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Abstract

In this paper, we consider estimation of the matrix exponential spatial specification model with the Durbin

and endogenous regressors. We find that the nonlinear two-stage least squares (N2SLS) estimator is in general

consistent and asymptotically normal. However, when the Durbin and endogenous regressors are irrelevant, the

gradient vector of the N2SLS criterion function has a singular covariance matrix with probability approaching

one (w.p.a.1.). Some components of the N2SLS estimator have slower rates of convergence and their asymp-

totic distributions are nonstandard. The distance difference and gradient test statistics, which have irregular

asymptotic distributions, are derived to test for the irrelevance of the Durbin and endogenous regressors. As an

alternative estimation and model selection approach, we propose the adaptive group LASSO, which penalizes

the coefficients of the Durbin and endogenous explanatory variables. We show that the estimator has the oracle

properties, so the true model can be selected w.p.a.1. and the estimator always has the
√
n-rate of convergence

and asymptotic normal distribution. We propose to select the tuning parameter for the adaptive group LASSO

by minimizing an information criterion.

Keywords: matrix exponential spatial specification, unknown heteroskedasticity, nonlinear two-stage least squares,

singular covariance matrix, irregular estimates and test statistics, LASSO, oracle properties

JEL classification: C12, C13, C21, R15

1 Introduction

The spatial autoregressive (SAR) model is a popular model in spatial econometrics.1 As an alternative model

with spatial dependence, LeSage and Pace (2007) propose the matrix exponential spatial specification (MESS).

∗Corresponding author. Tel.: +1 614 292 5508; fax: +1 614 292 4192. E-mail addresses: jin.fei@sufe.edu.cn (F. Jin), lee.1777@osu.edu

(L.-F. Lee).
1See, e.g., Anselin (1988), Kelejian and Prucha (1998), and Lee (2004).
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The MESS model may provide estimates and inference on spatial effects similar to those from the SAR model.

Han and Lee (2013) find that the SAR and MESS models may not be easily tested against each other unless

the spatial interaction is rather strong. The MESS is mainly motivated by computational consideration (LeSage

and Pace, 2007). The quasi-maximum likelihood (QML) estimator of the MESS model is much easier to compute

than that of the SAR model, in particular for models with high order spatial weights, since it does not involve

computing the determinant of the Jacobian transformation matrix. In addition, there are no constraints on the

parameter that captures spatial dependence because the reduced form of the MESS model always exists. The

flexible parameter space is in particular useful for models with high order spatial weights so that the QML can be

easily implemented.2 Debarsy et al. (2015) find that the QML estimator of the MESS model may also be robust to

unknown heteroskedasticity while disturbances have either no spatial correlation or a similar MESS process. Those

are nice properties not shared by the SAR model.

LeSage and Pace (2007) present the maximum likelihood (ML) and Bayesian estimators of the MESS model.

Debarsy et al. (2015) consider large sample properties of the QML and generalized method of moments (GMM)

estimators. However, those researchers have not included endogenous regressors in the model. In addition, Durbin

regressors WnXn, i.e., spatial lags of exogenous variables, where Xn is a matrix of exogenous variables and Wn is an

n× n spatial weights matrix, may be included in the model to capture local spillovers (externalities) in exogenous

variables, while both the SAR and MESS processes may capture global spatial interactions (Anselin, 2003). In

the social interaction literature, the Durbin regressors are referred to as contextual effects and the global spatial

dependence generates endogenous effects, reflecting the contemporaneous and reciprocal influences of peers (Manski,

1993; Brock and Durlauf, 2001).

In this paper, we consider estimation of the MESS model with endogenous and Durbin’s regressors, in which

unknown heteroskedasticity is allowed. In a limited information setting, where endogenous regressors are present in

an equation but without the specification of explicit structural equations for them, a popular estimation method is

the nonlinear two-stage least squares (N2SLS). The N2SLS estimation can be seen as a GMM estimation exploring

linear moments. In the spatial econometric literature, while inclusion of the Durbin regressors in an SAR model

may capture exogenous externality effects and relax restrictions imposed on direct and indirect spatial effects by the

SAR model (Elhorst, 2010), their presence as extra exogenous regressors does not induce conceptual econometric

issues if columns of WnXn are linearly independent with columns of Xn.3 They can simply be treated as exogenous

regressors in the estimation of an SAR model from a methodological point of view. Nonetheless, the presence of

Durbin’s regressors in the MESS model creates an issue for the N2SLS estimation.

We show that the parameters of the model are, in general, identifiable and the N2SLS estimator can be
√
n-

consistent and asymptotically normal. However, when the coefficients of the Durbin and endogenous regressors

2By contrast, for a high order SAR model, it is very difficult to impose tractable parameter space on stability for a QML estimation

(Elhorst et al., 2012).
3If Wn is row-normalized and Xn contains an intercept term, a column of ones should be deleted from [Xn,WnXn] to avoid

multicollinearity.
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are zero (but unknown), even though parameters of the model are still identifiable and the N2SLS estimator is

consistent, elements of the gradient vector of the N2SLS criterion function at the true parameter values are linearly

dependent with probability approaching one (w.p.a.1.). This implies that the covariance matrix of the gradient

vector at the true parameters is singular w.p.a.1. Such an irregular phenomenon appears also in a MESS model with

Durbin regressors but without endogenous explanatory variables, where the Durbin regressors are really irrelevant.

This corresponds to the singular information matrix phenomenon in the likelihood framework.4 Some authors

have studied asymptotic distributions of ML estimators (MLE) for parametric models with singular information

matrices. Cox and Hinkley (1974) provide two examples where the score statistic is zero, and show that the

asymptotic distribution of the estimators can be found by a reparameterization. Lee (1993) derives the asymptotic

distribution of the MLE for parameters in a stochastic frontier function model with a singular information matrix.

Rotnitzky et al. (2000) investigate a more general setting where an identifiable parametric model has a singular

information matrix of rank being one less than the number of parameters. The methods in both Lee (1993) and

Rotnitzky et al. (2000) involve reparameterizations and high order Taylor expansions of the first order conditions

for the MLE. Dovonon and Renault (2013) derive the convergence rate of a GMM estimator and the nonstandard

asymptotic distribution of the J-test statistic for overidentification.

Following Rotnitzky et al. (2000), by a reparameterization, we derive the asymptotic distribution of the N2SLS

estimator for our MESS model where elements of the gradient vector of the N2SLS criterion function are linearly

dependent w.p.a.1. The asymptotic distribution is non-standard, and only the parameter estimates for the exogenous

and endogenous variables have the
√
n-rate of convergence, while the spatial dependence parameter estimate and

those for the Durbin regressors have the n1/4-rate of convergence.5 The model we consider is one with spatially

correlated data and elements of the gradient vector of the N2SLS criterion function can be linearly dependent

w.p.a.1. For such a situation, reparameterization and high order Taylor expansions of the first order conditions

can still be employed to derive asymptotic distributions of the N2SLS estimators, as for the case with i.i.d. data in

Rotnitzky et al. (2000).

Since the Durbin and endogenous regressors may lead to nonstandard asymptotic distribution of the N2SLS

estimator for the MESS model, it is of interest to test whether they are relevant or not. The classical tests in the

GMM framework, such as the Wald test, the gradient test and the distance difference test, are derived when elements

of a gradient vector are not linearly dependent. We show that, even when elements of the gradient vector are linearly

dependent, we can still derive the distance difference and the gradient test statistics, but they have nonstandard

asymptotic distributions. The asymptotic distribution of the distance difference test statistic is a mixture of two

chi-squared distributions, with the number of degrees of freedom equal to p and p− 1 respectively and with mixing

4For various cases of singular information matrices or zero score statistics in the likelihood framework, see, among others, Silvey

(1959), Cox and Hinkley (1974), Kiefer (1982), Waldman (1982), Schmidt and Lin (1984), Lee and Chesher (1986), and Sargan (1983).
5The asymptotic distribution derived in this paper is non-standard due to the necessary high order expansion ended at an even order,

which is the feature in Rotnitzky et al. (2000). However, in Lee (1993) for the stochastic frontier model (as well as a sample selection

model), it has a high order expansion at an odd order from which asymptotic truncated-normal (normal) distribution can be derived.

The extra complication for a high order expansion ended at an even order is the need to determine the sign of an estimator.
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probabilities equal to 1/2, where p is the number of restrictions. The gradient test statistic, constructed using the

Moore-Penrose pseudoinverse of the singular covariance matrix of the gradient vector, is asymptotically distributed

as a chi-squared distribution with p − 1 degrees of freedom. We also investigate local power properties of our test

statistics. For the Pitman drift (McManus, 1991) with the order O(n−1/2), there is a direction of the parameter

drift for which the tests have trivial power.

As an alternative estimation and model selection method, we propose to estimate the model based on the LASSO,

which can perform simultaneously parameter estimation and model selection. Since the irregular phenomenon is

due to ζ0 = 0 but subject to uncertainty, we consider using the adaptive group LASSO (AGLASSO) that appends

a penalty function of ζ to the N2SLS criterion function (Yuan and Lin, 2006; Wang and Leng, 2008). We show

that the AGLASSO has the oracle properties, i.e., it can select the correct model w.p.a.1 and the resulted estimator

satisfies the properties as if we knew the true model (Fan and Li, 2001; Zou, 2006). As a result, there is always no

irregular phenomenon in the AGLASSO estimation, and the AGLASSO estimator has the
√
n-rate of convergence

and asymptotic normal distribution.

The AGLASSO involves a tuning parameter. The oracle properties are satisfied when the tuning parameter has

certain order in asymptotic analysis. But in finite samples, it is not clear what tuning parameter should be used in

order that the AGLASSO can perform well. We select the tuning parameter by minimizing an information criterion

for our AGLASSO. We show that the proposed data-driven procedure can identify the true model consistently. Due

to the irregular phenomenon of the MESS model, the proposed information criterion differs from traditional ones.6

The rest of this paper is organized as follows. In Section 2, we introduce the MESS model with Durbin’s

regressors and endogenous explanatory variables, and show consistency and asymptotic distributions of the N2SLS

estimators in the regular and irregular cases. In Section 3, we derive the distance difference and gradient tests and

investigate their local power properties. In Section 4, we consider the AGLASSO estimation of the MESS model.

In Section 5, we present some Monte Carlo results. We conclude in Section 6. All lemmas and proofs are collected

in an online supplementary file.7

2 N2SLS estimator

The MESS model with the Durbin and endogenous explanatory variables is as follows:

eαWnYn = X∗nβ1 +Wnlnβ2 +WnXn1β3 + Znβ4 + Vn, (1)

where n is the sample size, Yn is an n×1 vector of observations on the dependent variable, ln is a vector of ones, Xn1

is an n× (kx− 1) matrix of exogenous variables that does not contain an intercept term, where kx is the number of

exogenous variables including an intercept in this equation, and Zn is an n×kz matrix of endogenous variables. For

disturbances, Vn = (vni) is an n× 1 vector of innovations with mean zero and unknown heteroskedastic variances.

6For properties of various information criteria, see, among others, Wang et al. (2007), Wang and Leng (2007), Wang et al. (2009),

Zhang et al. (2010), and Liao (2010).
7It is available at http://econ.shufe.edu.cn/kindeditor-4.1.10/attached/file/20170109/20170109135722_32428.pdf.
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The spatial weights matrix Wn is an n × n matrix with all diagonal elements being zero. The Wn may be row-

normalized or not. When Wn is not row-normalized, X∗n = Xn with Xn = [Xn1, ln]; when Wn is row-normalized, as

Wnln = ln, X∗n = Xn1 and the intercept term is implicitly written as Wnln for the convenience of later analyses. The

Durbin regressors WnXn1 can be seen as neighbors’ characteristics to capture exogenous externality.8 The Wnln,

when Wn is not row-normalized with binary elements, is known as out-degrees, which measures the overall numbers

of links for each individual.9 The β1, β2, β3 and β4 are conformable parameter vectors. The matrix exponential eαWn

with a scalar parameter α, which captures spatial dependence, is defined as
∑∞
i=0

αi

i! W
i
n. Since the inverse of eαWn

always exists and equals e−αWn (Chiu et al., 1996), the reduced form of the model always exists and no constraints

need to be imposed on the parameter space of α. If the model is regarded as a game with complete information, the

Nash equilibrium exists and is unique. Let the utility function of spatial unit i be Uni(Yni) = cniYni − 1
2Y

2
ni, where

cni is the ith row of e−αWn(Xnβ + Vn) that gives benefit, and the quadratic term is a cost for i’s action Yni. Then

the maximization of Uni(Yni) yields Yn = (Yn1, . . . , Ynn)′ = e−αWn(Xnβ + Vn). For an SAR model, eαWnYn in (1)

is replaced by (In−λWn) for some scalar λ. Since (In−λWn)−1 =
∑∞
i=0 λ

iW i
n if ‖λWn‖ < 1 for some matrix norm

‖ · ‖, the SAR model shows a geometrical decay pattern of spatial dependence across spatial units, while the MESS

model shows an exponential decay. If the economic theory implies an exponential decay, then the MESS model can

provide a better description of real data. Pfaffermayr (2012) and Koch (2013) derive the MESS model for spatial

income convergence from theory. Furthermore, the determinant |eαWn | = eα tr(Wn) = 1 as the diagonal elements of

Wn are all zero. Thus, the likelihood function of the MESS model does not involve any determinant of the Jacobian

transformation matrix and it has a computational advantage over the SAR model (LeSage and Pace, 2007).

Let Dn = [X∗n,Wnln,WnXn1, Zn], β = (β′1, β2, β
′
3, β
′
4)′, θ = (α, β′)′, and Fn = (fn,ij) be a full rank n × kf

instrumental variable (IV) matrix with kf not smaller than the total number of coefficients. To allow for conditional

heteroskedasticity, we assume that vni’s are independent conditional on Fn but can have different conditional

variances. As the variance of F ′nVn conditional on Fn is Πn = F ′nΣnFn, where Σn = E(VnV
′
n|Fn) is a diagonal

matrix of conditional variances, the criterion function Qn(θ) of the infeasible N2SLS estimation, as if Σn were

known, is

Qn(θ) = (eαWnYn −Dnβ)′FnΠ−1
n F ′n(eαWnYn −Dnβ). (2)

To focus on the N2SLS estimation, we first consider large sample properties of the infeasible N2SLS estimator θ̌n

that minimizes Qn(θ) as if Πn were known. A feasible version by the use of a White-type (White, 1980) consistent

estimator for Πn will be investigated in the last part of this section, which shows that asymptotic results remain valid

8Even when Xn1 is a dummy variable, WnXn1 can be meaningful. For example, suppose that Xn1 represents an individual’s gender,

which takes the value 1 if the individual is female, and takes 0 otherwise. Then if elements of Wn are 0 and 1, where 1 represents a

friend link, each element of WnXn1 would represent the number of female friends; if Wn is row-normalized from the above matrix of

binary elements, then the variable WnXn1 represents the share of female friends among male and female friends. In this case, WnXn1

captures the effect of female friends on outcome Yn.
9In the case that Wn is not row-normalized and its elements are binary, if each spatial unit has the same number of neighbors, Wnln

is proportional to ln, so it is absorbed in ln and should not be included in the model. This is similar to the case of a row-normalized

Wn. We thank an anonymous referee for pointing this out.
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for the feasible version. The function Qn(θ) is a generalized version of the N2SLS criterion function in Amemiya

(1985). It is one as in the estimation of implicit nonlinear simultaneous equations (Amemiya, 1985, p. 255). Since

the moment conditions are based on orthogonality of IVs with disturbances, Qn(θ) can also be regarded as a GMM

criterion function (Hansen, 1982).10

We first discuss some regularity conditions needed for the N2SLS estimation. Abbreviate “bounded in row and

column sum norms” as “BRC”. A typical assumption on the sequence of spatial weights matrices {Wn} in spatial

econometrics is that they are BRC. This assumption, originated in Kelejian and Prucha (1998, 1999), restricts

the degree of spatial dependence. As in Kelejian and Prucha (2004), (1) can represent an equation in a system of

spatially correlated equations, if Zn = An1Xnγ+An2un, where Xn denotes all the exogenous variables in the system,

γ is a parameter matrix, An1 and An2 are n×n BRC nonstochastic matrices, and un is a matrix of error terms. The

matrix An1 may depend on the spatial weights matrix Wn such that, under regularity conditions, An1 =
∑∞
i=0 ρiW

i
n

for some scalars ρi’s. Under this circumstance, the IV matrix Fn in the N2SLS estimation can be formed by the

independent columns of [Xn,WnXn, . . . ,W s
nXn] for some s. We may have similar IVs if one or more elements of Zn

are generated by a nonlinear model.11 For our analyses, we allow Xn and Fn to be stochastic. It is only assumed

that Xn, Fn and Zn have bounded second moments in the sense that 1
n‖E(X ′n1Xn1)‖ = O(1), 1

n‖E(F ′nFn)‖ = O(1)

and 1
n‖E(Z ′nZn)‖ = O(1) for the Euclidean matrix norm ‖·‖. The disturbances vni’s are independent conditional on

Fn but can have different conditional variances. We assume that fn,ijvnk’s have uniformly bounded moments higher

than the second order so that a central limit theorem can be applied in the analyses. Some regularity conditions

are also needed so that laws of large numbers can be applied to terms involving Xn, Zn or Fn. For those, we shall

make high level assumptions in the main text and discuss low level ones via spatial near-epoch dependence in the

supplementary file. The low level conditions allow spatial dependence in Xn, Zn and Fn, which can be the case

from the above discussion. For the N2SLS estimation, limn→∞
1
n E(Πn) is assumed to be nonsingular. Although

the reduced form of the model always exists for any value of α, we assume that α is bounded as in Debarsy et al.

(2015). As a consequence, eαWn is BRC uniformly in α.12 These basic assumptions are summarized below.

Assumption 1. The nonstochastic matrices {Wn} are BRC, and their diagonal elements are all zero.

Assumption 2. vni’s in Vn = (vn1, . . . , vnn)′ are independent with mean zero conditional on Fn but can have

different variances conditional on Fn. Furthermore, supn sup1≤i,j,k≤n E |fn,ijvnk|τ < ∞ for some 2 < τ < ∞,

1
n‖E(F ′nFn)‖ = O(1), 1

n‖E(X ′n1Xn1)‖ = O(1) and 1
n‖E(Z ′nZn)‖ = O(1) for the Euclidean matrix norm ‖ · ‖.

Assumption 3. 1
nΠn − 1

n E(Πn) = op(1), and limn→∞
1
n E(Πn) exists and is nonsingular.

10Since Wn has a zero diagonal, |eαWn | = eα tr(Wn) = 1 for any α. Then eαWn would not tend to a matrix whose elements are all

close to zero when α goes to minus infinity. Thus the criterion function Qn(θ) does not have a numerical problem similar to that for

the Box-Cox model (Davidson and MacKinnon, 1993, pp. 243–244). We thank an anonymous referee for directing us to this problem.
11In this case, we may have a many IV problem as in Liu and Lee (2013), which is beyond the scope of this paper. More discussions

on the IV selection can be found in Kelejian and Prucha (2007).
12Such an assumption simplifies the argument on uniform convergence of the minimized sample average objective function over its

parameter space.
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Assumption 4. There exists a constant η > 0 such that |α| ≤ η and the true parameter α0 of α is in the interior

of the parameter space [−η, η].

Using the reduced form of Yn, we may write the moment condition 1
nF
′
n(eαWnYn−Dnβ) = 1

nF
′
ne

(α−α0)WnDnβ0+

1
nF
′
ne

(α−α0)WnVn − 1
nF
′
nDnβ. For the identification of the true parameter vector θ0 of θ, a law of large number is

needed for 1
nF
′
ne

(α−α0)WnDn.

Assumption 5. 1
nF
′
ne

(α−α0)WnDn − 1
n E(F ′ne

(α−α0)WnDn) = op(1) for any α ∈ [−η, η].

The identification of θ0 requires a unique solution of limn→∞
1
n E[F ′n(eαWnYn − Dnβ)] = 0 at θ0. Under As-

sumption 2,
1

n
E[F ′n(eαWnYn −Dnβ)] =

1

n
[E(F ′ne

(α−α0)WnDn)β0,E(F ′nDn)]

(
1

−β

)
.

When α = α0, the preceding expression reduces to 1
n E(F ′nDn)(β0 − β). An identification condition for the param-

eters α and β of the model can be as in the following assumption.

Assumption 6. limn→∞
1
n [E(F ′ne

(α−α0)WnDn)β0,E(F ′nDn)] has full column rank for any α 6= α0.

Note that the condition of Assumption 6 implies, in particular, that limn→∞
1
n E(F ′nDn) has full column rank.

The condition holds in general except the case β0 = 0. So implicitly we assume that β0 6= 0. Under the above

regularity assumptions, the consistency of θ̌n follows.

Proposition 2.1. Under Assumptions 1–6, θ̌n = θ0 + op(1).

2.1 Asymptotic distribution: The regular case

We now consider the asymptotic distribution of the N2SLS estimator. Let the moment vector be gn(θ) =

F ′n(eαWnYn − Dnβ). Its Jacobian matrix is Gn(θ) = ∂gn(θ)
∂θ′ = F ′n(Wne

αWnYn,−Dn). For the convergence of

this matrix, we make the following assumption.

Assumption 7. 1
nF
′
nWnDn − 1

n E(F ′nWnDn) = op(1).

Let Ḡn = E[Gn(θ0)]. Then,

Ḡn = [E(F ′nWnDn)β0,−E(F ′nDn)]

= [E(F ′nWnX
∗
n)β10 + E(F ′nW

2
n ln)β20 + E(F ′nW

2
nXn1)β30 + E(F ′nWnZn)β40,

− E(F ′nX
∗
n),−E(F ′nWnln),−E(F ′nWnXn1),−E(F ′nZn)].

(3)

Let δ = (β′1, β2)′ and ζ = (β′3, β
′
4)′ when Wn is row-normalized; δ = β1 and ζ = (β2, β

′
3, β
′
4)′ when Wn is not row-

normalized. So ζ represents effects of contextual variables and endogenous regressors in both cases. If Wn is row-

normalized and ζ0 6= 0, the first column of Ḡn is generally not linearly dependent on E(F ′nDn), since E(F ′nW
2
nXn1)β30

or E(F ′nWnZn)β40 appears in the first column. If Wn is not row-normalized and ζ0 6= 0, E(F ′nW
2
n ln)β20 might also

appear in the first column of Ḡn. Thus Ḡn generally has full rank as long as some contextual variables or endogenous
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regressors have relevant effects. As a result, the asymptotic distribution of the N2SLS estimator can be derived

as usual by applying the mean value theorem to the first order condition of the criterion function. We assume a

condition on Zn for the convergence of the Jacobian matrix Gn(θ).

Proposition 2.2. Under Assumptions 1–7, when ζ0 6= 0, i.e., some contextual variables or endogenous regressors

have relevant effects, the N2SLS estimator θ̌n has the asymptotic distribution

√
n(θ̌n − θ0)

d−→ N
(
0, lim
n→∞

( 1

n
Ḡ′nΠ̄−1

n Ḡn
)−1)

,

where Π̄n = E(Πn), provided that plimn→∞
1
n Ḡn has full rank. The best IV matrix Fn is the matrix formed by the

independent columns of Σ−1
n [X∗n,WnXn,W

2
nXn,E(Zn,WnZn|Xn)], where Xn denotes the matrix of all exogenous

variables.

Proposition 2.2 excludes the case that ζ0 = 0. This case turns out to be irregular, which needs special attention.

2.2 Asymptotic distribution: The irregular case

By (3), when ζ0 = 0, i.e., when the Durbin regressors and endogenous explanatory variables are irrelevant, the

Jacobian matrix of the moment vector at the true parameter vector is rank deficient w.p.a.1. In this subsection, we

consider the N2SLS estimation of model (1) in this situation.

Although ζ0 = 0, the identification condition in Assumption 6 still holds when δ0 6= 0, and the N2SLS estimator

can be consistent. However, in this case, the expected Jacobian matrix of the moment vector at the true parameter

vector does not have full rank, so the usual way to derive the asymptotic distribution by the mean value theorem

will not work. Instead, we analyze high order Taylor expansions of the first order condition of the N2SLS criterion

function (2). Let Hn = FnΠ−1
n F ′n. The first order derivatives of Qn(θ) are:

∂Qn(θ)

∂α
= 2Y ′ne

αW ′nW ′nHn(eαWnYn −Dnβ), (4)

∂Qn(θ)

∂β
= −2D′nHn(eαWnYn −Dnβ). (5)

Note that at θ0 = (α0, δ
′
0, 0)′, eα0WnYn = Xnδ0 + Vn, and

1√
n

∂Qn(θ0)

∂α
=

2√
n

(Xnδ0 + Vn)′W ′nHnVn =
2√
n

(WnXnδ0)′HnVn +Op
( 1√

n

)
= Op(1),

1√
n

∂Qn(θ0)

∂β
= − 2√

n
D′nHnVn = Op(1).

Let kx∗ be the number of columns in X∗n, and δ = (δ′1, δ2)′, where δ2 is the last element of δ and δ1 contains the

remaining elements.13 Then,

1√
n

∂Qn(θ0)

∂α
+

1√
n

∂Qn(θ0)

∂β′
(01×kx∗ , δ20, δ

′
10, 01×kz )′ = op(1),

13Recall that δ, defined in Section 2.1, has different expressions for the cases with a row-normalized Wn and a non-row-normalized

Wn.
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i.e., 1√
n
∂Qn(θ0)
∂α and 1√

n
∂Qn(θ0)
∂β are linearly dependent w.p.a.1. As a result, 1

n
∂Qn(θ0)
∂θ

∂Qn(θ0)
∂θ′ is singular w.p.a.1.

From (22)–(24) in Appendix A, 1
n
∂2Qn(θ0)
∂θ∂θ′ = 2

n (−WnXnδ0, Dn)′Hn(−WnXnδ0, Dn) + op(1), which is also singular

with large n as Dn contains WnXn in its columns. We note that 1
n E(∂Qn(θ)

∂θ
∂Qn(θ)
∂θ′ ) generally has full rank when

θ 6= θ0. Rothenberg (1971) shows that, in the likelihood theory of parametric models, if the information matrix

has constant rank in an open neighborhood of the true parameter vector, then local identification of parameters is

equivalent to nonsingularity of the information matrix at the true parameter vector. In the current case, the rank of

1
n E(∂Qn(θ)

∂θ
∂Qn(θ)
∂θ′ ) evaluated at θ = θ0 differs from that at θ 6= θ0. So even though 1

n E(∂Qn(θ0)
∂θ

∂Qn(θ0)
∂θ′ ) is singular

w.p.a.1., the parameters might still be identifiable as previously argued.

Although the elements of the gradient vector are linearly dependent w.p.a.1., none of the elements is zero.

In Rotnitzky et al. (2000), for analytical convenience, the asymptotic distribution of the MLE is first derived

for a parametric model for which an element of the score is zero, where estimators corresponding to zero and

nonzero scores have different convergence rates. If none of the elements of the score is zero but these elements are

linearly dependent, the model is first reparameterized to be one for which one element of the score is zero. Follow-

ing Rotnitzky et al. (2000), for our N2SLS estimation of the MESS model, consider the reparameterization ω =(
α

β+K′(α−α0)

)
≡ (φ, ψ′)′, where φ is a scalar, and K =

[
plimn→∞

1
n
∂Qn(θ0)
∂α

∂Qn(θ0)
∂β′

][
plimn→∞

1
n
∂Qn(θ0)
∂β

∂Qn(θ0)
∂β′

]−1
.

At θ0, we have ω = θ0. Denote ω0 = θ0. Then Qn(θ) = Qn(φ, ψ −K ′(φ− α0)) ≡ Q∗n(ω), and
∂Q∗n(ω0)

∂φ = ∂Qn(θ0)
∂α −

[plimn→∞
1
n
∂Qn(θ0)
∂α

∂Qn(θ0)
∂β′ ][plimn→∞

1
n
∂Qn(θ0)
∂β

∂Qn(θ0)
∂β′ ]−1 ∂Qn(θ0)

∂β is approximately the residual vector for the pop-

ulation regression of ∂Qn(θ0)
∂α on ∂Qn(θ0)

∂β . Because of the linear dependence of these two random vectors w.p.a.1.,

as a residual,
∂Q∗n(ω0)

∂φ must have a smaller order than ∂Qn(θ0)
∂α . In our current case, K = (01×k∗x ,−δ20,−δ′10, 01×kz ).

So the reparameterization has ω = (φ, ψ′1, ψ2, ψ
′
3, ψ
′
4)′ = (α, β′1, β2 − δ20(α− α0), β′3 − δ′10(α− α0), β′4)′ and

Q∗n(ω) = V ′n(ω)HnVn(ω), (6)

where Vn(ω) = eφWnYn−X∗nψ1−Wnln[ψ2 + δ20(φ−φ0)]−WnXn1[ψ3 + δ10(φ−φ0)]−Znψ4. The N2SLS estimator

ω̌n minimizes Q∗n(ω). Because of the one-to-one correspondence between θ and ω, the consistency of the N2SLS

estimator θ̌n implies the consistency of ω̌n to ω0.

To derive the asymptotic distribution of ω̌n, we need to investigate high order Taylor expansions of the first

order condition
∂Q∗n(ω̌n)

∂ω = 0. Here, we sketch the derivation of the asymptotic distribution, with details in the

proof of Proposition 2.3. For our model, we need a third order Taylor expansion of the first order conditions at

the true parameter vector as that gives the leading terms. In terms of φ̌n, ψ̌n, and their true values, we find
√
n(φ̌n − φ0)2 = Op(1) and

√
n(ψ̌n − ψ0) = Op(1), and, by further eliminating ψ̌n by substitution, the expansion

yields:

0 = 2n−1/4V ′nW
′
nMDVn − n−3/4(W 2

nXnδ0)′PDWnVn
√
n(φ̌n − φ0)2

+ n1/4(φ̌n − φ0)
[
Rn + Sn

√
n(φ̌n − φ0)2

]
+ op(n

−1/4)

= n1/4(φ̌n − φ0)
[
Rn + Sn

√
n(φ̌n − φ0)2

]
+Op(n

−1/4),

(7)

where PD = HnDn(D′nHnDn)−1D′nHn, MD = Hn−PD, Rn = 2√
n

(W 2
nXnδ0)′MDVn, and Sn = 1

n (W 2
nXnδ0)′MDW

2
nXnδ0 =

9



O(1). Note that MD = H
1/2
n MH1/2DH

1/2
n , where H

1/2
n is a symmetric matrix such that Hn = H

1/2
n H

1/2
n , and

MH1/2D = In −H1/2
n Dn(D′nHnDn)−1D′nH

1/2
n is the orthogonal projector onto the null space of D′nH

1/2
n . Then by

the partitioned matrix formula, we have Rn = Op(1) and Sn > 0 w.a.p.1. under the following assumption:

Assumption 8. limn→∞
1
n [E(F ′nW

2
nXn)δ0,E(F ′nDn)] has full column rank.

Furthermore, when Rn > 0, as Sn
√
n(φ̌n − φ0)2 ≥ 0, we must have

√
n(φ̌n − φ0)2 = op(1); when Rn <

0, Rn + Sn
√
n(φ̌n − φ0)2 = op(1) and thus

√
n(φ̌n − φ0)2 = J1n + op(1), where J1n = −S−1

n Rn. Note that

Rn = 1√
n

(W 2
nXnδ0)′[In − HnDn(D′nHnDn)−1D′n]FnΠ−1

n F ′nVn is asymptotically normal by applying the central

limit theorem in Lemma 2 in the supplementary file to 1√
n
F ′nVn. The asymptotic distribution of

√
n(φ̌n − φ0)2 is

thus a mixture of a truncated normal and the point 0.

For ψ̌n, when Rn > 0, the expansion of
∂Q∗n(ω̌n)

∂ψ = 0 at ω0 implies that 0 = 1√
n

∂Q∗n(ω0)
∂ψ + 1

n
∂2Q∗n(ω0)
∂ψ∂ψ′

√
n(ψ̌n −

ψ0) + op(1). Thus,
√
n(ψ̌n − ψ0) = Ln + op(1), where Ln = ( 1

nD
′
nHnDn)−1 1√

n
D′nHnVn is the leading order term

of −( 1
n
∂2Q∗n(ω0)
∂ψ∂ψ′ )−1 1√

n

∂Q∗n(ω0)
∂ψ . Note that Ln

d−→ L, where L is N(0, limn→∞[ 1
n E(D′nFn)Π̄−1

n E(F ′nDn)]−1). When

Rn < 0, we are essentially solving the following:

0 =

( 1√
n

∂2Q∗n(ω0)
∂φ2

1√
n

∂Q∗n(ω0)
∂ψ

)
+

 1
6n

∂4Q∗n(ω0)
∂φ4

1
n
∂3Q∗n(ω0)
∂φ2∂ψ′

1
2n

∂3Q∗n(ω0)
∂φ2∂ψ

1
n
∂2Q∗n(ω0)
∂ψ∂ψ′

(√n(φ̌n − φ0)2

√
n(ψ̌n − ψ0)

)
+ op(1). (8)

Thus,
(√n(φ̌n−φ0)2√

n(ψ̌n−ψ0)

)
=
(
J1n
J2n

)
+ op(1), where

(
J1n

J2n

)
=

2 0

0 Ikd

[ 1

n
(−W 2

nXnδ0, Dn)′Hn(−W 2
nXnδ0, Dn)

]−1 1√
n

(−W 2
nXnδ0, Dn)′HnVn (9)

with kd = k∗x+kx+kz+1 is the leading order term of −

 1
6n

∂4Q∗n(ω0)
∂φ4

1
n
∂3Q∗n(ω0)
∂φ2∂ψ′

1
2n

∂3Q∗n(ω0)
∂φ2∂ψ

1
n
∂2Q∗n(ω0)
∂ψ∂ψ′

−1 1√
n

∂2Q∗n(ω0)
∂φ2

1√
n

∂Q∗n(ω0)
∂ψ

 , and J1n has

the explicit form J1n = −S−1
n Rn, as in the last paragraph. By (9), J2n = Ln+ ( 2

nD
′
nHnDn)−1 1

nD
′
nHnW

2
nXnδ0J1n.

Note that Jn = (J1n, J
′
2n)′ can be further written as Jn = Jn + op(1), where

Jn =

2 0

0 Ikd

[ 1

n
E[(−W 2

nXnδ0, Dn)′Fn]Π̄−1
n E[F ′n(−W 2

nXnδ0, Dn)]
]−1 1√

n
E[(−W 2

nXnδ0, Dn)′Fn]Π̄−1
n F ′nVn.

Thus Jn has the asymptotic distribution Jn
d−→ J , where J = (J1, J

′
2)′ is N(0, limn→∞∆n) with J1 being the first

element of J and

∆n =

2 0

0 Ikd

[ 1

n
E[(−W 2

nXnδ0, Dn)′Fn]Π̄−1
n E[F ′n(−W 2

nXnδ0, Dn)]
]−1

2 0

0 Ikd


being the variance of Jn. Thus, L = J2 − limn→∞[ 2

n E(D′nFn)Π̄−1
n E(F ′nDn)]−1 1

n E(D′nFn)Π̄−1
n E(F ′nW

2
nXn)δ0J1,

which is N(0, limn→∞[ 1
n E(D′nFn)Π̄−1

n E(F ′nDn)]−1) as above.

From the preceding analysis, only the asymptotic distribution of
√
n(φ̌n − φ0)2 has been derived, but the sign

of n1/4(φ̌n − φ0) has not. As we are interested in (φ̌n − φ0), a further analysis for the sign of n1/4(φ̌n − φ0) is
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needed. For a fourth order Taylor expansion of Q∗n(ω̌n), the sign of n1/4(φ̌n − φ0) does not affect the leading order

term of the fourth order polynomial. As φ̌n is the N2SLS estimator, the sign of n1/4(φ̌n − φ0) should be chosen

to minimize the remainder term of the fourth order Taylor expansion. Essentially, we derive the leading order

term of the remainder by investigating a higher order—fifth order—Taylor expansion of Q∗n(ω̌n). When Rn < 0,

n1/4(φ̌n − φ0) being positive is equivalent to some random variable being negative asymptotically. To describe this

random variable, we define two random vectors that are uncorrelated with Jn:

i) U1n = 1√
n
F ′nVn −Υ1nJn, where Υ1n = 1√

n
E(F ′nVnJ′n)∆−1

n = [− 1
2n E(F ′nW

2
nXnδ0), 1

n E(F ′nDn)] and

ii) U2n = 1√
n
F ′nWnVn −Υ2nJn, where Υ2n = 1√

n
E(F ′nWnVnJ′n)∆−1

n = E(F ′nWnΣnFn)Π̄−1
n Υ1n.

The Un = (U ′1n, U
′
2n)′ is uncorrelated with Jn since it is the residual random vector for a population regression of

1√
n

(V ′nFn, V
′
nW

′
nFn)′ on Jn. According to the fifth order Taylor expansion of Q∗n(ω̌n), we find that P(I(n1/4(φ̌n −

φ0) < 0) = I(K∗n > 0)|Rn < 0)→ 1 as n→∞, where I(·) is the set indicator and

K∗n = 2(U2n + Υ2nJn)′
( 1

n
Πn

)−1
(U1n + Υ1nJn)

+ J′n
[( 1

3 (F ′nW
3
nXnδ0)′Π−1

n U1n + (F ′nW
2
nXnδ0)′Π−1

n U2n

−2(D′nFn)Π−1
n U2n

)
+

(
(F ′nW

2
nXnδ0)′Π−1

n Υ2n

−2(D′nFn)Π−1
n Υ2n

)
Jn
]

+ op(1).

(10)

Since (U ′n, J
′
n)′

d−→ (U ′, J ′)′, where U = N(0, limn→∞ E(UnU
′
n)) is independent of J , ω̌n has the following asymptotic

distribution:

Proposition 2.3. Under Assumptions 1–6 and 8, when ζ0 = 0,(
n1/4(φ̌n − φ0)
√
n(ψ̌n − ψ0)

)
d−→
(

(−1)BJ
1/2
1

J2

)
I(J1 > 0) +

(
0

L

)
I(J1 < 0),

where B is a Bernoulli random variable with success probability equal to P(K∗ > 0|J1 > 0) with K∗ = 2 plimn→∞(U2+

Υ2nJ)′( 1
nΠn)−1(U1 + Υ1nJ) + plimn→∞ J ′

[( 1
3 (F ′nW

3
nXnδ0)′Π−1

n U1+(F ′nW
2
nXnδ0)′Π−1

n U2

−2(D′nFn)Π−1
n U2

)
+
((F ′nW 2

nXnδ0)′Π−1
n Υ2n

−2(D′nFn)Π−1
n Υ2n

)
J
]
.

Since α = φ, β1 = ψ1, β2 = ψ2 + δ20(φ− φ0), β3 = ψ3 + δ10(φ− φ0), and β4 = ψ4, the asymptotic distribution

of (α̌n, β̌
′
1n, β̌2n, β̌

′
3n, β̌

′
4n)′ follows by the continuous mapping theorem. Note that

n1/4(β̌2n − β20) = δ20n
1/4(φ̌n − φ0) + n1/4(ψ̌2n − ψ20) = δ20n

1/4(φ̌n − φ0) + op(1).

Similarly, n1/4(β̌3n − β30) = δ10n
1/4(φ̌n − φ0) + op(1). Hence, α̌n, β̌1n and β̌2n have rates of convergence that are

slower than the usual
√
n-rate.

Corollary 2.1. Under Assumptions 1–6 and 8, when ζ0 = 0,

n1/4(α̌n − α0)

n1/2(β̌1n − β10)

n1/4(β̌2n − β20)

n1/4(β̌3n − β30)

n1/2(β̌4n − β40)


d−→



(−1)BJ
1/2
1

J2x∗

(−1)Bδ20J
1/2
1

(−1)Bδ10J
1/2
1

J2z


I(J1 > 0) +


0

Lx∗

0kx×1

Lz

 I(J1 < 0), (11)

where J2x∗ and Lx∗ are the subvectors consisting of the first kx∗ elements of, respectively, J2 and L, and J2z and

Lz are the subvectors consisting of the last kz elements of, respectively, J2 and L.
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2.2.1 A special case: A MESS model with irrelevant Durbin’s regressors but without endogenous

regressors

Consider the following MESS model with Durbin regressors but without endogenous regressors:

eαWnYn = X∗nβ1 +Wnlnβ2 +WnXn1β3 + Vn. (12)

Let ζ = β3 when Wn is row-normalized and ζ = (β2, β
′
3)′ when Wn is not row-normalized. Then model (12) has an

irregular phenomenon when ζ0 = 0, similar to model (1). In either model (1) or (12), if the Durbin regressors are

irrelevant and not included in the model, the Jacobian matrix of the moment vector at the true parameter vector

in general has full rank w.p.a.1. On the other hand, in model (1), it is of interest to note that if the endogenous

variables are really relevant, i.e., β40 6= 0, even when the Durbin regressors are irrelevant, there is no irregular

phenomenon, so the presence of relevant identifiable endogenous variables helps the identification of parameters

including those for the Durbin regressors, which might be zero. Thus, it is the Durbin regressors with unknown

zero coefficients but not endogenous explanatory variables that lead to the irregular phenomenon.

The MESS model (12) might be of interest in it own right. The N2SLS criterion function for (12) is Qn(θ) =

(eαWnYn−X∗nβ1−Wnlnβ2−WnXn1β3)′Hn(eαWnYn−X∗nβ1−Wnlnβ2−WnXnβ3) with θ = (α, β′)′ = (α, β′1, β2, β
′
3)′ =

(α, δ′, ζ ′)′. Similar to model (1), when ζ0 = 0, 1
n E(∂Qn(θ0)

∂θ
∂Qn(θ0)
∂θ′ ) and 1

n E(∂
2Qn(θ0)
∂θ∂θ′ ) are singular w.p.a.1. Consider

the reparameterization ω =
(

α
β+K′(α−α0)

)
≡ (φ, ψ′)′, where

K = −(01×k∗ ,−δ20,−δ′10) =
[
plimn→∞

1

n

∂Qn(θ0)

∂α

∂Qn(θ0)

∂β′
][

plimn→∞
1

n

∂Qn(θ0)

∂β

∂Qn(θ0)

∂β′
]−1

.

Then Qn(θ) = Qn(φ, ψ −K ′(φ− α0)) ≡ Q∗n(ω), and
∂Q∗n(ω0)

∂φ has a smaller order than ∂Qn(θ0)
∂α . The reparameteri-

zation is (φ, ψ′1, ψ2, ψ
′
3) = (α, β′1, β2− δ20(α−α0), β′3− δ′10(α−α0)). Thus, we have Q∗n(ω) = V ′n(ω)HnVn(ω), where

Vn(ω) = eφWnYn − X∗nψ1 −Wnln[ψ2 + δ20(φ − φ0)] −WnXn1[ψ3 + δ10(φ − φ0)]. With some slight modifications

of the assumptions to account for the exclusion of Zn, the asymptotic distribution of ω̌n that minimizes Q∗n(ω)

is in Proposition 2.3 by replacing all Dn in relevant terms by (X∗n,Wnln,WnXn1). Furthermore, the asymptotic

distribution of the N2SLS estimator (α̌n, β̌
′
1n, β̌2n, β̌

′
3n)′ that minimizes Qn(θ) is in Corollary 2.1.

2.3 Feasible N2SLS estimator

The N2SLS estimator in the above analysis is infeasible as the criterion function Qn(θ) in (2) involves the unknown

covariance matrix Σn. We consider a feasible N2SLS estimator using the White-type estimator for Πn = F ′nΣnFn.

For the formulation of a feasible N2SLS estimator, a consistent estimator for the covariance matrix 1
nΠn can be

derived as follows. First we can derive a consistent but may be inefficient estimator θ̇n from some feasible N2SLS

estimation, e.g., the minimizer of (eαWnYn−Dnβ)′Fn(F ′nFn)−1F ′n(eαWnYn−Dnβ), where Fn consists of observable

IV variables. Then the residual vector can be computed as V̂n = eα̇nWnYn − Dnβ̇n = (v̂ni). The White-type

estimator for Πn is Π̂n = F ′nΣ̂nFn, where Σ̂n = diag(v̂2
n1, . . . , v̂

2
nn). The initial estimator θ̇n can be only n1/4-

12



consistent as in last subsection. Thus we assume that n1/4(θ̇n − θ0) = Op(1).14 We also assume that all elements

of Xn, Zn and Fn have uniformly bounded fourth moments in order to show the consistency of 1
n Π̂n for 1

nΠn.

Assumption 9. n1/4(θ̇n − θ0) = Op(1), supn sup1≤i≤n,1≤j≤kf E(f4
n,ij) < ∞, supn sup1≤i≤n,1≤j≤kd E(z4

n,ij) < ∞

and supn sup1≤i≤n E(v4
ni) <∞.

With Π̂n, the feasible N2SLS estimator θ̂n is the minimizer of

Q̂n(θ) = (eαWnYn −Dnβ)′Ĥn(eαWnYn −Dnβ), (13)

where Ĥn = FnΠ̂−1
n F ′n. For the reparameterization in Section 2.2, let Q̂∗n(ω) = Q̂n(φ, ψ −K ′(φ − α0)) and ω̂n be

the minimizer of Q̂∗n(ω).

Proposition 2.4. Under Assumptions 1, 2 and 9, 1
n Π̂n − 1

nΠn = op(1). With the additional Assumption 9, the

results in Propositions 2.1 and 2.2 with θ̌n replaced by θ̂n and the result in Proposition 2.3 with ω̌n replaced by ω̂n

still hold.15

3 Testing for the irrelevance of the Durbin and endogenous regressors

In this section, we derive the distance difference and gradient tests for the irrelevance of the Durbin and endogenous

variables, and also investigate their local power properties.16

3.1 Test statistics

With the restriction ζ = 0 imposed, the restricted N2SLS estimator Ψ̃n minimizes the criterion function

Q̂n(Ψ, 0) = (eαWnYn −Xnδ)
′Ĥn(eαWnYn −Xnδ),

where Ψ = (α, δ′)′. This restricted estimation does not have irregular features. As the estimation of this restricted

model is regular, the asymptotic distribution of Ψ̃n follows from the equation:

√
n(Ψ̃n −Ψ0) =

[ 1

n
(−WnXnδ0, Xn)′Hn(−WnXnδ0, Xn)

]−1 1√
n

(−WnXnδ0, Xn)′HnVn + op(1). (14)

This relation for the restricted model will be useful for deriving asymptotic distributions of test statistics.

14This includes also the case that an initial estimator happens to be
√
n-consistent, i.e., n1/2(θ̇n − θ0) = Op(1). In the proof of

Proposition 2.4, we need only the property that n1/4(θ̇n−θ0) = Op(1). On the other hand, the consistency property that θ̇n = θ0+op(1)

alone would not be strong enough.
15With unknown Σn, the N2SLS estimation with the best IV matrix in Proposition 2.2 is not feasible, since the best IV matrix cannot

be consistently estimated.
16The Wald test is not considered here, because the usual Wald test is a quadratic form of the estimator and has an asymptotic

chi-squared distribution, but from Corollary 2.1, a quadratic form of ζ̂n will not have an asymptotic chi-squared distribution due to the

irregular feature under H0 : ζ0 = 0.
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3.1.1 The distance difference test

For the unrestricted model, we take a fourth order Taylor expansion of Q∗n(ω̂n) and collect terms that go to zero in

probability into a remainder. As shown in Section 2.2, the estimator behaves differently for the two cases Rn < 0

and Rn > 0. When Rn < 0, from the proof of Proposition 2.3 and its analysis, we have:

Q̂∗n(ω̂n)− Q̂∗n(ω0) = (
1

2
√
n

∂2Q̂∗n(ω0)

∂φ2
,

1√
n

∂Q̂∗n(ω0)

∂ψ′
)

(√
n(φ̂n − φ0)2

√
n(ψ̂n − ψ0)

)

+

(√
n(φ̂n − φ0)2

√
n(ψ̂n − ψ0)

)′ 1
24n

∂4Q̂∗n(ω0)
∂φ4

1
4n

∂3Q̂∗n(ω0)
∂φ2∂ψ′

1
4n

∂3Q̂∗n(ω0)
∂φ2∂ψ

1
2n

∂2Q̂∗n(ω0)
∂ψ∂ψ′

(√n(φ̂n − φ0)2

√
n(ψ̂n − ψ0)

)
+ op(1)

= −V ′nP(−W 2Xδ0,D)Vn + op(1),

where the second equality follows by using (8) and orders of relevant derivatives in Appendix A, and P(−W 2Xδ0,D) =

Hn(−W 2
nXnδ0, Dn)[(−W 2

nXnδ0, Dn)′Hn(−W 2
nXnδ0, Dn)]−1(−W 2

nXnδ0, Dn)′Hn. On the other hand, when Rn > 0,

we have:

Q̂∗n(ω̂n)− Q̂∗n(ω0) =
∂Q̂∗n(ω0)

∂ψ′
(ψ̂n − ψ0) +

1

2
(ψ̂n − ψ0)′

∂2Q̂∗n(ω0)

∂ψ∂ψ′
(ψ̂n − ψ0) + op(1) = −V ′nPDVn + op(1),

because terms associated with (φ̂n−φ0) and its powers have small order op(1) due to derivatives with respect to φ (in

Appendix A) having small orders and n1/4(φ̂n−φ0) = op(1) when Rn > 0 as shown in the proof of Proposition 2.3.

With Q̂n(Ψ, 0) of the constrained model and its corresponding constrained estimator θ̃n = (Ψ̃′n, 0)′, by a first order

Taylor expansion of Q̂n(θ̃n) at θ0 = (Ψ′0, 0)′, we have:

Q̂n(θ0)− Q̂n(θ̃n) =
1

2

√
n(Ψ0 − Ψ̃n)′

1

n

∂2Q̂n(Ψ̈n, 0)

∂Ψ∂Ψ′
√
n(Ψ0 − Ψ̃n) = V ′nP(−WXδ0,X)Vn + op(1),

where P(−WXδ0,X) = Hn(−WnXnδ0, Xn)[(−WnXnδ0, Xn)′Hn(−WnXnδ0, Xn)]−1(−WnXnδ0, Xn)′Hn, Ψ̈n lies be-

tween Ψ0 and Ψ̃n, and the second equality follows by (14) and small orders of second derivative terms in Appendix A.

Thus, as Q̂n(θ̂n) = Q̂∗n(ω̂n) and Q̂n(θ0) = Q̂∗n(ω0),

Q̂n(θ̃n)− Q̂n(θ̂n) = I(Rn < 0)V ′n(P(−W 2Xδ0,D) − P(−WXδ0,X))Vn

+ I(Rn > 0)V ′n(PD − P(−WXδ0,X))Vn + op(1).
(15)

In the two cases Rn < 0 and Rn > 0, the test statistic is asymptotically distributed as chi-squared random variables,

but the degree of freedom in the latter case is one less than that in the former case.

Proposition 3.1. Under Assumptions 1–9, when ζ0 = 0, Q̂n(θ̃n) − Q̂n(θ̂n)
d−→ T, where T is a mixture of a

χ2(kx∗ + kz) and a χ2(kx∗ + kz − 1) random variable with mixing probabilities equal to 1/2.17

We may compute the p-value of the test or solve for the critical value via P(T > t) = 1
2 P(χ2(kx∗ + kz) >

t) + 1
2 P(χ2(kx∗ + kz − 1) > t).

17χ2(0) means the constant 0.

14



3.1.2 The gradient test

The gradient test is based on the asymptotic distribution of ∂Q̂n(θ̃n)
∂ζ , where θ̃n = (Ψ̃′n, 0)′ is the restricted N2SLS

estimator with ζ = 0 imposed. Under the null hypothesis with θ0 = (Ψ′0, 0)′, by the mean value theorem and second

order derivatives in Appendix A,

1√
n

∂Q̂n(θ̃n)

∂ζ
=

1√
n

∂Q̂n(θ0)

∂ζ
+

1

n

∂2Q̂n(θ̈n)

∂ζ∂Ψ′
√
n(Ψ̃n −Ψ0)

= − 2√
n

(WnX
∗∗
n , Zn)′M(−WXδ0,X)Vn + op(1)

d−→ N
(
0,plimn→∞

4

n
(WnX

∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn)

)
,

(16)

where M(−WXδ0,X) = Hn − P(−WXδ0,X), θ̈n lies between θ̃n and θ0, X∗∗n = (ln, Xn1) when Wn is not row-

normalized, and X∗∗n = Xn1 when Wn is row-normalized. Because M(−WXδ0,X)WnXnδ0 = 0, the covariance

matrix (WnX
∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn) is singular. We may show that the rank of this covariance matrix is

kx∗ + kz − 1, i.e., one less than the number of its columns. Using the asymptotically normally distributed gradient

vector 1√
n
∂Q̂n(θ̃n)

∂ζ , an asymptotic chi-squared statistic can be constructed via the Moore-Penrose pseudoinverse of its

asymptotic covariance matrix. Let A+ be the Moore-Penrose pseudoinverse of a square matrix A, and M̃(−WXδ̃,X)

be the matrix obtained by replacing δ0 in M(−WXδ0,X) with δ̃n and replacing Hn with Ĥn. Then we have the

following proposition.

Proposition 3.2. Under Assumptions 1–7 and 9, when ζ0 = 0,

1

4

∂Q̂n(θ̃n)

∂ζ ′
[(WnX

∗∗
n , Zn)′M̃(−WXδ̃,X)(WnX

∗∗
n , Zn)]+

∂Q̂n(θ̃n)

∂ζ

d−→ χ2(kx∗ + kz − 1).

3.2 Local power

We consider the local power of the test statistics under the alternative hypothesis that the true parameter ζ0 of the

model with sample size n is subject to Pitman’s drift (the Durbin regressors and endogenous explanatory variables

are relevant).

Assumption 10. ζ0n = 1√
n
κ, where κ is a (kx∗ + kz)× 1 nonzero vector.

When ζ0 = 0, the N2SLS estimators β̂1n and β̂4n are
√
n-consistent, but α̂n, β̂2n and β̂3n can only be n1/4-

consistent. The distance difference test integrates the information of all components of the N2SLS estimator, so

it might be able to detect the small drift 1√
n
κ from ζ0 = 0. Under the local alternative in Assumption 10, the

restricted estimator Ψ̃n with the restriction ζ = 0 imposed satisfies Ψ̃n = Ψ0 + op(1). By the mean value theorem,

under Assumption 10,

√
n(Ψ̃n −Ψ0) = −

( 1

n

∂2Q̂n(Ψ̈n, 0)

∂Ψ∂Ψ′
)−1 1√

n

∂Q̂n(Ψ0, 0)

∂Ψ

=
[ 1

n
(−WnXnδ0, Xn)′Hn(−WnXnδ0, Xn)

]−1
(−WnXnδ0, Xn)′Hn

[ 1

n
(WnX

∗∗
n , Zn)κ+

1√
n
Vn
]

+ op(1),

(17)
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where Ψ̈n is between Ψ0 and Ψ̃n. When κ is not proportional to (δ20, δ
′
10, 0)′, both α̃n and δ̃n can be asymptotically

biased. Only α̃n is asymptotically biased if κ is proportional to (δ20, δ
′
10, 0)′. Anyhow, Ψ̃n has at most the usual

order Op(n
−1/2). Then, the gradient test might detect the small drift 1√

n
κ from ζ0 = 0.

3.2.1 The distance difference test

Under the local alternative in Assumption 10, the N2SLS estimator θ̂n will still satisfy θ̂n = θ0n+op(1), where θ0n =

(α0, δ
′
0, ζ
′
0n)′. By using the reparameterization ω in Section 2.2, corresponding to the drift κ/

√
n in Assumption 10,

ω0n = θ0n, i.e., φ0 = α0, ψ0n = (ψ′10, ψ
′
20,n, ψ

′
30,n, ψ

′
40,n)′ with ψ10 = β10 and (ψ′20,n, ψ

′
30,n, ψ

′
40,n)′ = κ/

√
n when

the spatial weights matrix is not row-normalized, and ψ0n = (ψ′10, ψ
′
20, ψ

′
30,n, ψ

′
40,n)′ with ψ10 = β10, ψ20 = β20 and

(ψ′30,n, ψ
′
40,n)′ = κ/

√
n when the spatial weights matrix is row-normalized. Relevant derivatives of Q̂∗n(ω) at ω0n

have the same orders as before in Appendix A. By an analysis similar to that in Section 2.2, the estimator ω̂n has

the following asymptotic distribution under the local alternative in Assumption 10.

Proposition 3.3. Under Assumptions 1–10,(
n1/4(φ̂n − φ0)
√
n(ψ̂n − ψ0n)

)
=

(
(−1)BJ

1/2
1n

J2n

)
I(Rn < 0)+

(
0

Ln

)
I(Rn > 0)+op(1)

d−→
(

(−1)BJ
1/2
1

J2

)
I(J1 > 0)+

(
0

L

)
I(J1 < 0),

where B is a Bernoulli random variable with success probability equal to P(K∗ > 0|J1 > 0), and K∗ = 2 plimn→∞
(
U2+

Υ2nJ + 1
nF
′
nWn(WnX

∗∗
n , Zn)κ

)′
( 1
nΠn)−1(U1 + Υ1nJ) + plimn→∞ J ′

[( 1
3 (F ′nW

3
nXnδ0)′Π−1

n U1+(F ′nW
2
nXnδ0)′Π−1

n U2

−2(D′nFn)Π−1
n U2

)
+
((F ′nW 2

nXnδ0)′Π−1
n Υ2n

−2(D′nFn)Π−1
n Υ2n

)
J +

( 1
n (F ′nW

2
nXnδ0)′Π−1

n F ′nWn(WnX
∗∗
n ,Zn)κ

− 2
n (F ′nDn)′Π−1

n F ′nWn(WnX∗∗n ,Zn)κ

)]
.

We use Proposition 3.3 to derive the asymptotic distribution of the distance difference test statistic under the

local alternative in Assumption 10. The test statistic needs to be expanded differently for the two cases Rn < 0

and Rn > 0. Let χ2(a, b) be a noncentral chi-squared distribution with a degrees of freedom and noncentrality

parameter b.

Proposition 3.4. Under Assumptions 1–10, Q̂n(θ̃n) − Q̂n(θ̂n)
d−→ [r2 + χ2(kx∗ + kz − 1, c1)]I(r > 0) + χ2(kx∗ +

kz − 1, c1)I(r < 0), where c1 = plimn→∞
1
nκ
′(WnX

∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn)κ and r is a standard normal

random variable which is independent of χ2(kx∗+kz−1, c1), i.e., the asymptotic distribution of Q̂n(θ̃n)− Q̂n(θ̂n) is

a mixture of two noncentral chi-squared distributions χ2(kx∗+kz, c1) and χ2(kx∗+kz−1, c1), with both noncentrality

parameters equal to c1 and with mixing probabilities equal to 1/2.

When κ is proportional to (δ20, δ
′
10, 0)′, the noncentrality parameters are zero and the test has trivial power for

the Pitman drift ζ0n = 1√
n
κ.
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3.2.2 The gradient test

We now consider the local power of the gradient test by assuming that the DGP is subject to the Pitman drift in

Assumption 10. Note that

1√
n

∂Q̂n(Ψ0, 0)

∂ζ
= − 2√

n
(WnX

∗∗
n , Zn)′Ĥn(eα0WnYn −Xnδ0)

= − 2

n
(WnX

∗∗
n , Zn)′Hn(WnX

∗∗
n , Zn)κ− 2√

n
(WnX

∗∗
n , Zn)′HnVn + op(1)

and

1

n

∂2Q̂n(Ψ̃n, 0)

∂ζ∂Ψ′
=

2

n
(WnX

∗∗
n , Zn)′Ĥn(−Wne

α̃nWnYn, Xn) =
2

n
(WnX

∗∗
n , Zn)′Hn(−WnXnδ0, Xn) + op(1).

Then, by the mean value theorem and using (17),

1√
n

∂Q̂n(Ψ̃n, 0)

∂ζ

=
1√
n

∂Q̂n(Ψ0, 0)

∂ζ
+

1

n

∂2Q̂n(Ψ̈n, 0)

∂ζ∂Ψ′
√
n(Ψ̃n −Ψ0)

= − 2

n
(WnX

∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn)κ− 2√

n
(WnX

∗∗
n , Zn)′M(−WXδ0,X)Vn + op(1)

d−→ N
(
−plimn→∞

2

n
(WnX

∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn)κ,plimn→∞

4

n
(WnX

∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn)

)
,

where Ψ̈n is between Ψ0 and Ψ̃n. Proposition 3.5 then follows.

Proposition 3.5. Under Assumptions 1–7 and 9–10,

1

4

∂Q̂n(θ̃n)

∂ζ ′
[(WnX

∗∗
n , Zn)′M̃(−WXδ̃,X)(WnX

∗∗
n , Zn)]+

∂Q̂n(θ̃n)

∂ζ

d−→ χ2(kx∗ + kz − 1, c1),

where c1 is defined in Proposition 3.4.

Under the Pitman drift in Assumption 10, the gradient test statistic is asymptotically distributed as a noncentral

chi-square random variable with its noncentrality parameter being the same as that for the distance difference test

in Proposition 3.4. However, the distance difference test has one more degree of freedom with probability 0.5 and

the same number of degrees of freedom with probability 0.5.

When κ is proportional to (δ20, δ
′
10, 0)′, the noncentrality parameter is zero and the test has trivial power. The

test is not able to detect the small drift n−1/2(δ20, δ
′
10, 0)′ from ζ0 = 0. In this case, we should consider a larger

Pitman drift in Assumption 11, which corresponds to the rate of convergence for (α̂n, β̂2n, β̂
′
3n)′.18

Assumption 11. ζ0n = n−1/4(δ20, δ
′
10, 0)′.

Under Assumption 11, by the mean value theorem and using the derivatives in Appendix A,

n1/4(Ψ̃n −Ψ0) = −
( 1

n

∂2Q̂n(Ψ̈n, 0)

∂Ψ∂Ψ′
)−1

n−3/4 ∂Q̂n(Ψ0, 0)

∂Ψ

=
[
(−WnXnδ0, Xn)′Hn(−WnXnδ0, Xn)

]−1
(−WnXnδ0, Xn)′HnWnXnδ0 +Op(n

−1/4)

= −
(

1

0

)
+Op(n

−1/4),

18We have not carried out a power analysis for the distance difference test under Assumption 11, because the asymptotic distribution

of the unrestricted N2SLS estimator cannot be derived in a way similar to that in Section 2.2.
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where Ψ̈n is between Ψ0 and Ψ̃n. In this case, Ψ̃n − Ψ0 has the order Op(n
−1/4) due to the drift, but Ψ̃n − Ψ0 +

n−1/4
(

1
0

)
has the order Op(n

−1/2). We may find the leading order term of n1/2(Ψ̃n −Ψ0 + n−1/4
(

1
0

)
) by expanding

the first order condition ∂Q̂n(Ψ̃n,0)
∂Ψ = 0 at (α0 − n1/4, δ′0)′. Applying the result, we can derive the asymptotic

distribution of the gradient test statistic.

Proposition 3.6. Under Assumptions 1–7, 9 and 11,

1

4

∂Q̂n(θ̃n)

∂ζ ′
[(WnX

∗∗
n , Zn)′M̃(−WXδ̃,X)(WnX

∗∗
n , Zn)]+

∂Q̂n(θ̃n)

∂ζ

d−→ χ2(kx∗ + kz − 1, c2),

where c2 = plimn→∞
1

4n (W 2
nXnδ0)′M(−WXδ0,X)(WnX

∗∗
n , Zn)[(WnX

∗∗
n , Zn)′M(−WXδ0,X)(WnX

∗∗
n , Zn)]+(WnX

∗∗
n , Zn)′

M(−WXδ0,X)W
2
nXnδ0.

Under Assumption 8, c2 is generally non-zero. Thus, for the direction (δ20, δ
′
10, 0)′, the gradient test can still

have nontrivial power, but it is in terms of the larger drift n−1/4(δ20, δ
′
10, 0)′.

4 AGLASSO estimator

In this section, we consider estimation of the MESS model via the AGLASSO. The criterion function for the

AGLASSO estimator is
1

n
Q̂n(θ) + λn‖ζ̃n‖−µ‖ζ‖, (18)

where λn is a positive tuning parameter, ζ̃n is an initial consistent estimator of ζ, ‖ · ‖ denotes the Euclidean norm

(l2-norm), and µ is some positive number such as 1 or 2 as in the literature. The AGLASSO estimator θ̂n minimizes

(18). Since the irregular phenomenon appears when the whole vector ζ0 = 0, ζ is penalized in a group with an

l2-norm and there is no need to penalize other parameters for our issue under concern. We are not interested in

whether or not an individual component of ζ is zero, so a penalty term with an l1-norm is not needed.19 The ζ̃n

can be the feasible N2SLS estimator in Section 2. Intuitively, ζ̃n is small when ζ0 = 0, so the penalty term is large,

and ζ̂n tends to be closer to zero. Otherwise, the effect of the penalty term is small. In general, ζ̃n can be any

consistent estimate.

Assumption 12. ζ̃n = ζ0 + op(1).

4.1 Asymptotic properties

We study the asymptotic properties of the AGLASSO estimator in this subsection. the N2SLS estimator of β has

an explicit form for a given α, so only the parameter space of α is assumed to be compact in Assumption 4. This

is not the case for the AGLASSO estimator, so we make the following slightly stronger assumption.

19Since our motivation is to avoid the irregular phenomenon that appears when the whole vector ζ0 is zero, it is natural to use the

AGLASSO. It is also possible to use only the adaptive LASSO by penalizing the parameters individually. But the adaptive LASSO

makes selection based on the strength of individual variables and can result in selecting more variables than necessary (Yuan and Lin,

2006).
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Assumption 4′. The true parameter vector θ0 is in the interior of the compact parameter space Θ for θ.

Assumption 13 is needed for the consistency of θ̂n.

Assumption 13. λn > 0 and λn = o(1).

Proposition 4.1. Under Assumptions 1–3, 4′, 6, 9, 12 and 13, θ̂n = θ0 + op(1).

We are interested in whether ζ̂n is equal to 0 w.p.a.1. in the case that ζ0 = 0, i.e., the sparsity property. This

cannot be deduced from Proposition 4.1. To establish that property, Assumption 14 is needed. It requires the

penalty term to have at least certain order when ζ0 = 0.

Assumption 14. If ζ0 = 0, n1/2λn‖ζ̃n‖−µ →∞ w.p.a.1.

If ζ̃n is the N2SLS estimator, then ζ̃n = Op(n
−1/4). In order that n1/2+µ/4λn → ∞, then if λn = O(n−c) for

some c > 0, it requires c < 1/2 + µ/4, , i.e., λn may not be allowed to go to zero too fast with a rate equal to or

faster than n1/2+µ/4.

Proposition 4.2. Under Assumptions 1–3, 4′, 6, 9 and 12–14, if ζ0 = 0, then P(ζ̂n = 0)→ 1 as n→∞.

For Ψ = (α, δ′)′, we have the following oracle property.

Proposition 4.3. Under Assumptions 1–3, 4′, 6, 9, and 12–14, if ζ0 = 0, then

√
n(Ψ̂n −Ψ0)

d−→ N
(
0, lim
n→∞

1

n

{
E[(−WnXnδ0, Xn)′Fn]Π̄−1

n E[F ′n(−WnXnδ0, Xn)]
}−1)

.

Proposition 4.3 shows that, when ζ0 = 0, the AGLASSO estimator for Ψ has the asymptotic distribution as if

we knew the true parameter vector ζ0 = 0. We also derive the asymptotic distribution of θ̂n when ζ0 6= 0. For that

purpose, we first derive the rate of convergence of θ̂n when ζ0 6= 0.

Proposition 4.4. Under Assumptions 1–3, 4′, 6, 9, 12 and 13, if ζ0 6= 0, θ̂n = θ0 +Op(n
−1/2 + λn).

When ζ0 6= 0, λn may affect the convergence rate of θ̂n to θ0 and also the asymptotic distribution of θ̂n. In

order to eliminate the possible impact of the penalty term, the proper rate of λn convergent to zero will be needed.

For that purpose, we maintain Assumption 15.

Assumption 15. λn = o(n−1/2).

Proposition 4.5. Under Assumptions 1–3, 4′, 6, 9, 12, 13 and 15, if ζ0 6= 0, then

√
n(θ̂n − θ0)

d−→ N
(
0, lim
n→∞

{ 1

n
E[(−WnDnβ0, Dn)′Fn]Π̄−1

n E[F ′n(−WnDnβ0, Dn)]
}−1)

.

It shows that, if λn is small enough, the AGLASSO estimator has the same asymptotic distribution as the

N2SLS estimator in Proposition 2.2 when ζ0 6= 0.

For the sparsity property of ζ̂n when ζ0 = 0, Assumption 14 requires λn to be large enough. When ζ0 6= 0,

Assumption 15 requires λn to be small enough in order to make the bias resulting from the penalty term small.

These assumptions pull the selection of λn in different directions. However, there exist a range of values for λn

which can satisfy them. Given µ and the N2SLS estimator ζ̃n, λn = O(n−1/2−µ/8) satisfies these assumptions.
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4.2 Selection of the tuning parameter

In this section, we propose to select the tuning parameter λn by minimizing an information criterion and we show

that this data-driven procedure can identify the true model consistently.

To make explicit the dependence of the AGLASSO estimator on the tuning parameter, denote

θ̂λ = arg min
θ∈Θ

[ 1

n
Q̂n(θ) + λ‖ζ̃n‖−µ‖ζ‖

]
.

Let Λ = [0, λmax] be an interval from which the tuning parameter λ is selected, where λmax is a finite positive

number. We propose to select the tuning parameter λ that minimizes the following information criterion:

hn(λ) =
1

n
Q̂n(θ̂λ)− f(ζ̂λ)Γn, (19)

where f(ζ̂λ) = 1 if ζ̂λ = 0 and f(ζ̂λ) = 0 otherwise, and {Γn} is a positive sequence. That is, given Γn, the selected

tuning parameter is λ̂n = arg minλ∈Λ hn(λ). While 1
n Q̂n(θ̂λ) measures the fit of the model, the term f(ζ̂λ)Γn gives

extra bonus to setting ζ to zero. We take ζ̃n to be the N2SLS estimator in Section 2. To guarantee model selection

consistency, we make the following assumption.

Assumption 16. Γn > 0, Γn → 0 and n1/2Γn →∞ as n→∞.

To balance the requirements Γn → 0 and n1/2Γn → ∞ in Assumption 16, we may take Γn = O(n−1/4).

Assumption 16 shows that the information criterion in (19) is different from the Akaike information criterion

(Γn = O(n−1)), Bayesian information criterion (Γn = O(n−1 lnn)) and Hannan-Quinn information criteria (Γn =

O(n−1 ln lnn)). This is because of the irregular convergence rate of the N2SLS estimator when ζ0 = 0. Let {λ̄n}

be an arbitrary sequence of tuning parameters which satisfy Assumptions 13–15, e.g., λ̄n = n−1/2−µ/8. Define

Λn = {λ ∈ Λ : ζ̂λ = 0 if ζ0 6= 0, and ζ̂λ 6= 0 if ζ0 = 0}, which collects non-favorable λ’s.

Proposition 4.6. Under Assumptions 1–3, 4′, 6, 9, 12 and 16, P(infλ∈Λn
hn(λ) > hn(λ̄n))→ 1 as n→∞.

Proposition 4.6 does not mean that the tuning parameter chosen by minimizing the information criterion in (19)

must be λ̄n because hn(λ̂n) ≤ hn(λ̄n). Instead, it means that any λ that fails to identify the true model cannot

be selected asymptotically as the optimal tuning parameter by the information criterion in (19), since it is less

favorable than λ̄n. Consequently, the model selection consistency of our data-driven procedure is established.

4.3 Computation

In this section, we briefly discuss the computation of our group LASSO estimator. First, we note that, given α and

ζ, the AGLASSO estimator of δ is

δ̂n(α, ζ) = (X ′nĤnXn)−1X ′nĤn[eαWnyn − (WnX
∗∗
n , Zn)ζ]. (20)

Substituting δ̂n(α, ζ) into the AGLASSO criterion function yields the concentrated function:

Ln(α, ζ) = Ln1(α, ζ) + λn‖ζ̃n‖−µ‖ζ‖,
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where Ln1(α, ζ) ≡ 1
n Q̂n(α, δ̂n(α, ζ), ζ) = 1

n [M̂ne
αWnyn−M̂n(WnX

∗∗
n , Zn)ζ]′[M̂ne

αWnyn−M̂n(WnX
∗∗
n , Zn)ζ] with

M̂n = Π̂
−1/2
n F ′n[In − Xn(X ′nĤnXn)−1X ′nĤn]. Note that Ln(α, ζ) is an AGLASSO criterion function in the least

squares framework for a given α, then we can directly apply the algorithms for computing the usual group LASSO.20

Let ζ̂n(α) be the AGLASSO estimator of ζ for a given α. Then α̂n can be obtained by minimizing Ln(α, ζ̂n(α)).

5 Monte Carlo simulations

In this section, we conduct Monte Carlo experiments to investigate the finite sample performance of the N2SLS

estimator, the AGLASSO estimator and the test statistics for the MESS model.

The experimental design is as follows. The DGP is the following model:

eαWnYn = Xn1β1 + lnβ2 +WnXn1β3 + Znβ4 + Vn. (21)

We conduct Monte Carlo studies with two row-normalized spatial weights matrices: one is based on the queen

criterion and the other on the rook criterion. The Xn1 = (xn1,i) contains an exogenous variable drawn independently

from N(0, 1). The standard deviation of vni is set to be proportional to |xn1,i| so that vni = |xn1,i|εni, where

εni ∼ N(0, σ2
0). We consider the case with one endogenous variable Zn = (zn1, . . . , znn)′, where zni = z̄ni + uni.

The z̄ni is an exogenous variable consisting of independent draws from N(0, σ2
0), and (uni, εni)’s are independent

draws from the bivariate normal distribution N

(
0, σ2

0

 1 0.5

0.5 1

), where σ2
0 is chosen such that R2 = 0.2 or 0.8,

for R2 = var(Xn1β10+WnXn1β30)/[var(Xn1β10+WnXn1β30)+σ̄2] with σ̄2 being the average variance
σ2
0

n

∑n
i=1 x

2
n1,i

of vni’s. We set δ0 = (β10, β20)′ to (1, 1)′. The true parameter ζ0 = (β30, β40)′ is (0, 0)′, (1, 1)′ or (0, 1)′. The α0 is

set to either −0.2 or −1, and ς0 is set to −0.2.21 We use the IV matrix [ln, Xn1,WnXn1,W
2
nXn1, Z̄n,WnZ̄n] with

Z̄n = (z̄n1, . . . , z̄nn)′ in the estimation. The nominal size of a test is set to 0.05. For the investigation of powers

of test statistics, the data are generated by MESS models with ζ0 values being (1, 0.5)′, (1, 1)′, (1, 1.5)′, (1, 2)′,

(1, 2.5)′, or (1, 3)′. The tuning parameter λ for the AGLASSO is selected by minimizing the information criterion

(19) with Γn = 0.14n−1/4.22 We consider two sample sizes: n = 144 or 400. The number of Monte Carlo repetitions

is 2, 000.

20In our Monte Carlo simulations, we use the Matlab package SLEP (Liu et al., 2009), which implements an efficient algorithm based

on the accelerated gradient method in Liu and Ye (2010).
21The MESS model and the SAR model have similar interpretations in some sense. The chosen values −0.2 and −1 for the spatial

parameter α in (21) in a MESS process correspond to low and high degrees of spatial dependence in the SAR model (LeSage and Pace,

2007; Debarsy et al., 2015).
22In theory, the information criterion (19) can achieve model selection consistency as long as Γn satisfies the order requirement in

Assumption 16. But the finite sample performance depends on the choice of Γn. From the proof of Proposition 4.6, when ζ0 = 0, Γn

should be larger than the difference of the N2SLS criterion function values divided by n at the N2SLS estimate and at the restricted

N2SLS estimate. For the queen matrix, n = 144, R2 = 0.8 and α0 = −0.2, we compute the difference 1000 times, and set Γn = cn−1/2

to be the sample mean plus 2 times the standard errors, which yields c = 0.14. We then set Γn = 0.14n−1/2 in all cases and for all

sample sizes.
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To compare distributions of the N2SLS estimators in the regular and irregular cases with normal distributions,

we first studentize estimators so that they have mean zero and unit variance and then plot in Figures 1–3 (solid line)

their kernel density estimates, based on normal kernel functions with optimal bandwidths. The estimators are for

the case with the queen matrix, R2 = 0.2, α0 = −1, and n = 400.23 The dashed lines represent the standard normal

probability density function (PDF). Figure 1 shows the irregular case with ζ0 = 0. While the density estimates

for β1 and β4 are close to the standard normal, those for α, β2 and β3 show obvious deviations from the normal

distribution. In particular, the density estimate for α and β3 have shown bimodal behaviors. For the regular case

with ζ0 = (1, 1)′, Figure 2 shows that all density estimates are close to the standard normal. For Figure 3, while the

Durbin regressor is irrelevant, the endogenous explanatory variable is relevant (ζ0 = (0, 1)′). As mentioned earlier,

this is a regular case. We observe that all density estimates are close to the standard normal PDF.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Table 1 presents the probabilities that the AGLASSO estimator selects the right model, i.e., the proportions

of Monte Carlo repetitions where the AGLASSO estimates ζ̂n = 0 when ζ0 = 0, or ζ̂n 6= 0 when ζ0 6= 0. All

probabilities are higher than 96%. For ζ0 = 0, while the AGLASSO estimates ζ as nonzero with small probabilities

when n = 144, it can correctly estimate ζ as zero with probabilities equal to or very close to 1 as the sample size

n increases to 400. With a nonzero ζ0, for cases where the AGLASSO does not always select the right model when

n = 144, the correct model selection probabilities also increase as n increases to 400.

[Table 1 about here.]

To investigate relevant ratios of convergence of the N2SLS, the AGLASSO and also the restricted N2LS es-

timators with the restriction ζ = 0 imposed (N2SLS-r), we report the ratios of the SE when n = 144 to that

when n = 400 in Table 2. Asymptotically, the theoretical ratio for estimators with the
√
n-rate of convergence is

1.67, but that for those with the n1/4-rate is 1.29. When ζ0 = 0, the N2SLS estimators of α, β2 and β3 are only

n1/4-consistent, but those of β1 and β4 are n1/2-consistent, and the AGLASSO and N2SLS-r estimators of α, β1

and β2 are
√
n-consistent. In this case, Table 2 shows that, for the N2SLS, the ratios of α, β2 and β3 fluctuate

around 1.29 and are significantly smaller than 1.67, and those of β1 and β4 are around 1.67; for the N2SLS-r, the

ratios of α, β1 and β2 are close to 1.67; for the AGLASSO, the ratios for β1 are around 1.67, and those for α and β2

are slightly larger than 1.67. The observed large ratios for the AGLASSO might be due to the fact that, in finite

samples, the correct model selection probabilities are higher in cases with larger sample sizes. When ζ0 = (1, 1)′

or ζ0 = (0, 1)′, the reported ratios are around 1.67 in most cases, because the N2SLS and AGLASSO estimators

23For other cases, the figures are similar, so they are omitted.
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are
√
n-consistent, and the N2SLS-r estimators converge to their limits with the

√
n-rate. Overall, the ratios in the

tables are consistent with our asymptotic theory.

[Table 2 about here.]

Tables 3–5 report the biases, standard errors (SEs) and coverage probabilities (CP) of 95% confidence intervals

of the N2SLS, N2SLS-r and AGLASSO estimates when n = 144.24 Table 3 shows the results in the irregular case

with ζ0 = 0. We first focus on the N2SLS. Biases and SEs for α, β2 and β3 are relatively larger than those for β1

and β4.25 Specifically, while the biases for β1 and β4 are all smaller or equal to 0.036 and 0.007 respectively, and the

SEs for β1 and β4 are all smaller or equal to 0.157 and 0.172 respectively, the biases and SEs for α, β2 and β3 are

usually several times larger than those of β1 and β4. The impact of R2, α0 and spatial weights matrices on biases

and SEs are ambiguous. The CPs are all close to 95% except those for β2 with the queen matrix, which are around

85%. Since the N2SLS-r estimator has imposed the right restriction, it has much smaller bias and smaller SE than

those of the N2SLS estimator in almost all cases. For the AGLASSO, due to a small positive probability of making

mistakes in model selection as seen from Table 1, its bias and SE are between those of the N2SLS-r and N2SLS,

but they are generally significantly smaller than those of the N2SLS. The CPs for the N2SLS-r and AGLASSO are

similar and close to 95% in most cases.

[Table 3 about here.]

Table 4 presents results on biases, SEs and CPs in the regular case with ζ0 = (1, 1)′ and n = 144. The bias of

the N2SLS estimator is smaller than or equal to 0.055 in all cases. Compared with the irregular case with ζ0 = 0

in Table 3, the biases of the N2SLS estimators are significantly smaller except those for β4, the SEs of the N2SLS

estimators for α, β2 and β3 are significantly smaller, while those for β1 and β4 have similar magnitudes. Since

the N2SLS-r estimator has imposed the wrong restriction ζ = 0, it has relatively large bias in all cases. As the

AGLASSO will estimate ζ as nonzero with probabilities close to one, it has almost the same bias and SE as the

N2SLS estimator. The CPs for the N2SLS and AGLASSO are around 95% in all cases, but those of the N2SLS-r

can be very low in some cases due to its large biases. Biases, SEs and CPs in the regular case with ζ0 = (0, 1)′ and

n = 144 are reported in Table 5. Patterns are similar to those for Table 4.

[Table 4 about here.]

[Table 5 about here.]

24Because the asymptotic distributions of the N2SLS estimators in the irregular case are very complicated, their confidence intervals

are simulated, which are obtained by sampling from the asymptotic distribution in Corollary 2.1 1000 times and taking the 2.5% and

97.5% quantiles. Results for n = 400 are reported in the supplementary file. They have patterns similar to those in Tables 3–5, but as

expected we observe smaller biases and SEs and generally more accurate CPs in corresponding cases.
25Recall that the N2SLS estimators of α, β2 and β3 only have the n1/4-rate of convergence.
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The empirical size and power properties of the distance difference test and gradient test are summarized in

Table 6. The two tests have small size distortions, with the largest size distortion being 2.4 percentage points. For

R2 = 0.2, all powers for the two tests are 100%. For cases with R2 = 0.8 and n = 144, we observe powers to be

around 70% when ζ0 = (1, 0.5)′. The power generally increases as the sample size and β40 in the DGP increase.

Cases with the rook matrix have larger powers than those with the queen matrix for the distance difference test,

but it is the other way round for the gradient test. Cases with different α0 values have similar power. Overall, both

the distance difference test and gradient test are powerful. None of the two tests is observed to dominate the other

one.

[Table 6 about here.]

6 Conclusion

In this paper, we consider estimation of the MESS model with the Durbin and endogenous explanatory variables.

As the disturbances of the MESS model are allowed to have heteroskedastic variances and spatial dependence of

unknown form, the N2SLS estimation is employed and is a robust estimation method for such a general model. With

given IVs, optimal N2SLS estimation is feasible with a HAC estimated covariance matrix of empirical moments. For

the N2SLS estimation, parameters of the model are generally identifiable and the N2SLS estimator is consistent. If

the true parameter vector for the Durbin and endogenous explanatory variables is nonzero, the N2SLS estimator

has the usual
√
n-rate of convergence and is asymptotically normal. However, with those coefficients being zero, the

N2SLS estimator becomes irregular as it has slower than the
√
n-rate of convergence and non-normal asymptotic

distribution. Only some components of the N2SLS estimator have the
√
n convergence rate, while the remaining

components have the n1/4-rate, and the asymptotic distribution is nonstandard. Since the irrelevance of the Durbin

and endogenous regressors causes the irregular phenomenon, in addition to estimation, it may be of interest to

consider tests for their irrelevance. We investigate the distance difference and gradient tests. These two tests can

generally detect Pitman drifts with the rate n−1/2. However, there is a direction with the rate n−1/2 for which the

tests have trivial power.

As an alternative to the N2SLS estimation, we propose a simultaneous estimation and model selection procedure

via the AGLASSO. We show that the proposed estimator has the oracle property under regularity conditions. As a

result, the N2SLS estimator with penalty has the usual
√
n-rate of convergence and asymptotic normal distribution.

The irregular case occurs when a component of the true parameter vector takes a certain value, but if the the

component is restricted to be the true value in the N2SLS estimation, the irregular phenomenon disappears. Since

the LASSO can perform simultaneous model selection and estimation and the proposed AGLASSO estimator has

the oracle property, there is no irregular phenomenon in the AGLASSO estimator. The AGLASSO provides an

alternative estimation strategy so there is no need to find the nonstandard asymptotic distribution of the N2SLS

estimator and also a pre-test procedure may not be needed. We propose to select the tuning parameter in the
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AGLASSO estimation by minimizing an information criterion.

In Monte Carlo experiments, N2SLS estimators of the parameters with only the n1/4-rate of convergence in the

irregular case have large biases and SEs, but N2SLS estimators of all parameters in the regular case perform well.

The AGLASSO estimators perform as well as the restricted N2SLS in the irregular case and as the unrestricted

N2SLS in the regular case. The distance difference test and gradient test have small size distortions and are powerful

for the sample sizes considered. Thus, for estimation, the N2SLS estimates should not be used directly and we

suggest the AGLASSO method. If one is willing to implement a pre-test with the distance difference or gradient

tests, then a further estimation of the restricted model is needed if the null hypothesis of no Durbin and endogenous

regressors is not rejected.
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Appendix A Derivatives

The first order derivatives of Qn(θ) are given in (4) and (5). The second order derivatives are:

∂2Qn(θ)

∂α2
= 2Y ′ne

αW ′nW ′2n Hn(eαWnYn −Dnβ) + 2Y ′ne
αW ′nW ′nHnWne

αWnYn, (22)

∂2Qn(θ)

∂α∂β
= −2D′nHnWne

αWnYn, (23)

∂2Qn(θ)

∂β∂β′
= 2D′nHnDn. (24)

The derivatives of Q∗n(ω) are:

∂Q∗n(ω)

∂φ
= 2(Wne

φWnYn −WnXnδ0)′HnVn(ω),

∂Q∗n(ω)

∂ψ
= −2D′nHnVn(ω),

∂2Q∗n(ω)

∂φ2
= 2(W 2

ne
φWnYn)′HnVn(ω) + 2(Wne

φWnYn −WnXnδ0)′Hn(Wne
φWnYn −WnXnδ0),

∂2Q∗n(ω)

∂φ∂ψ
= −2D′nHn(Wne

φWnYn −WnXnδ0),
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∂2Q∗n(ω)

∂ψ∂ψ′
= 2D′nHnDn,

∂3Q∗n(ω)

∂φ3
= 2(W 3

ne
φWnYn)′HnVn(ω) + 6(W 2

ne
φWnYn)′Hn(Wne

φWnYn −WnXnδ0),

∂3Q∗n(ω)

∂φ2∂ψ
= −2D′nHnW

2
ne
φWnYn,

∂4Q∗n(ω)

∂φ4
= 2(W 4

ne
φWnYn)′HnVn(ω) + 8(W 3

ne
φWnYn)′Hn(Wne

φWnYn −WnXnδ0) + 6(W 2
ne
φWnYn)′HnW

2
ne
φWnYn,

∂4Q∗n(ω)

∂φ3∂ψ
= −2D′nHnW

3
ne
φWnYn,

∂5Q∗n(ω)

∂φ5
= 2(W 5

ne
φWnYn)′HnVn(ω) + 10(W 4

ne
φWnYn)′Hn(Wne

φWnYn −WnXnδ0) + 20(W 3
ne
φWnYn)′HnW

2
ne
φWnYn,

∂5Q∗n(ω)

∂φ4∂ψ
= −2D′nHnW

4
ne
φWnYn.

Other unlisted derivatives with order equal to or smaller than five are equal to zero. Specifically, as
∂2Q∗n(ω)
∂ψ∂ψ′ does

not depend on ω, any additional derivatives for this derivative are zero. Hence, by Lemma 2 in the supplementary

file, with ζ0 = 0, we have:

∂Q∗n(ω0)

∂φ
= 2V ′nW

′
nHnVn = Op(1),

∂Q∗n(ω0)

∂ψ
= −2D′nHnVn = Op(

√
n),

∂2Q∗n(ω0)

∂φ2
= 2(Xnδ0 + Vn)′W ′2n HnVn + 2V ′nW

′
nHnWnVn = 2(W 2

nXnδ0)′HnVn +Op(1) = Op(
√
n),

∂2Q∗n(ω0)

∂φ∂ψ
= −2D′nHnWnVn = Op(

√
n),

∂2Q∗n(ω0)

∂ψ∂ψ′
= 2D′nHnDn = Op(n),

∂3Q∗n(ω0)

∂φ3
= 2(Xnδ0 + Vn)′W ′3n HnVn + 6(Xnδ0 + Vn)′W ′2n HnWnVn = 2(W 3

nXnδ0)′HnVn + 6(W 2
nXnδ0)′HnWnVn +Op(1)

= Op(
√
n),

∂3Q∗n(ω0)

∂φ2∂ψ
= −2D′nHnW

2
n(Xnδ0 + Vn) = −2D′nHnW

2
nXnδ0 +Op(n

1/2) = Op(n),

∂4Q∗n(ω0)

∂φ4
= 2(Xnδ0 + Vn)′W ′4n HnVn + 8(Xnδ0 + Vn)′W ′3n HnWnVn + 6(Xnδ0 + Vn)′W ′2n HnW

2
n(Xnδ0 + Vn)

= 6(W 2
nXnδ0)′HnW

2
nXnδ0 +Op(n

1/2)

= Op(n),

∂4Q∗n(ω0)

∂φ3∂ψ
= −2D′nHnW

3
n(Xnδ0 + Vn) = −2D′nHnW

3
nXnδ0 +Op(n

1/2) = Op(n),

∂5Q∗n(ω)

∂φ5
and

∂5Q∗n(ω)

∂φ4∂ψ
are of order Op(n) uniformly in ω.

26



Orders of derivatives

∂Q∗n(ω0)
∂φ = Op(1)

∂Q∗n(ω0)
∂ψ = Op(

√
n)

∂2Q∗n(ω0)
∂φ2 = Op(

√
n)

∂2Q∗n(ω0)
∂φ∂ψ = Op(

√
n)

∂2Q∗n(ω0)
∂ψ∂ψ′ = Op(n)

∂3Q∗n(ω0)
∂φ3 = Op(

√
n)

∂3Q∗n(ω0)
∂φ2∂ψ = Op(n)

∂3Q∗n(ω0)
∂φ∂ψ∂ψ′ = 0

∂4Q∗n(ω0)
∂φ4 = Op(n)

∂4Q∗n(ω0)
∂φ3∂ψ = Op(n)

∂5Q∗n(ω)
∂φ5 = Op(n)

∂5Q∗n(ω)
∂φ4∂ψ = Op(n)
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Figure 1: Kernel density estimates of the N2SLS estimators with ζ0 = 0 [Solid line: kernel density estimate; dashed
line: standard normal PDF]
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Figure 2: Kernel density estimates of the N2SLS estimators with ζ0 = (1, 1)′ [Solid line: kernel density estimate;
dashed line: standard normal PDF]
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Figure 3: Kernel density estimates of the N2SLS estimators with ζ0 = (0, 1)′ [Solid line: kernel density estimate;
dashed line: standard normal PDF]
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Table 1: Probabilities that the AGLASSO estimator selects the right model

n = 144 n = 400

ζ0 = 0 ζ0 = (1, 1)′ ζ0 = (0, 1)′ ζ0 = 0 ζ0 = (1, 1)′ ζ0 = (0, 1)′

queen, R2 = 0.2, α0 = −0.2 0.964 1.000 1.000 1.000 1.000 1.000
queen, R2 = 0.2, α0 = −1 0.979 1.000 1.000 0.998 1.000 1.000
rook, R2 = 0.2, α0 = −0.2 0.972 1.000 1.000 0.999 1.000 1.000
rook, R2 = 0.2, α0 = −1 0.973 1.000 1.000 0.998 1.000 1.000
queen, R2 = 0.8, α0 = −0.2 0.968 0.989 0.983 0.998 1.000 1.000
queen, R2 = 0.8, α0 = −1 0.962 0.984 0.973 0.998 1.000 1.000
rook, R2 = 0.8, α0 = −0.2 0.971 0.995 0.978 0.999 1.000 0.999
rook, R2 = 0.8, α0 = −1 0.964 0.994 0.977 1.000 1.000 0.999

The numbers denote the proportions of Monte Carlo repetitions where the AGLASSO estimate ζ̂n = 0
when ζ0 = 0, or ζ̂n 6= 0 when ζ0 6= 0. β10 = 1 and β20 = 1.

Table 2: Ratios of the SE when n = 144 to that when n = 400

α β1 β2 β3 β4

ζ0 = 0
queen, R2 = 0.2, α0 = −0.2 1.263[1.742]1.923 1.719[1.716]1.723 1.236[1.756]1.958 1.280[—]— 1.697[—]—
queen, R2 = 0.2, α0 = −1 1.212[1.623]1.722 1.634[1.647]1.650 1.283[1.711]1.737 1.207[—]— 1.680[—]—
rook, R2 = 0.2, α0 = −0.2 1.298[1.594]1.841 1.660[1.671]1.677 1.310[1.609]1.928 1.331[—]— 1.653[—]—
rook, R2 = 0.2, α0 = −1 1.339[1.650]1.820 1.695[1.708]1.710 1.655[1.711]1.864 1.312[—]— 1.694[—]—
queen, R2 = 0.8, α0 = −0.2 1.316[1.695]1.926 1.692[1.648]1.648 1.333[1.752]2.219 1.309[—]— 1.691[—]—
queen, R2 = 0.8, α0 = −1 1.282[1.643]1.841 1.654[1.652]1.639 1.395[1.717]1.795 1.264[—]— 1.730[—]—
rook, R2 = 0.8, α0 = −0.2 1.359[1.580]1.816 1.670[1.684]1.689 1.422[1.605]1.850 1.364[—]— 1.726[—]—
rook, R2 = 0.8, α0 = −1 1.364[1.626]1.807 1.725[1.725]1.714 1.621[1.679]1.917 1.341[—]— 1.708[—]—

ζ0 = (1, 1)
queen, R2 = 0.2, α0 = −0.2 1.742[1.653]1.742 1.686[1.644]1.686 1.808[1.740]1.808 1.651[—]1.651 1.738[—]1.738
queen, R2 = 0.2, α0 = −1 1.724[1.640]1.724 1.683[1.629]1.683 1.757[1.698]1.757 1.730[—]1.730 1.781[—]1.781
rook, R2 = 0.2, α0 = −0.2 1.746[1.669]1.746 1.609[1.647]1.609 1.715[1.711]1.715 1.624[—]1.624 1.688[—]1.688
rook, R2 = 0.2, α0 = −1 1.710[1.611]1.710 1.691[1.573]1.691 1.698[1.669]1.698 1.730[—]1.730 1.723[—]1.723
queen, R2 = 0.8, α0 = −0.2 1.993[1.645]1.898 1.651[1.588]1.656 2.087[1.655]2.034 1.791[—]1.768 1.724[—]1.971
queen, R2 = 0.8, α0 = −1 1.892[1.743]1.953 1.681[1.639]1.683 2.230[1.733]1.832 1.687[—]1.684 1.804[—]2.156
rook, R2 = 0.8, α0 = −0.2 1.776[1.704]1.908 1.712[1.643]1.720 1.766[1.708]1.799 1.686[—]1.754 1.779[—]1.902
rook, R2 = 0.8, α0 = −1 1.828[1.538]1.848 1.694[1.589]1.695 1.762[1.666]1.782 1.802[—]1.805 1.708[—]1.811

ζ0 = (0, 1)
queen, R2 = 0.2, α0 = −0.2 1.771[1.714]1.771 1.687[1.666]1.687 1.743[1.818]1.743 1.648[—]1.648 1.710[—]1.710
queen, R2 = 0.2, α0 = −1 1.712[1.638]1.712 1.638[1.655]1.638 1.749[1.738]1.749 1.749[—]1.749 1.718[—]1.718
rook, R2 = 0.2, α0 = −0.2 1.775[1.651]1.775 1.678[1.666]1.678 1.739[1.652]1.739 1.760[—]1.760 1.687[—]1.687
rook, R2 = 0.2, α0 = −1 1.744[1.669]1.744 1.656[1.636]1.656 1.799[1.709]1.799 1.709[—]1.709 1.670[—]1.670
queen, R2 = 0.8, α0 = −0.2 1.524[1.688]1.480 1.705[1.662]1.714 1.453[1.966]1.657 1.482[—]1.440 1.676[—]1.962
queen, R2 = 0.8, α0 = −1 1.549[1.656]1.484 1.741[1.642]1.758 1.681[2.110]1.462 1.516[—]1.427 1.705[—]2.187
rook, R2 = 0.8, α0 = −0.2 1.640[1.631]1.570 1.681[1.576]1.690 1.956[1.750]1.842 1.591[—]1.536 1.685[—]1.997
rook, R2 = 0.8, α0 = −1 1.680[1.661]1.585 1.808[1.676]1.822 2.458[1.900]1.787 1.624[—]1.570 1.721[—]2.059

The numbers show the ratios of the SE when n = 144 to that when n = 400 in each case. The three numbers in each cell
correspond to: N2SLS[N2SLS-r]AGLASSO. The ratios for the N2SLS-r estimates of β3 and β4 are not reported, because
those estimates are restricted to zero. β10 = 1 and β20 = 1. The ratios for the AGLASSO estimates of β3 and β4 when
ζ0 = 0 are not reported either, because Table 1 shows that those estimates are zero with very high probabilities.
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Table 3: Biases, SEs and CPs when ζ0 = 0 and n = 144

α β1 β2 β3 β4

queen, R2 = 0.2, α0 = −0.2
N2SLS -0.261[0.679]0.959 0.035[0.157]0.923 -0.033[0.736]0.821 -0.169[0.691]0.966 0.000[0.042]0.952
N2SLS-r -0.025[0.230]0.937 -0.000[0.149]0.909 0.000[0.251]0.933 0.000[0.000]— 0.000[0.000]—
AGLASSO -0.038[0.262]0.933 0.002[0.149]0.911 -0.006[0.283]0.926 -0.012[0.176]— 0.001[0.016]—

queen, R2 = 0.2, α0 = −1
N2SLS -0.096[0.737]0.944 0.030[0.152]0.944 0.212[1.164]0.880 -0.013[0.756]0.947 0.001[0.041]0.959
N2SLS-r -0.016[0.219]0.944 -0.005[0.142]0.922 0.007[0.244]0.928 0.000[0.000]— 0.000[0.000]—
AGLASSO -0.026[0.236]0.942 -0.005[0.142]0.919 0.000[0.249]0.925 -0.007[0.103]— 0.000[0.014]—

rook, R2 = 0.2, α0 = −0.2
N2SLS 0.095[0.467]0.968 0.027[0.153]0.927 0.225[0.609]0.947 0.091[0.475]0.989 0.002[0.041]0.958
N2SLS-r 0.001[0.157]0.948 -0.003[0.148]0.901 0.013[0.181]0.952 0.000[0.000]— 0.000[0.000]—
AGLASSO 0.000[0.181]0.939 -0.002[0.148]0.899 0.017[0.216]0.944 0.000[0.109]— 0.001[0.016]—

rook, R2 = 0.2, α0 = −1
N2SLS 0.185[0.512]0.934 0.029[0.152]0.933 0.387[0.886]0.961 0.174[0.478]0.984 0.001[0.041]0.958
N2SLS-r 0.002[0.160]0.941 -0.006[0.145]0.912 0.017[0.188]0.944 0.000[0.000]— 0.000[0.000]—
AGLASSO 0.004[0.181]0.935 -0.005[0.145]0.914 0.023[0.218]0.939 0.001[0.100]— 0.001[0.014]—

queen, R2 = 0.8, α0 = −0.2
N2SLS -0.233[0.690]0.954 0.036[0.154]0.929 0.005[0.811]0.842 -0.148[0.690]0.965 0.007[0.172]0.954
N2SLS-r -0.019[0.222]0.936 0.002[0.145]0.908 0.005[0.254]0.926 0.000[0.000]— 0.000[0.000]—
AGLASSO -0.025[0.259]0.929 0.003[0.145]0.908 0.010[0.324]0.919 -0.003[0.155]— 0.008[0.059]—

queen, R2 = 0.8, α0 = −1
N2SLS -0.080[0.756]0.931 0.031[0.155]0.935 0.246[1.205]0.876 0.000[0.775]0.941 0.004[0.170]0.945
N2SLS-r -0.012[0.225]0.941 -0.005[0.145]0.909 0.010[0.257]0.932 0.000[0.000]— 0.000[0.000]—
AGLASSO -0.026[0.255]0.939 -0.004[0.144]0.908 0.003[0.276]0.926 -0.010[0.132]— 0.010[0.060]—

rook, R2 = 0.8, α0 = −0.2
N2SLS 0.083[0.494]0.953 0.030[0.151]0.933 0.227[0.660]0.936 0.080[0.493]0.989 0.001[0.167]0.953
N2SLS-r 0.002[0.157]0.949 -0.003[0.146]0.897 0.015[0.178]0.941 0.000[0.000]— 0.000[0.000]—
AGLASSO -0.002[0.184]0.945 -0.001[0.146]0.900 0.015[0.209]0.941 -0.004[0.101]— 0.006[0.056]—

rook, R2 = 0.8, α0 = −1
N2SLS 0.182[0.514]0.927 0.026[0.154]0.926 0.379[0.863]0.964 0.168[0.481]0.990 0.005[0.166]0.945
N2SLS-r 0.007[0.157]0.947 -0.008[0.146]0.904 0.018[0.182]0.947 0.000[0.000]— 0.000[0.000]—
AGLASSO 0.013[0.174]0.942 -0.007[0.145]0.906 0.028[0.208]0.950 0.007[0.091]— 0.008[0.061]—

“N2SLS” denotes the unrestricted N2SLS estimator and “N2SLS-r” denotes the restricted N2SLS estimator with
the restriction ζ = 0 imposed. The three numbers in each cell are: bias[SE]CP. β10 = 1 and β20 = 1.
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Table 4: Biases, SEs and CPs when ζ0 = (1, 1)′ and n = 144

α β1 β2 β3 β4

queen, R2 = 0.2, α0 = −0.2
N2SLS 0.003[0.112]0.940 0.002[0.147]0.917 0.007[0.149]0.937 0.005[0.271]0.940 -0.002[0.040]0.949
N2SLS-r -0.100[0.290]0.999 -0.015[0.361]0.875 -0.058[0.427]0.953 -1.000[0.000]— -1.000[0.000]—
AGLASSO 0.003[0.112]0.940 0.002[0.147]0.917 0.007[0.149]0.937 0.005[0.271]0.940 -0.002[0.040]0.949

queen, R2 = 0.2, α0 = −1
N2SLS -0.000[0.113]0.941 -0.006[0.148]0.919 0.007[0.147]0.949 0.003[0.282]0.936 -0.002[0.042]0.940
N2SLS-r -0.099[0.292]0.999 -0.035[0.361]0.874 -0.063[0.429]0.951 -1.000[0.000]— -1.000[0.000]—
AGLASSO -0.000[0.113]0.942 -0.006[0.148]0.919 0.007[0.147]0.949 0.003[0.282]0.936 -0.002[0.042]0.940

rook, R2 = 0.2, α0 = −0.2
N2SLS -0.000[0.072]0.941 -0.005[0.142]0.928 0.004[0.114]0.931 0.005[0.176]0.946 -0.000[0.037]0.945
N2SLS-r -0.072[0.218]1.000 -0.025[0.385]0.872 -0.037[0.400]0.945 -1.000[0.000]— -1.000[0.000]—
AGLASSO -0.000[0.072]0.941 -0.005[0.142]0.928 0.004[0.114]0.931 0.005[0.176]0.946 -0.000[0.037]0.945

rook, R2 = 0.2, α0 = −1
N2SLS 0.000[0.073]0.957 -0.004[0.144]0.923 0.001[0.114]0.945 -0.004[0.182]0.930 -0.002[0.039]0.944
N2SLS-r -0.068[0.221]0.998 -0.037[0.369]0.876 -0.049[0.400]0.947 -1.000[0.000]— -1.000[0.000]—
AGLASSO 0.000[0.073]0.956 -0.004[0.144]0.923 0.001[0.114]0.945 -0.004[0.182]0.930 -0.002[0.039]0.944

queen, R2 = 0.8, α0 = −0.2
N2SLS -0.053[0.416]0.946 0.007[0.151]0.936 0.026[0.461]0.938 -0.045[0.550]0.948 -0.012[0.165]0.941
N2SLS-r -0.594[0.332]0.709 -0.061[0.231]0.866 -0.420[0.217]0.554 -1.000[0.000]— -1.000[0.000]—
AGLASSO -0.059[0.421]0.942 0.006[0.151]0.935 0.020[0.452]0.933 -0.052[0.550]0.939 -0.018[0.189]0.932

queen, R2 = 0.8, α0 = −1
N2SLS -0.055[0.410]0.940 0.010[0.154]0.935 0.029[0.509]0.933 -0.047[0.551]0.946 -0.012[0.168]0.947
N2SLS-r -0.602[0.347]0.680 -0.055[0.233]0.874 -0.418[0.226]0.568 -1.000[0.000]— -1.000[0.000]—
AGLASSO -0.069[0.423]0.927 0.010[0.154]0.934 0.015[0.418]0.920 -0.062[0.550]0.927 -0.021[0.201]0.934

rook, R2 = 0.8, α0 = −0.2
N2SLS -0.013[0.245]0.947 0.013[0.158]0.916 0.014[0.249]0.946 -0.019[0.286]0.966 -0.010[0.158]0.946
N2SLS-r -0.494[0.319]0.684 -0.092[0.247]0.842 -0.361[0.223]0.624 -1.000[0.000]— -1.000[0.000]—
AGLASSO -0.019[0.262]0.943 0.013[0.158]0.916 0.011[0.253]0.941 -0.024[0.297]0.960 -0.014[0.173]0.940

rook, R2 = 0.8, α0 = −1
N2SLS -0.020[0.240]0.957 -0.003[0.153]0.930 0.006[0.243]0.956 -0.033[0.297]0.958 -0.014[0.156]0.936
N2SLS-r -0.475[0.313]0.718 -0.108[0.236]0.847 -0.350[0.232]0.638 -1.000[0.000]— -1.000[0.000]—
AGLASSO -0.022[0.240]0.953 -0.004[0.154]0.930 0.004[0.244]0.951 -0.034[0.295]0.953 -0.017[0.170]0.930

“N2SLS” denotes the unrestricted N2SLS estimator and “N2SLS-r” denotes the restricted N2SLS estimator with
the restriction ζ = 0 imposed. The three numbers in each cell are: bias[SE]CP. β10 = 1 and β20 = 1.
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Table 5: Biases, SEs and CPs when ζ0 = (0, 1)′ and n = 144

α β1 β2 β3 β4

queen, R2 = 0.2, α0 = −0.2
N2SLS 0.001[0.119]0.947 0.003[0.146]0.921 0.006[0.152]0.943 0.005[0.252]0.944 -0.002[0.043]0.945
N2SLS-r 0.024[0.308]0.999 0.002[0.343]0.884 0.076[0.491]0.971 0.000[0.000]— -1.000[0.000]—
AGLASSO 0.001[0.119]0.947 0.003[0.146]0.922 0.006[0.152]0.943 0.005[0.252]0.944 -0.002[0.043]0.944

queen, R2 = 0.2, α0 = −1
N2SLS -0.002[0.119]0.942 0.006[0.146]0.924 0.007[0.153]0.947 -0.003[0.262]0.938 -0.002[0.044]0.940
N2SLS-r 0.014[0.314]0.998 0.005[0.355]0.865 0.068[0.476]0.969 0.000[0.000]— -1.000[0.000]—
AGLASSO -0.002[0.119]0.942 0.006[0.146]0.924 0.007[0.153]0.947 -0.003[0.262]0.938 -0.002[0.044]0.940

rook, R2 = 0.2, α0 = −0.2
N2SLS 0.002[0.085]0.944 -0.000[0.144]0.917 0.004[0.120]0.947 0.000[0.185]0.942 -0.002[0.043]0.940
N2SLS-r 0.011[0.224]0.999 -0.008[0.354]0.872 0.046[0.386]0.970 0.000[0.000]— -1.000[0.000]—
AGLASSO 0.002[0.085]0.944 -0.000[0.144]0.917 0.004[0.120]0.947 0.000[0.185]0.942 -0.002[0.043]0.939

rook, R2 = 0.2, α0 = −1
N2SLS -0.000[0.086]0.934 -0.000[0.142]0.924 0.006[0.126]0.936 -0.007[0.183]0.940 -0.002[0.043]0.949
N2SLS-r 0.010[0.223]1.000 0.002[0.353]0.871 0.038[0.391]0.971 0.000[0.000]— -1.000[0.000]—
AGLASSO -0.000[0.086]0.934 -0.000[0.142]0.924 0.006[0.126]0.936 -0.007[0.183]0.940 -0.002[0.043]0.949

queen, R2 = 0.8, α0 = −0.2
N2SLS -0.052[0.464]0.946 0.015[0.151]0.929 0.060[0.681]0.929 -0.011[0.509]0.947 -0.011[0.177]0.942
N2SLS-r -0.022[0.360]0.947 -0.001[0.224]0.864 0.041[0.481]0.928 0.000[0.000]— -1.000[0.000]—
AGLASSO -0.046[0.445]0.946 0.013[0.152]0.928 0.060[0.696]0.931 -0.009[0.491]0.930 -0.021[0.211]0.927

queen, R2 = 0.8, α0 = −1
N2SLS -0.041[0.475]0.943 0.011[0.153]0.933 0.085[0.708]0.928 -0.008[0.517]0.955 -0.012[0.178]0.952
N2SLS-r -0.007[0.355]0.951 -0.010[0.222]0.885 0.065[0.517]0.938 0.000[0.000]— -1.000[0.000]—
AGLASSO -0.049[0.451]0.946 0.010[0.155]0.931 0.058[0.596]0.928 -0.019[0.481]0.929 -0.027[0.228]0.928

rook, R2 = 0.8, α0 = −0.2
N2SLS 0.011[0.354]0.940 0.009[0.149]0.933 0.080[0.451]0.940 0.014[0.368]0.959 -0.018[0.178]0.953
N2SLS-r 0.013[0.253]0.951 -0.012[0.214]0.889 0.051[0.312]0.946 0.000[0.000]— -1.000[0.000]—
AGLASSO 0.010[0.339]0.939 0.007[0.149]0.929 0.073[0.425]0.940 0.012[0.354]0.938 -0.030[0.218]0.933

rook, R2 = 0.8, α0 = −1
N2SLS 0.022[0.362]0.927 0.015[0.157]0.916 0.103[0.595]0.937 0.013[0.375]0.948 -0.021[0.179]0.951
N2SLS-r 0.012[0.264]0.951 0.002[0.225]0.877 0.051[0.355]0.950 0.000[0.000]— -1.000[0.000]—
AGLASSO 0.009[0.339]0.931 0.013[0.158]0.915 0.071[0.429]0.935 0.000[0.360]0.924 -0.034[0.221]0.929

“N2SLS” denotes the unrestricted N2SLS estimator and “N2SLS-r” denotes the restricted N2SLS estimator with
the restriction ζ = 0 imposed. The three numbers in each cell are: bias[SE]CP. β10 = 1 and β20 = 1.
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Table 6: Size and power of the distance difference and gradient tests

distance difference test gradient test

size power size power

(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

Wn, R2, α0 n=144
queen, 0.2, −0.2 0.072 1.000 1.000 1.000 1.000 1.000 1.000 0.052 1.000 1.000 1.000 1.000 1.000 1.000
queen, 0.2, −1 0.065 1.000 1.000 1.000 1.000 1.000 1.000 0.053 1.000 1.000 1.000 1.000 1.000 0.999
rook, 0.2, −0.2 0.073 1.000 1.000 1.000 1.000 1.000 1.000 0.047 1.000 1.000 1.000 1.000 1.000 1.000
rook, 0.2, −1 0.066 1.000 1.000 1.000 1.000 1.000 1.000 0.057 1.000 0.999 1.000 1.000 1.000 1.000
queen, 0.8, −0.2 0.056 0.662 0.953 0.994 1.000 1.000 1.000 0.045 0.714 0.975 0.996 1.000 1.000 1.000
queen, 0.8, −1 0.074 0.668 0.952 0.996 0.999 0.999 0.999 0.053 0.713 0.972 0.999 0.999 1.000 1.000
rook, 0.8, −0.2 0.050 0.789 0.958 0.994 0.999 0.999 0.999 0.044 0.637 0.953 0.993 0.999 1.000 0.998
rook, 0.8, −1 0.058 0.798 0.968 0.992 0.998 0.999 1.000 0.051 0.647 0.952 0.993 1.000 1.000 1.000

n=400
queen, 0.2, −0.2 0.062 1.000 1.000 1.000 1.000 1.000 1.000 0.043 1.000 1.000 1.000 0.999 1.000 0.999
queen, 0.2, −1 0.053 1.000 1.000 1.000 1.000 1.000 1.000 0.044 1.000 1.000 1.000 1.000 1.000 1.000
rook, 0.2, −0.2 0.059 1.000 1.000 1.000 1.000 1.000 1.000 0.050 1.000 1.000 1.000 1.000 0.999 1.000
rook, 0.2, −1 0.052 1.000 1.000 1.000 1.000 1.000 1.000 0.045 1.000 1.000 1.000 1.000 1.000 1.000
queen, 0.8, −0.2 0.064 0.971 1.000 1.000 1.000 1.000 1.000 0.054 0.978 1.000 1.000 1.000 1.000 1.000
queen, 0.8, −1 0.070 0.972 1.000 1.000 1.000 1.000 1.000 0.053 0.982 1.000 1.000 1.000 1.000 1.000
rook, 0.8, −0.2 0.059 0.978 1.000 1.000 1.000 1.000 1.000 0.043 0.959 1.000 1.000 1.000 1.000 1.000
rook, 0.8, −1 0.055 0.982 1.000 1.000 1.000 1.000 1.000 0.043 0.958 1.000 1.000 1.000 1.000 1.000

For the power, (1), (2), (3), (4), (5) and (6) in the table mean that in the DGP ζ0 = (1, 0.5)′, ζ0 = (1, 1)′,
ζ0 = (1, 1.5)′, ζ0 = (1, 2)′, ζ0 = (1, 2.5)′ and ζ0 = (1, 3)′, respectively. β10 = 1 and β20 = 1.
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