ > 0. Since supy Apk,2/[Sn.e(K)] < D 5 Ank,2/[nSne(K)] and Ayi 2 = o(1), the first result in (1)

holds by Assumption 10 (ii). The second result in (1) holds since
sup |€; Z,, M, (I — Pic.n) M Zne;| /[0 S (K)] < sup cAnic2/ [0Sy (K]
K K

for some ¢ > 0. For (2), similar to (iv), for any n > 0, we have

P(Sl}l(P €523, M, (I = Prc.n) RuGaesl/[n3/nSn g ()] > ) < en™ Y " (Aura/ [0S0, (K)))[nSn.e(K)] ™
K

P(St}l{p €5 Z3,(p0) (In = Prcn) MinGesl / [n/nSp e (K)] > ) < en™ Y (Anse,1/ [0S e (K)])[nSne (K)] Y

K
and
P(sup €123, M1 = Pacn) MGl (K] > 1) < 07> 3 (B [0S (K nSne (K]
K
for some ¢ > 0. (3) is similar to (i). O

44



References
Anselin, L., 1988. Spatial Econometrics: Methods and Models. Boston: Kluwer Academic Publishers.

Anselin, L., Bera, A., 1998. Spatial dependence in linear regression models with an introduction to spatial econometrics, in:

Ullah, A., Giles, D.E. (Eds.), Handbook of Applied Economic Statistics. Marcel Dekker, New York, pp. 237-289.

Benirschka, M., Binkley, J.K., 1994. Land price volatility in a geographically dispersed market. American Journal of
Agricultural Economics 76, 185—-195.

Besley, T., Case, A., 1995. Incumbent behavior: Vote-seeking, tax-setting, and yardstick competition. American Economic

Review 85, 951-963.

Case, A., 1987. On the use of spatial autoregressive models in demand analysis. Discussion Paper 135, Research Program in

Development Studies, Woodrow Wilson School, Princeton University.
Case, A., 1991. Spatial patterns in household demand. Econometrica 59, 953-965.
Case, A., 1992. Neighborhood influence and technological change. Regional Science and Urban Economics 22, 491-508.

Case, A., Hines, Jr., J., Rosen, H., 1993. Budget spillovers and fiscal policy independence: Evidence from the states. Journal
of Public Economics 52, 285-307.

Chamberlain, G., 1987. Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics

34, 305-334.
Donald, S.G., Newey, W.K., 2001. Choosing the number of instruments. Econometrica 69, 1161-1191.

Drukker, D.M., Egger, P., Prucha, [.R., 2013. On two-step estimation of a spatial autoregressive model with autoregressive

disturbances and endogenous regressors. Econometric Reviews 32, 686-733.
Hahn, J., Hausman, J., 2002. A new specification test for the validity of instrumental variables. Econometrica 70, 163—189.

Kelejian, H.H., Prucha, I.R., 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autore-

gressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17, 99-121.

Kelejian, H.H., Prucha, I.R., 1999. A generalized moments estimator for the autoregressive parameter in a spatial model.

International Economic Review 40, 509-533.

Kelejian, H.H., Prucha, I.R., 2001. On the asymptotic distribution of the Moran I test statistic with applications. Journal
of Econometrics 104, 219-257.

Kelejian, H.H., Prucha, I.R., 2004. Estimation of simultaneous systems of spatially interrelated cross sectional equations.

Journal of Econometrics 118, 27-50.
Kelejian, H.H., Prucha, I.R., 2007. HAC estimation in a spatial framework. Journal of Econometrics 140, 131-154.

Lee, L.F., 2004. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econo-

metrica 72, 1899-1925.

45



Lee, L.F., Yu, J., 2012. Efficient GMM estimation of spatial dynamic panel data models with fixed effects. Working paper.

Liu, X., Lee, L.F.; 2010. GMM estimation of social interaction models with centrality. Journal of Econometrics 159, 99-115.

Liu, X., Lee, L.F., 2013. Two stage least squares estimation of spatial autoregressive models with endogenous regressors and

many instruments. Econometric Reviews 32, 734-753.

Nagar, A.L., 1959. The bias and moment matrix of the general k-class estimators of the parameters in simultaneous equations.

Econometrica 27, 575-595.

White, H., 1994. Estimation, inference and specification analysis. New York: Cambridge University Press.

46



	1 Introduction
	2 Properties of the GS2SLS and CGS2SLS Estimators
	3 Approximated MSE and Optimal K
	4 Monte Carlo Study
	5 Conclusion
	A Notations
	B Lemmas
	C Proofs

