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Abstract

This paper studies a spatial panel data model with fixed effects and heteroskedasticity, where the spatial effects

in the dependent variable and disturbances are in the form of matrix exponential spatial specification (MESS).

The asymptotic properties of quasi maximum likelihood (QML) estimators with large n and finite or large T

are established. We show that the QML estimator (QMLE) can be consistent and asymptotically normal under

unknown heteroskedasticity when the spatial weights matrices in the two MESS processes are commutative. We

provide a consistent estimator for the standard deviation of the QMLE under regularity conditions, which can be

used for inference.
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1 Introduction

LeSage and Pace (2007) propose the matrix exponential spatial specification (MESS) as a substitute for the spatial

autoregressive (SAR) specification, based on two advantages of the MESS model: one is that the specification

always yields positive definite estimated covariance matrices, and the other is its computational simplicity because

its quasi maximum likelihood (QML) function does not involve any Jacobian. Debarsy et al. (2015) consider a

general MESS model that has MESS processes in both the dependent variable and the disturbances. They study

the consistency of QML estimators (QMLE) for the model with homoskedastic and heteroskedastic disturbances.

1Corresponding author (E-mail: jin.fei@live.com).
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Under unknown heteroskedasticity, the QMLE of the MESS model is consistent when the spatial weights matrices

in the two MESS processes are commutative, but the QMLE of the SAR model is not in general.

The extension of cross sectional SAR models to panel data has a long history. The MESS can also be extended

to panel data. Figueiredo and Silva (2015) employ a direct approach to establish asymptotic properties of maximum

likelihood estimators for a MESS panel model with fixed effects. However, we notice that even for the SAR

specification, only a few papers in the literature have considered heteroskedasticity for panel data. Moscone and

Tosetti (2011) employ the generalized method of moments (GMM) to study a SAR panel data model with fixed

effects and heteroskedasticity. However, the GMM needs special quadratic moment conditions.

We consider a fixed effects spatial panel data model with unknown heteroskedasticity, which has MESS pro-

cesses in both the dependent variable and disturbances. With individual effects being concentrated out from the

QML function, we find that the QMLE can still be consistent when the two spatial weights matrices for the MESS

processes are commutative. We derive the asymptotic distribution of the QMLE and provide a consistent estimator

for its standard deviation. In practice, the spatial weights matrices in the two processes are often specified to be

the same, so they are commutative. If there is no spatial dependence in disturbances, the commutativity property

is automatically satisfied. Some regularity assumptions, lemmas and proofs are provided in a supplementary file.

2 Model and estimation

We consider the following MESS panel data model (MESSPD(1,1)):

eαWnYnt = Xntβ + cn + Unt, eτMnUnt = Vnt, t = 1, 2, . . . , T, (1)

where Ynt = (y1t, y2t, · · · , ynt)′ and Vnt = (v1t, · · · , vnt)′ are n × 1 vectors of observations on the dependent

variable and disturbances at time t. The vit’s are independent (0, σ2
it). Xnt is an n× k matrix of exogenous time-

varying regressors with coefficient vector β. The n×n nonstochastic spatial weights matrices Wn and Mn, which

may or may not be different, capture the spatial dependence on, respectively, yit and vit among cross sectional

units. α and τ are scalar spatial dependence parameters, and cn is an n× 1 vector of fixed effects.

Denote ζ = (β′, α, τ)′ and θ = (ζ, σ2)′, with ζ0 = (β′0, α0, τ0)′ and θ0 = (ζ0, σ
2
0)′ being their true values. As

(eαD)−1 = e−αD for any square matrix D, the reduced form of Ynt is

Ynt = e−α0Wn(Xntβ0 + cn0 + e−τ0MnVnt). (2)

It follows that the variance-covariance (VC) matrix of Ynt is e−α0Wne−τ0MnE(VntV
′
nt)e

−τ0M ′
ne−α0W

′
n , which is

always positive definite. It is unnecessary to impose any constraint on the parameter spaces of α and τ . By contrast,

for the SAR model with SAR disturbances (SARAR model), if the eigenvalues of a spatial weights matrix Wn are

all real, the parameter space for the associated spatial dependence parameter is (1/µmin, 1/µmax), where µmin and

µmax are, respectively, the smallest and largest eigenvalues of Wn.2

2If Wn is row-normalized, as µmax = 1, the parameter space becomes (1/µmin, 1). See, e.g., Kelejian and Prucha (2010) and Elhorst et

al. (2012) on discussions of parameter spaces for SAR models.

2



For any square matrix D, |eαD| = etrace(αD) = eα trace(D). Then as Wn and Mn have zero diagonals, the

quasi log likelihood function of the model, as if the disturbances vit’s were normal, is

lnLnT (θ, cn) = −nT
2

ln(2πσ2)− 1

2σ2

T∑
t=1

V ′nt(ζ, cn)Vnt(ζ, cn). (3)

where Vnt(ζ, cn) = eτMn(eαWnYnt − Xntβ − cn). Let Ỹnt = Ynt − ȲnT for t = 1, ..., T , where ȲnT =

1
T

∑T
t=1 Ynt. Define X̃nt and Ṽnt similarly. With a large n, our analysis is based on the following concentrated

log likelihood function with individual effects cn being concentrated out:

lnLnT (θ) = −nT
2

ln(2πσ2)− 1

2σ2

T∑
t=1

Ṽ ′nt(ζ)Ṽnt(ζ), (4)

where Ṽnt(ζ) = eτMn(eαWn Ỹnt− X̃ntβ). Under unknown heteroskedasticity, the parameters we are interested in

do not cover variance parameters, as the number of different variances increases with the number of cross sections.

By (4), for given σ2, other parameter estimates are derived from the function

ΓnT (ζ) =

T∑
t=1

Ṽ ′nt(ζ)Ṽnt(ζ), (5)

which does not involve any variance parameter. The first order derivative of (5) is

∂ΓnT (ζ)

∂ζ
=

 −2
∑T
t=1(eτMnX̃nt)

′Ṽnt(ζ)

2
∑T
t=1(eτMnWne

αWn Ỹnt)
′Ṽnt(ζ)

2
∑T
t=1(MnṼnt(ζ))′Ṽnt(ζ)

 . (6)

The VC matrix of disturbances ΣnT = diag(ΣnT,1, · · · ,ΣnT,T ) is a diagonal matrix, where each block ΣnT,t =

diag(σ2
1t, · · · , σ2

nt) is a diagonal matrix formed by σ2
it = E(v2

it) for i = 1, . . . , n. Note that

E
( T∑
t=1

(MnṼnt(ζ0))′Ṽnt(ζ0)
)

= tr
[
(JT ⊗Mn)ΣnT

]
,

where JT = IT − 1
T lT l

′
T is an operator due to the elimination of individual effects. As the diagonal elements of

JT are the same and the diagonal elements of Mn are all zero, tr
[
(JT ⊗Mn)ΣnT

]
= 0. In addition,

E
( T∑
t=1

(eτ0MnWne
α0Wn Ỹnt)

′Ṽnt(ζ0)
)

= tr
[
(JT ⊗ e−τ0M

′
nW ′ne

τ0M
′
n)ΣnT

]
,

which may not be equal to zero in general. But if the spatial weights matrices Wn and Mn are commutative, then

W ′ne
τ0M

′
n = eτ0M

′
nW ′n and tr

[
(JT ⊗e−τ0M

′
nW ′ne

τ0M
′
n)ΣnT

]
= tr

[
(JT ⊗W ′n)ΣnT

]
= 0. Thus, with commutative

Wn and Mn, the QMLE ζ̂nT of ζ derived from the minimization of (5) can be consistent under heteroskedasticity.

Without the commutativity of Wn and Mn, the QMLE is generally inconsistent, so this condition may not be

extended and we maintain the following assumption.

Assumption 1. Wn and Mn are constant spatial weights matrices with zero diagonals, and they are commutative.
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Note that for given η = (α, τ)′, minimizing ΓnT (ζ) yields a closed form estimate of β:

β̂nT (η) =
( T∑
t=1

(eτMnX̃nt)
′eτMnX̃nt

)−1 T∑
t=1

(eτMnX̃nt)
′eτMneαWn Ỹnt. (7)

This estimate can be substituted into (5) to derive a function of only η.

Theorem 1. Under Assumption 1 and other standard regularity conditions in the supplementary file, the QMLE

ζ̂nT is consistent for ζ0, i.e., ζ̂nT
p−→ ζ0.

For the asymptotic distribution of ζ̂nT , let XnT = (X ′n1, X
′
n2, · · · , X ′nT )′,

Hζ0,nT =
1

nT
E
(∂2ΓnT (ζ0)

∂ζ∂ζ′

)

=
2

nT


∑T
t=1(eτ0MnX̃nt)

′eτ0MnX̃nt ∗ ∗
−
∑T
t=1(eτ0MnWnX̃ntβ0)′eτ0MnX̃nt H22 ∗

0 tr
[
(JT ⊗Ms

nWn)ΣnT
]

tr
[
(JT ⊗Ms

nMn)ΣnT
]
 ,

(8)

whereH22 =
∑T
t=1(eτ0MnWnX̃ntβ0)′(eτ0MnWnX̃ntβ0) + tr

[
(JT ⊗W s

nWn)ΣnT
]
, and

∆ζ0,nT =
1

nT
E
(∂ΓnT (ζ0)

∂ζ
· ∂ΓnT (ζ0)

∂ζ ′

)

=
2

nT

 2X′nT (JT ⊗ eτ0M
′
n)ΣnT (JT ⊗ eτ0Mn)XnT ∗ ∗

−2β′0X
′
nT (JT ⊗W ′neτ0M

′
n)ΣnT (JT ⊗ eτ0Mn)XnT ∆22 ∗

0 ∆32 ∆33

 ,

(9)

where ∆22 = 2β′0X
′
nT (JT ⊗W ′neτ0M

′
n)ΣnT (JT ⊗ eτ0MnWn)XnTβ0 + tr

[
ΣnT (JT ⊗W s

n)ΣnT (JT ⊗W s
n)
]
,

∆32 = tr
[
ΣnT (JT ⊗Ms

n)ΣnT (JT ⊗W s
n)
]
, and ∆33 = tr

[
ΣnT (JT ⊗Ms

n)ΣnT (JT ⊗Ms
n)
]
.3 For any square

matrix An, let vec(An) denote its vectorization and Asn = An + A′n. As Mn and Wn are commutative, we can

write ∆ζ0,nT as ∆ζ0,nT = 1
nT ∆′ζ0,1nT∆ζ0,1nT , where

∆ζ0,1nT =

(
−2Σ

1
2

nT (JT ⊗ eτ0Mn)XnT 2Σ
1
2

nT (JT ⊗ eτ0MnWn)XnTβ0 0

0 vec
(
Σ

1
2

nT (JT ⊗W s
n)Σ

1
2

nT

)
vec
(
Σ

1
2

nT (JT ⊗Ms
n)Σ

1
2

nT

)) . (10)

Thus, ∆ζ0,nT is positive semi-definite. The following assumption can ensure the nonsingularity of Hζ0,nT in the

limit.

Assumption 2. lim 1
nT tr[(JT ⊗M

s
nMn)ΣnT ] 6= 0 and

lim 1
nT

[
(X̃nTβ0)′(IT⊗W ′neτ0M

′
n)HnT (τ0)(IT⊗eτ0MnWn)X̃nTβ0+tr[(JT⊗W s

nWn)ΣnT ]− tr
2[(JT⊗Ms

nWn)ΣnT ]
tr[(JT⊗Ms

nMn)ΣnT ]

]
6=

0, where X̃nT = [X̃ ′n1, . . . , X̃
′
nT ]′ andHnT (τ0) = InT−(IT⊗eτ0Mn)X̃nT [X̃′nT (IT⊗eτ0M

′
neτ0Mn)X̃nT ]−1X̃′nT (IT⊗

eτ0M
′
n).

3We might expect that the variance matrix ∆ζ0,nT involves the third and fourth moments of disturbances. However, due to the commuta-

tivity ofWn andMn, relevant terms involving those higher order moments will be multiplied by the diagonal elements ofWn andMn, which

are zero. Thus, ∆ζ0,nT does not involve the third and fourth moments of disturbances.
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Theorem 2. Under Assumptions 1–2 and other regularity conditions in the supplementary file,

√
nT (ζ̂nT − ζ0)

d−→ N
(
0, lim(H−1

ζ0,nT
∆ζ0,nTH−1

ζ0,nT
)
)
,

where the limit is taken under a large n and a large or finite T .

As the number of individual effects increases with n, one might expect the incidental parameter problem with

a finite T (Neyman and Scott, 1948) and there can still be an inconsistency problem for a large T (Lee and Yu,

2010). However, for the SAR panel data model, with individual effects being concentrated out from the quasi log

likelihood function, those problems only occur to the variance parameter as shown in Lee and Yu (2010). As our

MESSPD(1,1) is similar to the SAR panel data model but we do not estimate any variance parameter for our model

with heteroskedasticity, there are no such problems and the convergence rate of the QMLE is
√
nT .

We can define White (1980) type consistent estimators of Hζ0,nT and ∆ζ0,nT to make valid inference using

the QMLE ζ̂nT under heteroskedasticity. Due to the use of the deviation from the mean operator to eliminate

individual effects, we can only obtain estimates of ṽit = vit − 1
T

∑T
t=1 vit, namely the residuals ˆ̃vit from the

QML estimation. As E(
∑T
t=1 ṽ

2
it) = T−1

T

∑T
t=1 σ

2
it, ΣnT in Hζ0,nT and ∆ζ0,nT can be replaced by Σ̂nT =

T
T−1diag(ˆ̃v2

11, · · · , ˆ̃v2
n1, · · · , ˆ̃v2

1T , · · · , ˆ̃v2
nT ) to obtain Ĥζ0,nT and ∆̂ζ0,nT . When σ2

it is allowed to depend on t,

even if ΣnT is replaced by Σ̂nT , we may not have a consistent covariance matrix estimator when T is finite.4 A

large T ensures the consistency of Ĥζ0,nT and ∆̂ζ0,nT . When the heteroskedasticity is set as vit ∼ (0, σ2
i ), i.e.,

σ2
it only depends on i, E(ṽ2

it) = T−1
T σ2

i . Then as long as n is large, we will have a consistent covariance matrix

estimator regardless of whether T is fixed or tends to infinity.

Theorem 3. Suppose that Assumptions 1–2 and regularity assumptions in the supplementary file hold. Under

either (a) both n and T are large or (b) n is large, T is finite and vit ∼ (0, σ2
i ), Ĥζ0,nT = Hζ0,nT + op(1) and

∆̂ζ0,nT = ∆ζ0,nT + op(1).

3 Monte Carlo

We conduct some Monte Carlo simulations to evaluate the finite sample performance of our estimator. Samples

are generated from model (1), where vit’s are normally distributed with mean zero and standard deviation 1 + k
nT

for k = 1, . . . , nT , and X1,nt and X2,nt are independently drawn from N(0, 4) and U(1, 5) respectively. The

true value of ζ is either (1, 1,−2, 1)′ or (1, 1,−2,−1)′. We use the latitudes and longitudes of 30 provinces

and autonomous regions of Chinese mainland to generate a geographical weights matrices based on 10 nearest

neighbors and then row-normalize it. This matrix is used to construct block-diagonal spatial weights matrix Wn =

Mn for n = 90, 120, or 150. The number of time periods T is 5, 10, or 20. The number of Monte Carlo repetitions

is 1000. We report Bias, E-SD, T-SD and RMSE, where Bias is the average of estimation biases from 1000

repetitions, E-SD is the empirical standard deviation of the estimates, T-SD is the estimated theoretical standard

4When vit ∼ (0, σ2
it) and T is finite, this replacement generally does not generate consistent estimators for terms in ∆ζ0,nT that involve

two ΣnT , i.e., terms with the form 1
nT

tr[ΣnT (JT ⊗W s
n)ΣnT (JT ⊗Ms

n)]. See the proof of Theorem 3 in the supplementary file for details.
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deviation and RMSE is the root mean squared error.5 Monte Carlo results are summarized in Table 1. We observe

that the biases of the QMLEs are very small, so E-SDs and RMSEs are close. The E-SDs and T-SDs are similar.

For given n, Biases, E-SDs, T-SDs and RMSEs decrease as T increases.

Table 1: QML estimation results for ζ under heteroskedasticity

ζ0 = (1, 1,−2, 1)′ ζ0 = (1, 1,−2,−1)′

n T β1 β2 α τ β1 β2 α τ

90

5

Bias 0.0005 -0.0022 -0.0013 0.0365 Bias -0.0007 -0.0022 0.0061 0.0126
E-SD 0.0427 0.0439 0.0504 0.1507 E-SD 0.0459 0.0458 0.1538 0.2116
T-SD 0.0416 0.0416 0.0494 0.1362 T-SD 0.0440 0.0440 0.1447 0.1928
RMSE 0.0427 0.0439 0.0504 0.1550 RMSE 0.0459 0.0459 0.1540 0.2120

10

Bias -0.0003 0.0020 0.0021 0.0115 Bias -0.0015 0.0014 0.0096 -0.0034
E-SD 0.0282 0.0301 0.0330 0.0938 E-SD 0.0299 0.0316 0.0976 0.1289
T-SD 0.0278 0.0278 0.0328 0.0912 T-SD 0.0294 0.0293 0.0969 0.1291
RMSE 0.0282 0.0302 0.0331 0.0945 RMSE 0.0299 0.0316 0.0981 0.1289

20

Bias 0.0007 -0.0000 0.0012 0.0060 Bias 0.0007 -0.0004 0.0029 0.0011
E-SD 0.0190 0.0196 0.0219 0.0649 E-SD 0.0199 0.0212 0.0665 0.0905
T-SD 0.0192 0.0192 0.0225 0.0629 T-SD 0.0202 0.0202 0.0667 0.0889
RMSE 0.0190 0.0196 0.0219 0.0652 RMSE 0.0199 0.0212 0.0665 0.0905

120

5

Bias -0.0001 -0.0004 -0.0008 0.0236 Bias -0.0004 -0.0004 -0.0016 0.0112
E-SD 0.0367 0.0370 0.0442 0.1231 E-SD 0.0386 0.0385 0.1268 0.1710
T-SD 0.0360 0.0359 0.0428 0.1181 T-SD 0.0381 0.0380 0.1259 0.1674
RMSE 0.0367 0.0370 0.0442 0.1254 RMSE 0.0386 0.0385 0.1268 0.1713

10

Bias 0.0002 0.0010 0.0015 0.0075 Bias 0.0002 0.0007 0.0007 0.0030
E-SD 0.0244 0.0246 0.0281 0.0811 E-SD 0.0259 0.0262 0.0856 0.1140
T-SD 0.0241 0.0241 0.0285 0.0791 T-SD 0.0254 0.0254 0.0837 0.1117
RMSE 0.0244 0.0246 0.0281 0.0815 RMSE 0.0259 0.0262 0.0856 0.1140

20

Bias -0.0001 -0.0006 0.0007 0.0012 Bias -0.0002 -0.0010 0.0019 -0.0025
E-SD 0.0166 0.0176 0.0200 0.0556 E-SD 0.0176 0.0187 0.0586 0.0762
T-SD 0.0166 0.0166 0.0195 0.0546 T-SD 0.0175 0.0175 0.0578 0.0771
RMSE 0.0166 0.0176 0.0200 0.0556 RMSE 0.0176 0.0187 0.0586 0.0763

150

5

Bias 0.0004 -0.0023 -0.0017 0.0215 Bias 0.0002 -0.0026 0.0008 0.0097
E-SD 0.0340 0.0333 0.0387 0.1151 E-SD 0.0353 0.0347 0.1104 0.1528
T-SD 0.0323 0.0323 0.0382 0.1057 T-SD 0.0342 0.0341 0.1124 0.1497
RMSE 0.0340 0.0334 0.0388 0.1171 RMSE 0.0353 0.0348 0.1104 0.1531

10

Bias 0.0006 0.0002 -0.0000 0.0068 Bias 0.0004 -0.0002 0.0020 0.0006
E-SD 0.0215 0.0215 0.0249 0.0717 E-SD 0.0232 0.0229 0.0751 0.1016
T-SD 0.0216 0.0215 0.0254 0.0708 T-SD 0.0228 0.0227 0.0751 0.1001
RMSE 0.0215 0.0215 0.0249 0.0720 RMSE 0.0232 0.0229 0.0751 0.1016

20

Bias -0.0007 -0.0004 -0.0003 0.0037 Bias -0.0008 -0.0005 0.0005 0.0008
E-SD 0.0150 0.0152 0.0169 0.0487 E-SD 0.0158 0.0160 0.0505 0.0681
T-SD 0.0148 0.0149 0.0174 0.0488 T-SD 0.0157 0.0156 0.0516 0.0689
RMSE 0.0150 0.0152 0.0169 0.0488 RMSE 0.0158 0.0160 0.0505 0.0681

5The T-SD is obtained from the diagonal elements of the estimatedH−1
ζ0,nT

∆ζ0,nTH
−1
ζ0,nT

.
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4 Real data analysis

Ertur and Musolesi (2017) use the spatial error model to estimate both trade-unrelated and trade-related geographic

spillovers among 24 countries. Due to differences in the regional environment of different countries, there might be

heteroskedasticity in Vnt. We use our MESSPD(1,1) to analyze the geographic R&D spillovers among 24 countries

over the period 1971–2004.6

We consider a MESSPD(1,1) model:

eαWn logFnt = β1 logGSdnt + β2 logNSdnt + β3 logGSfnt + β4 logNSfnt + β5 logGStfnt

+ β6 logNStfnt + β7 logGHnt + β8 logNHnt + an + Unt,

eτWnUnt = Vnt,

(11)

where Fnt is TFP of 24 countries at t, GSdnt and NSdnt are domestic R&D capital stocks of G7 and non-G7 coun-

tries respectively, GSfnt and NSfnt are foreign capital stocks containing trade-unrelated geographic spillovers of

G7 and non-G7 countries respectively, GStfnt and NStfnt are foreign capital stocks containing trade-related geo-

graphic spillovers of G7 and non-G7 countries respectively, GHnt andNHnt are human capital of G7 and non-G7

countries respectively, Wn = [wij ] is an n×n matrix with wij = e−dij/
∑n
j=1 e

−dij , where dij is the geographic

distance between country i and country j, and an is a vector of individual fixed effects. We also report estimation

results from MESSPD(0,1), where α in (11) is restricted to zero.

Table 2 summarizes estimation results. We note that there is no significant spatial dependence in logFnt,

thus the results of the two models are similar and they are close to those in Ertur and Musolesi (2017). Domestic

R&D significantly affects both G7 and non-G7 countries; Non-G7 countries benefit more from trade-unrelated geo-

graphic spillovers than G7 countries; The two groups significantly benefit from trade-related geographic spillovers;

and human capital of non-G7 countries does not significantly affect the two groups of countries.

Table 2: Estimation results for the real data analysis

logGSdnt logNSdnt logGSfnt logNSfnt logGStfnt logNStfnt logGHnt logNHnt Spat auto in logFnt Spat auto in Unt

(i) 0.10∗∗∗ 0.034∗∗∗ −0.029 0.16∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.21∗∗∗ 0.076 0.026 −0.43∗∗

(2.90) (4.95) (-0.63) (2.33) (10.97) (2.94) (4.37) (0.45) (0.099) (-1.99)
(ii) 0.099∗∗∗ 0.035∗∗∗ −0.031 0.15∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.21∗∗ 0.077 −0.41∗

(2.92) (5.04) (-0.70) (2.36) (10.86) (2.93) (4.71) (0.46) (-1.95)

1. Asymptotic t-statistics in brackets.

2. (i): MESSPD(1,1); (ii): MESSPD(0,1).

3. ∗∗∗, ∗∗, ∗: Significant at 1%, 5%, and 10%, respectively.

6The data set is from Ertur and Musolesi (2017).
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5 Conclusion

In this article, we show that, for the MESS panel data model (1), when the spatial weights matrices are commuta-

tive, the QMLEs can be consistent and asymptotically normal. This is a desirable feature that the SAR counterpart

does not have. The MESS panel model does not impose additional restrictions on the parameter spaces. As the

QML function of the model does not involve any Jacobian, it is computationally more attractive than the SAR

counterpart. Monte Carlo simulations demonstrate that QMLEs perform satisfactorily in finite samples and a real

data analysis shows the practicability of our model.
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