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1 Regularity assumptions

We define T',,7(17) = ming E[T,,7(¢)] with = [a, 7]’ and X,,7 = [X/y, ..., X! ]'. Then,

nls

Cor () =Xprfo) (It @ Whe™ M) Hyr (1) (Ir @ €™M W) X r Bo

+tr [(JT ® e_TOJM;Le(O(_aO)W’/‘eTJw'/LeTM"'e(a_ao)Wne_TuM”)ZnT]. (A.1)
where H,,7(7) = L,y — (It ®@e™M» )XnT [X’nT(IT ®eT M emMn )XHT]“X;T(IT ®eTM;L) is a projection matrix.

In addition to Assumptions 1-2 in the main text, we make the following regularity assumptions for the analysis on

asymptotic properties of the QMLE.

Assumption A.1. The vy’s, i = 1,2,--- ,nandt = 1,2,---,T, are independent (0,0%), and the moments

» Yt

Elvy|*t" < k < oo for some n > 0 are uniformly bounded for all i and t.

Assumption A.2. There exists a constant § > 0 such that |a| < § and || < §, and the true value [cyg, To]" is in

the interior of the parameter space [—9, 8] x [—4, ).

Assumption A.3. n is large and T can be finite or large.
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Assumption A.4. W,, and M, are uniformly bounded in row and column sums in absolute value (for short, UB).

Assumption A.5. The elements of X, are nonstochastic and bounded, uniformly in n and t. In addition, under
the setting in Assumption A.3, lim % Zthl(eTM" X)€" X, exists and is nonsingular for any T € [—6, 6],

M

and the sequence of the smallest eigenvalues of e™e™Mn s bounded away from 0 uniformly in T € [—§, 6].

Assumption A.6. The limit of —=[Cyr(o, 7) — (1 — %) - tr(Snr)] is positive for any 1 # .

Assumption A.1 provides the essential property of the disturbances for the heteroskedastic case. Assumption

A.2 maintains that the parameter spaces of a and 7 are compact, as usual for extremum estimators, although the

W, M,

inverse of e“"'» or e exists for any « or 7. In practice, the parameter spaces of o and 7 may not need to
be restricted, but as pointed out by Debarsy et al. (2015), in analysis, in order to ensure that e and 7~ be
bounded in both row and column sum norms, o and 7 should be bounded. In the rest of this paper, all limits
are taken under Assumption A.3. The UB condition for spatial weights matrices in Assumption A.4 limits spatial
correlation to a manageable degree. In Assumption A.5, elements of explanatory variables are assumed to be
bounded constants for simplicity. The assumption also rules out multicollinearity among the explanatory variables.

In addition, since the sequence of the smallest eigenvalues of e™Mn ™M

» is bounded away from 0 uniformly in
T € [~6,6],% elements of [-1- Zthl(eTMﬂXnt)’eTM" X,,;]~" are bounded uniformly in 7. Assumption A.6 is a

sufficient identification condition that ensures 7 can be uniquely identified.’

2 Lemmas

Lemma 1. Suppose that {A,, = [a,qj]} and {B,, = [b,;]} are sequences of n x n matrices, and v;’s in
Vit = (v1t, -+, ont) are independently distributed with mean zero (but may not be i.i.d.). Denote Vnt =V —
S Vi and B = B,, + Bl,. Then,

(1) E(Zle V,;tAan): tr[Sor (Jr ® Ay,)], and

) E (S VieAn Vo) (S0 Vi BaV )|
= (%)2 Z,trzl Z?:l an,iibn,ii [E('U?t)_?)o';lt]"‘tr [EnT(JT®An)} tr [ZnT(JT®Bn)] +ir [EnT(JT®An)EnT(JT®
B;)] where ¥, = diag(Spr1, -+, Snr.7) is @ block diagonal matrix and each block ¥, ¢ = diag(c?,,- -+ ,02,)
with E(v2) = o2,.

If A,, and B,, have zero diagonal elements, then
(3) E(Zz:l ‘N/'ritAnVnt) - O, and

4) E [(zle V;tAan) (zle V,;tBan)} = tr[Spr(Jr © An)Sur(Jr @ B)].

2This condition is similar to one in Debarsy et al. (2015), so it is standard.

3We discuss some low level conditions in the proof of Theorem 1.



Proof. Denote V,,r = (Viy, Vi, -+, Vi) With Jp = Iy — Lipll, we have S VI A Vi = V! (Jr @
Ap) V1. Because v;;’s are mutually independent, £/ (Zthl \Z;tAnf/nt) =E[V, :(Jr®A,)V,ur] = Zthl (1=
F)an i E(E) = tr[Spr(Jr ® Ay)], then (1) holds. The (2) follows from Lemma A.2 in the supplement to De-
barsy et al. (2015). When A,, and B,, have zero diagonal elements, we have a;; = 0 and b;; = 0, and both Jr® A,,

and Jr ® B,, have zero diagonal elements, then (3) and (4) hold. O

Lemma 2. Suppose that n x n matrices A,, are UB, the elements of the n X k matrices Cy,y are uniformly bounded,
and vi’s in Vi = (v14, -+, Une)' are independent random variables with mean zero and variances aft. The £ (vft)
is bounded uniformly over i and t. Denote Vit = Vig — % Eﬁzl Vims Ct = Chpt — % 22:1 Chrm- Then for

large n and finite or large T,

T
1 <=, o 1
— AV =0p | — |, A2)
7 22 Gl =01 (o) (
1 1 1
— NV AV — —EY V!, AV =Op () , (A3)
nT ; ! T ; ! ! vn
where %E(Zle V! ApViy) = O(1).
Proof. Denote C,,r = (Cq,-++ ,ClLp) . Vor = (Vi1, Vg, - -+, V1) For the result (A.2), Jr®A,, isUB as A,

is UB. Then —— S C AV = = Clp(Jr @ Ay) Vg and Var( oA S Ol A Vi) = 2 CL o (Jr ®
A1 (Jr @ AL)Crr = O(1). It follows that (1/v/nT) Zthl C! A, Vo = Op(1) by Chebyshev’s inequality.
For (A.3), when n is large but 7T is fixed, it is Lemma A.3 in Debarsy et al. (2015); when both n and T are large, it

is a heteroskedastic version of the third term in Lemma 15 of Yu et. al. (2008). O

Lemma 3. Suppose that {A, = [an;|} is a sequence of n x n symmetric UB matrices, {bns = [bnt;i]}

M < oo for some m >

is a sequence of constant column vectors such that sup,, p == Zthl S b
0, and vy ;’s in Vg = (Unea, -, Untn) are independent random variables with mean zero, variance afmi
and sup; ; , E(|vg|**"2) < oo for some ny > 0. Denote ¥, = diag(Enr1, -+, Xn1,T), Where Xy =
diag(o3,, -+ ,08,), and 0, = var(Cyr), where Cpip = Zthl [0, Vit + Vi A Vid] —tr [(I7 @ Ap)Syr).

. ; L d
Assume that ﬁaéﬂ is bounded away from zero. If n is large and T is finite or large, then UCQC% — N(0,1).

Proof. When n is large and T is fixed, this lemma is Lemma A.4 in Debarsy et al. (2015), which is essentially
a central limit theorem originated in Kelejian and Prucha (2010). When both n and T are large, this lemma is a

heteroskedastic version of that in Yu et. al. (2008), which can be proved similarly as that in Yu et. al. (2008). [

Lemma 4. Let Ayr(,7) = iy Simy (X, An Xt Bo) €™M e™n (X oy, Ay Xt Bo), and Ar(a,7) be a
2 x 2 block matrix consisting of the following matrices: Ay1 pr(o, T) = ﬁ Zthl(eTM" )N(m)’(eTM" Xnt),
Ayo pr(a, ) = ﬁ Zthl X/, e™Mne™n AL X, Bo, Aot nr(a, T) = Aly r(, 7), and

T
Z(AantBO)/eTM; eT]wn (AantBO)a

t=1

1

A22,nT(C¥77') = m



where A,, is an n x n UB matrix. Suppose that n x n matrices M,, and W,, are UB, o and T are in the parameter

’ . . .
My o™ is bounded away from zero uniformly in T,

space [—0,0] for some 6 > 0, the smallest eigenvalue of e™
elements of the n x k matrix X,; are uniformly bounded, and the limit ofﬁ Zthl X;teTMv/LeTM" X1 exists
and is nonsingular for any T € [—0, 8], where X = Xt — T Zk 1 Xk and the limit is taken as n tends to
infinite and T is fixed or tends to infinite. Then, eV is UB uniformly in o € [—6,5], e”™n is UB uniformly
int € [-9,0], Aonr (0, 7) = Az nr(a, 7) — Ag1 nr(a, T)AlllnT(a T)A12,n1 (o0, T) is bounded uniformly in

a,T € [—0,0].

Proof. 1f M,, and W,, are UB, that " is UB uniformly in o € [—6, §] and €™~ is UB uniformly in 7 € [—§, §]
can be found in the proof of Lemma A.6 of the supplement to Debarsy et al. (2015). As the smallest eigenvalue

M}, o7 M,

of e is bounded away from zero uniformly in 7, there exists a constant k& > 0 such that the smallest

eigenvalue of e™ne™n is greater than or equal to k. Then (= T S kX X )t = My (e, T) s
positive semi-definite, as in the proof of Lemma A.6 in Debarsy et al. (2015). It follows that the elements of
Ai1nr(a,7) and Al_ﬁnT(a,T) are bounded uniformly in 7 € [—4,0]. Let B, = e™Mne™n A, . From the
assumption of the lemma and the above proof, B, is UB uniformly in a, 7 € [—4,d]. Since the elements of
X, are uniformly bounded, so are the elements of X,.;. Then the elements of Az nr(a, 7), Ar2,nr(a, 7) and
A2 1 (e, 7) are bounded uniformly in o, 7 € [—4,d]. It follows that Ag ,,7(a, 7) is bounded uniformly in

(04,7') € [757 5] X [*63 5] O]

Lemma 5. Suppose that n x n matrices W, M,, and A,, are UB, the elements of the n-dimensional column
vector by = [bny,;] are uniformly bounded, vyy’s in Vyy = (vig, - -+, Unt)’ are independent random variables with
mean zero and variances o7, the sequence {sup, ; E(v},)} is bounded, and the parameter space of (a, 7) is & =
[0, 8] x [0, 0] for some & > 0. Denote Vit = nf*? Zk 1 Vak. Then n(T ) Zt 1 bl eV neTMneTMneaWn g V7 —
op(1) uniformly on @,

1 ’ ’
Vi e T e A Vo st [(Jr@ e e T e A Sar]= 0y(1)

H
=
gk
I

uniformly on ®, and T 1)tr[(JT ® Ale aW,, oTM;, o7 "e“W"An)EnT]: O(1) uniformly on ®, where ¥, =

diag(Snra,- - ., Sor,T) is @ block diagonal matrix with each block ¥,y = diag(o%,,- -+ ,02,).

Proof. By Lemma 2, Zt L0 e WneTMuemMneoWn A V0 — 0, (1),

(

1

aW'! +M! 1M, oW, _
mt?ﬁ [(JT ® A;le e e € An)EnT]_ 0(1)

and 7n(Tl71) Z;‘le Vg AL W eTMp oTMngoWn g Y T 1)tr[(JT ® Al e Wn TM;LeTM"e"‘W"An)ZnT}:
0,(1) for any (a, 7) € ®. Denote A(a,7) = AL, e®VnemMne™MneeWn A with the (i, j)th element a;; (e, 7). The

proof of the stochastic equicontinuity of the above three sequences, which is based on the mean value theorem, is



similar to the proof of lemma A.7 in the supplement to Debarsy et al. (2015), thus it is omitted. Then the results in
the lemma follow by Theorems 21.9 and 21.10 on p. 337-340 of Davidson (1994). O

3 Proofs of theorems

3.1 Proof of Theorem 1

-1

Substituting 3,7 (n) = (ZtT:I (e™Mn X ,1) eMn X, ZtT:l(eTM")N(nt)’eTM" e“WnY,, into T',,7(¢), we obtain

Lor(n) = Yop(Ir @ e Wae™ ) Hyr () (Ir @ €™M0 eV )Y i,

where Y,,r = [Y/,,---,Y!;]’. We shall prove that = [Tyr(n) — Tnr(n)] converges in probability to zero
uniformly on ® and the identification uniqueness condition holds, where fnT(n) isin (A.1).

We first show the uniform convergence that sup, cg | = [Crr (1) — Tz (n)]] = 0,(1). Denote Myr(n) =
n(T AT Zt 1( i, €0 O‘O)W"X +Bo)’ ™M o Mn (Xm, e(o‘*ao)W")?mBo). M, 1(n) is a block matrix consist-
ing of the following matrices: M1 n7(n) = ﬁ Zthl(eTM”f(m)’(eTM“ Xt), Mot (1) = Tomr (M)
Mo nr(n) = ﬁ ZtT:1 X;LteTM;zeTM"e(“_O‘O)W"f(nt/BO, and

T
1 ~ , ~
Maznr(n) = T =1 D (el Wn X, By) e MneTMn (g2 Wn X, ).
t=1
Let
["X,nT(n) = eTMn(e(aiaO)Wantﬁo tM11 nT( )M12,nT(n))a
and
T
VX,nT(n) _ 1 Z ~nteTM/ e(a_QO)Wn'e_TUM"Vnt-
Then
1 1 &
ﬁ[FnT(n) —Tur(n)] = T Z V,;te_TOMne((’“_("O)WneTMneTM"e(a_“O)W”e_ToM"Vnt
t=1
1 /
_ ﬁ W[(JT ® ela— Oéo)Wne(T—TO)Mne(T—To)Mne(a—ao)Wn)ZnT}
+ e Z EX nTe "e OzoWne—T[)Mn Vnt
T — 1 _
- Tvi\f,nT(W)Mnl,nT(n)VX,nT(n)-
where

T
1 ~ -
T § :Vrite—ToMT’Le(a—ao)W TM;Le ne(a—ag)Wne—mMn Vi



1 ’ ’
_ﬁ Ctr [JT ® e(a—Oé())Wne(T—TU)JVIne(T—To)Mne(Ot—CK(J)Wn)ZnT} — Op(l)

and the last two terms on the r.h.s. are 0,(1) by Lemma 2. Thus, by Lemma 5, -5 [T,z (n) — Tz (n)] = 0,(1)
uniformly on ®.

Second, we prove that %fnT(n) is uniformly equicontinuous on ®. Similar to the proof of equicontinuity in
the proof of Proposition 1 of the supplement to Debarsy et al. (2015), using the mean value theorem and Lemma
4, there exists a constant w such that n%“?,ﬂﬂ(’fh) —Toar() <w(| a1 —ag | + | 71 — 72 |) forany 11,10 € ®.
Thus —= T, 7(n) is uniformly equicontinuous.

Third, we discuss the identification uniqueness condition. Let T, 7(1) = 1, (1) +T2,.7(n), where T'1,, (1)
and fng(n) are the first and second terms on the r.h.s. of (A.1) respectively. Using the commutativity property

of W,, and M,,, the first and second order derivatives of f2n7T(77) are

3f2n,T(n) - tT[(JT ® e(a—ao)W{Le(T—m)MﬁL (Wn + W,,{L)B(T_TO)A47L€(Q_QO)W7I')EnT Ad)
877 tr [(JT ® e(a*ao)WT/Le(T*TO)M; (Mn + MT/l)e(-rf‘rg)M"e(afao)Wn)EnT] ) .
and -
PTonr(n) _ (%(n) * ) A5)
onon’ F21(1) Fa2(n) /) )
where

’ ’ ’ 1
F11(n) =tr {Z +(Jr® elam W o(r=1o) My (W72 1 py2 4 QW"{LWn)e(T_TO)Mne(a_aO)Wn)ZTZLT:|,

1

2

1 ’ ’ 1
721 (77) = {r |:E721T(JT ® e(a—ao)Wne(‘r—‘ro)Z\/ln Cne(‘r—fg)l\ine(a—ao)wn)ZTQLT:| ,

1 ’ ’ ’ 1
Yoo (77) = tr |:272LT(JT ® e(afao)Wn e(Tfﬂ'o)Mn (M?L + Mn2 + 2M7/LM’L)€(T7‘I'0)JWTLe(afao)Wn)E'?LT:| ’

where C,, = M} (W,, + W}) + (W,, + W}, )M,,. By the Cauchy-Schwarz inequality, '1,, 7(1) > 0 and is equal
to zero when 7 is equal to 19 under Assumption 1. Furthermore, under Assumption 1, the first order derivative of
T2, 7(n) at the true value 7 is 0. Therefore, 7 is a stationary point of T'a,, 7(n) as well as T,z (n). If W, W,, =
W, W, M! M, = M, M, and MW, = W,, M, then W2 +W,2 4+ 2W'W,, = (W, +W’)2, M/,(W, + W)+
(W + WM, = (W, + W) (M, + M) and M? + M,? + 2M! M,, = (M, + M). Thus, by the Cauchy-
Schwarz inequality, (7,5(7))? < 7;1(n) - F2(n) under the conditions W/, W,, = W, W/, M! M,, = M,, M/, and
M!W, = W, M. Let A = A, + A/, for any square matrix A,,, Jp ® e(®=@0)W5e(T=m)M.yys — [yys. ] and

ij,e
Jr @ el @)W o(T=T0)M;, pps — [m3; ] ford,j =1, ,n. If there is no constant k such that w;; , = kmj; , for

all 4,5, (V12 (77))2< F11(N) « Ya2(n). In this case, %{W is positive definite and Tz, 7(n) is a strictly convex

function. Thus, 7 is the global minimizer of T's,, 7(n) as well as T',,7(n). It follows that ﬁf‘nT (n) can have a

unique minimal value at 7o in the limit. If w;; , = km; , for a non-zero constant k, (712(77))2: F11(1) - T (n).
Then 7y might be or might not be a global minimizer of fnT(n) in some cases. Consider the case with W,, = M,,,
which implies that w; . = m;; ., then ¥,5(n0) = F11(10) = Fa2(m0) = tr [(Jro W2+ W,2 + 2W W) Enr).

In this case, t7 [ (Jr ® (W2 + W,2 + 2W,W,,)) 7] > 0 if the elements of TW,, are non-negative. It follows that



9°T2n,1 (10)
onon’

sufficient condition that ensures the identification uniquess of the true parameter vector.

is positive semi-definite. Then 7o might be only a local minimizer of I's,, (). Assumption A.6 is a

Combining the uniform convergence and identification uniqueness condition in Assumption A.6, the consis-

tency of &, and 7,1 follows. For given 7, minimizing I',,7({) yields

R ) N N _ .
ﬂnT (,'7) _ (Z(erMn an,)leTM"Xnt) Z(QTMant)/eTMn 6aW"Ynf,.

t=1 t=1

Then we can substitute the estimators ¢&,,7 and 7,7 into the above equation to derive a consistent estimator BnT.

3.2 Proof of Theorem 2

The asymptotic distribution of @LT is derived from applying the mean value theorem to the first-order condition

%&é”) = 0 at the true value (y, which yields
. 1 2Tur(O)\ "/ 1 Olur(Co)
VT (Cop — Co) = — | — , A6
where (7 is between C, 7 and (o. We need to show that (1) 74 Z5a2(&xr) = 53+ 0,(1) and (2) the limit of

Y¢o,nT 18 NONsingular.

Proof of (1): The second-order derivatives of I",,7(({) are

aQFnT(C) _ o TM,, v ! _TM, v
~apeF = 2;(6 Xpe)' e X,
82FnT(C) _ d M, aW, v ! TM, v
T0a0p —2 ;(6 Wine®" " Yop) €™ Xy,
82T,7(C) L, ) e
oros’ =2 ; Vnt(O(Mn + M, )e Xnts
T T
M — QZ(GTJW"W eonnf/ t)/(eTJVI"W eaWnY t) + Z(eTZVInW W, eonnY/ t)/V t(C)
Jdada po n n n n £ n'Vn n n 5
82FnT(C) — QZT:(eTM"W e(anY/ )/(M/ —|—M )V (C)
A1 pot " nt n n)Yniis /s
oror e n M) Viue ().

-
Il
-

By Lemma 2 and the reduced form of Yy, = Zthl Y/, ApYn: = Op(1) and = Zthl X! ApYn: = O,(1),
where A,, is an n x n UB matrix. Then we can use the method in the proof of Proposition 2 in the supplement of

Debarsy et al. (2015) (page 11). First, we write e®WVr = (e¥Wn — e@0Wn) 1 gaoWn o7Mn — (7Mn _ gToMn) 4

e™Mn and 3 = (B — By) + Bo. By Lemma A.8 in the supplement of Debarsy et al. (2015), || ¢®Wn — e@oWn || =

op(1) and || e™Mn — eToMn || = 0,(1). Then from the expanded forms of each term for - 825592(,5) and the




1 8%Tr (@) _ 1 9°Tar(Co)

sub-multiplicability of the row sum matrix norm, = = doc = wr oo+ op(1). The detailed expression of
2
each entry of the difference ﬁ 852754(/40) — Y¢o,nT 18 straightforward from (9) and the second-order derivatives of

T',7(¢), and each element of the above matrix difference is a linear-quadratic form of ‘N/,LT. Thus, by using Lemma
0Ty
2, we have n}%g‘” — Heonr = 0p(1).
Proof of (2): We need to prove that lim H¢, ,r¢ = 0 implies ¢ = 0, where ¢ = (¢, c2,¢3)', c1isak x 1
vector, and ¢ and ¢; are scalars. Denote N1, = ZtT:l(eToM" Xnt)’(eTﬂMn X 1),

T
Manr = — Z(emMant)/(emm Wantﬁo),

=1
Not e = Ny and Nog i = Zzzl(eToM"Wantﬂo) (e™MnW, X, B0). Under Assumption A.5, lim —=N11 7
is nonsingular. Then we have ¢; = 1im[$/\f117nT]*1ﬁNm,nTCg. If lim ﬁtr[(JT ® M3EM,)% nT];é 0,
c3 = —colimp o0 tr[(Jr @ MEW,)Syr] /tr[(J7 @ MjM,)S,r]. Substituting the expressions of ¢; and c3

into the second row block of lim H, »nrc = 0, we have

1 ~ , -
lim T (X1 B0) (It © Wy,e™ M) Hyp (7o) (Ir @ €™M W) Xour Bo + B) ez = 0,

where B = tr[(Jr @ WiW, )X, 1] — frz[[(g;g%bﬂ‘:[v ))EE"T]] Thus, Assumption 2 implies that the limit of H¢, 7 is

nonsingular.

Combining an & 5 qnaTc/C) = Hcyn1 + 0p(1) and the nonsingularity of the limit of H, 7, we have v/nT ((A,LT —

o) = He ( ! M) +0,(1). Each element of —— 25=2(0) g 4 Jinear-quadratic form of V,,7 with zero

VaT — 0C VT — 9¢
mean, and the variance of ﬁ %C(CU) is A¢y,nr in (9) of the main text. Thus, by Lemma 3, v/ nT(fnT —¢o) —

N (0, lim(H nTACOmTHgO L)

3.3 Proof of Theorem 3

() Proof of ey — Hegmr = 0p(1) and Ay 1 — Ay nr = 0p(1) under the condition that both 7 and T are
large: It is sufficient to prove that (i) itr [f)nT(JT ® Wﬁ)f]nT(JT ® Mf,)] fniTtr [EnT(JT QWA r(Jr ®
M3)] = 0,(1) , (i) Zstr [(Jr @ WiMy,)Snr)] — 5t [(Jr @ WiM,)Sar|= op(1),

(iii) X Zthl 7l et My efnrMag = Zthl 7l e MuemoMng — o (1),
and (iv) R 7 (Jp @ M8, 1 (Jp @ et Me) S, p — LR (Jr @ €M) S7 (Jr @ e M) S, = 0,(1),

where {ry¢ = [rne4]} and {Spt = [Snt,i]} are n-dimensional column vectors with uniformly bounded elements,

Ror = (b, 3 mhg)s Sur = (Shys -+ . shp)s and o = diag(Zpra, -+, Zpr,r) is a block diagonal

matrix with each block ¥, 7, = diag(c,, - ,02,), where E(v?) = 2. Suppose that we would like to prove

that - tr[(Jr @ A )] — —tr[(Jr ® Ap)Sar] = 0p(1), where A, = [a;;] is an n x n UB matrix. Note that
1 T -1 n T

—tr[(Jr ® A,)Znr] = —— 2 A7

—ptrl(Jr ® An)Enr] = 0 ;a ;% (A7)



In the above equation, suppose that we replace 02 with (v — 7 ZtT 1 vit)?. Then we have

T_1 n T 1 T 2 (T—1)2 n T
TLT2 E;a” tz_;(vit — T tz_;vit> = W ;a“ ;U?t. (AS)

This expectation is not equal to —=tr[(Jr ® A,,) S, 7). However, we can replace o2, with

instead to derive a term with an expected value equal to %tr[(JT ® An)
[m3;]. Note that

T
7o (Vie = 7 2opy vie)?
Eyr]. Denote Wy = [wi;] and M, =

1
T [Snr(Jr @ W) Snr (Jr © M;)]

T T
T—_2
- —tr( E Sorit) ;(E znT,t)M;)+7(§ tr(znT,twgznT,tMg))
t=1

T

_9 T n n
= nT3 Z Z Z Z 19 41 Wpg My =2 T2 DD Ty

t=1 p=1g=1 j=1 t=1p=1q=1

(A.9)

~2 T 1 T 2 ~2 T 1 T 2 2 2
Suppose that we use Uy, = 77 (Upt — 75 D=1 Upk)” and 07, = 77 (Vgj — 7 D _p—1 Vgk)* to replace o, and o
respectively in the above equation. Note that if p = ¢, wy;,mg, = 0. If p # q,

)]

T 2 2 2 1 2. 2 1 2 2 d 2
= (7—¢) [(1 =) om0+ (g — 7)o > oa + (5 — 75) %05 D T
k=1

T

2 1 ¢ 2
(1B (o~ 7 kX_:k) (v0s = 7

N~
N

k=1

T2
1T T
(i) (i)
=1 k=1
Then
T 1 Lo T T T n n
mE< zggqilgﬁgtvéwmm +TZZZUWU tWhqMg )

t=1p=1q=1
n n T

T 3 2 3 2 1.
=g pllE -9 -5 + 5 Z;Z;Z;Zait% 2
t=1 p=1gq=
9 T n n
+ (1 - f)g Z Z Zaitagtw;qmgp]

(A.10)
t=1p=1q=1

Note that the third line of (A.9) is not equal to the r.h.s. of (A.10) when T is fixed. Let aft < ¢, where c is an
non-negative constant. Then as W), and M, are UB,

n n

2 s s

’ZZZZo—th‘U Pq T-c Z(Z ‘wpqmqp|) S nTka
t=1 p=1qg=1 j=1 p=1 ¢=1

T n n n n

nT
2 2 s s 2 s s

’Z Z Z aptathpqmqp < T-c Z( |wpqmqp‘) < 2 k
t=1p=1q=1 p=1 g=1



for some non-negative constant k. We see that as 7" tends to infinity, the first terms of the r.h.s of the third line
of (A.9) and the r.h.s of (A.10) are o(1), and the second terms of the r.h.s of the third line of (A.9) and the r.h.s
of (A.10) are O(1). Thus, (A.9) and (A.10) are dominated by their second terms. As T tends to infinity, the
two dominant terms are asymptotically equal. It follows that we can replace o2, with %(vit -7 Zthl v;t)?
to estimate tr[ nr(Jr @ WHEr(Jr ® Mf;)] when T tends to infinite. In practice, we do not observe v,

but we have the QML residuals 0;; = 93 — % Zthl Di¢. SO we may let S = diag(f)nT’l, cee f]nT_,T), where

EnT,t = %(ﬂ%m T 7’[)721t)'

Proof of (i): Using ilnT to replace X, 7,4, we have

%tr[ nT(JT Q WS* ) (JT X M;)]

T
111 ~ T —
= nT[thT«;ZnTt ZznTt +T Zﬁ“ St WiSnr s M;, ))]

t=1

Then we can rewrite (i) as

1 1
ﬁtr[ nT(JT QWS ) (JT X M,Sl)] —ﬁt’l“ [ZnT(JT X Wi)ZnT(JT ® Mfl)]: A+ Ay = 0p(1),

where
171 KM T s ‘
Al = ﬁ{ﬁ [tr((z EnTt ; ]\4‘S t’l’ ;EnTt ;(; ZnT,t)M:l):I],
Ay = L 2 t w; )y MS 3 tr(% Wiy M?
2 = nT[ Z 7( nTt nT,t —(Z (S W Snr n))]]

t=1 t=1
We shall show that A; = 0,(1) and Ay = 0,(1). The proof of A; = 0,,(1): Let P,, = [p;;] be an n x n symmetric

matrix, where p;; = w; m . Note that p;; = 0 and P, is UB under Assumption A.4. To show that A; = 0,(1),

we may show that (a) W > Zj 1((% ? 1 zt)(T 1 t 1V ) - (Zt:l Uit)(Zt:l th))pij = op(1)

T T - T -
and (b) ﬁ Z E; 1(( 1 2at=1 1t)(T 1 t 1 v ) - (% t=1 U?t)(% Et:1 U?t))pij = Op(l)' We
first show that (a) holds: Let {f,, = [fn:]} be an n-dimensional column vector with f,; = o Zthl 0%, and

{fn = [fni]} be an n-dimensional column vector with f,; = S\, 02. As
fnzfnj - fnifn] = (.}Enz - fm)(fnj - fn]) + fnz(fnj - fn,j) + fnj(fnz - fnl)v

we have 7 370 Z;’LZI((TTl tT L 03 (71 t 1 03) — (23:1 U?t)(ZtTﬂ 0%))pij = Bii+ B2+ Bis,
where By 1 = # Sy ijl(fni - fm)(fnj — [nj)Pij» B12 = # >y Z;L=1(fn,j — fnj) fnipij, and
Bis= 5>, Z?Il(fm — fui)fajpij. Let Fy = (Fpy, -+, Fyy)' where Fi = fni — fai. Denote f,, =
(fn1s--+ 5 fan). Then By1; = n%d F|P,F,, Bis = #féPnFn, and By 3 = nTsF’P fn. Denote A,, =

E(F,F)). As v;’s are independent across 4 and ¢, F,;’s are mutually independent and A,, is a diagonal matrix.

Then E(F) P, F,) = tr(P,A,) = 0 as p;; = 0. Note that under Assumption A.1, E|7};|’s exist and are uniformly

10



bounded for all ¢ and ¢. Then similar to the proof of (i) in the proof of Proposition 2 of Lin and Lee (2010),
Bi,1 =0p(1), B12 = 0p(1), and By 3 = 0,(1). Hence, (a) holds. We next show that (b) holds: Let fn = [fm] be
an n-dimensional column vector with fm = L ST 0%, Then fm fnj — Frifnj = ( fm — Fri) fni + Fni( fnj _
foi) + (fui — fm)(fnj — fnj)- Note that

1 n n T T
o 2 2 (G 2
i=1 j=1 t=1

T
T - N T -
?t)(iT 1 Z%Q‘t) (7 U%t)(ﬁ ZUJQ‘t))pij =1 + Oy + (s,
t=1 t=1 t=1

S0

where C = # Z;L:l Z?:l(fnz - ]Zm)fnjpij, Cy = nlﬁ Z?:1 Z;L:l(fnj _ fnj)fnipij, and
1 S = _ s _
Cs = nT3 Zz<f7” o fﬂl)(fn] - fnj)pij.
i=1 j=1
We shall show that C; = 0,(1) for i = 1,2,3. Since the proofs for different C;’s are similar, we just detail the

proof for the most complicated term C3. From the model, we have
p
Vi = e nT Mn (e@nTWn ?nt _ XntBnT)
_ [efnTMne(danao)Wnef‘mMn — 17,,”777,15 4 T Mn (e(danao)Wn _ In)Xnt/BO

+ e%nTMant (60 - BnT) + f/nt-

Then in scalar form, 0;; = a; + bis + cit + i, Where ag; = e;[e™TMnel@nr=a0)Wne=10Mn _ T 1\ b, =
ei[eTMn (el@nr—c0)Wn _ T NX, By, and ¢y = e;e™TMn X, (By — Bnr), Where ¢; is the ith row of the n x n

identity matrix I,,. Thus,

n n T T
1 T ~ ~ T - ~
Cs = T8 ZZ(ﬁ Z(ait + bit + cit + Uit)2 — fm) (ﬁ Z(ajt + bt + cje + vjt)2 - fnj)pij
i=1 j—1 =1 =1
1 n n T T ) ) ) ~ 5 3
=75 Z Z(ﬁ Z(ait + by + it 4 2aitbi + 2aicit + 20 Vit + 2bicir + 2bi Vit + 2¢i10it))
i=1 j—1 =1
r I
X (ﬁ Z(a?t + b]2t + CJZ't + 2ajtbjt + Qathjt =+ Qajtf}jt + 2bthjz + Qb]‘tf}jt + QCjtﬂjt))pij. (A.11)

t=1
We now show that —> 3" | 2?21(% Zthl a?) (7= Zle a2,)pi; = op(1). By the proof of Proposition
5 of the supplement to Debarsy et al. (2015) (pages 12-13), a?, < 5(tit1 + tit.2 + tirs + tit.a + tirs5), where

titn = (eiMy V)2 (Fnr — 70)2, tita = (€W Vie)? (G — )2,

z_ 5 — ~ 2, .
tirs = (eiMTQLG(T 70) Mn (& oco)WnVnt) (TnT 77_0)4’

A~ =

- < ~ 2, - - ~ 2,
tira = 5 (e;W2elmT—T0Mueld=e0)Way )2 (4, p—ag)*, and tiy 5 = (€ Wy My eT—70)Mn e@=a0)Wu /456, —
a0)?(Fnr — T0)2, where @& is between @, and ayg, and 7 is between 7,7 and 79. We need to show that

T

1 n o n T T T
sz(ﬁ Ztit,k:)(ﬁ > tiet)pij = 0p(1) (A.12)
t=1

i=1j=1 t=1

11



fork,l=1,...,5.Fork=1and[ =1,

n n

r Z
T3 ZZ Z it 1)(ﬁ tht,l)pij
=1 j=1 t=1
n n

T3 Z Z( elM"V"1)2 +ot (eiMnVnT)2)>

T ~ ~ .
x (ﬁ ((ejMnan)z +oeet (6jMnVnT)2)> (Tar — 7'0)41011]'-
Note that

3

n

Z elM Vﬂtl) (eJM Vntz) Dij

=1 j=1
n n n n n n
= E § § E § E mlk1m2k2mll1mll2vk1t1’Ukztlvlltgvlztzplj7
i=1 j=1k1=1ko=111=115=1

where t1,t5 = 1,...,7T. By the Cauchy-Schwarz inequality,

~ ~ S~ Li~2  ~2 1 4
E|vk1t1vk2tlvl1tzvl2t2‘ < E: (Ukltlvkztl)Ez (UlthUlgtz) < E4(

for some constant c. Thus, as P,, and M,, are UB,

E'ZZ €My Vot ) (€M, Vi, ) i
=1 j=1

n n
= CZ Z |pm
=1 j=1

for some constant k. It follows that

n n n n

e )Y I N Ima )Y Ima,|) < nk

k= ko=1 li=1 lo=1

n

T T T
nT3 Z Z 71 Y ey = 0p(1)
t=1 t=1

11]1

by Markov’s inequality. Similarly, the terms in the expression of (A.12) involving t;; 1 or ¢;; 2 are o,(1). From the

proof of Proposition 5 of the supplement to Debarsy et al. (2015), ¢;; 3 < cf/,’L v, +(Tnt — 70)* for some constant ¢
Then

nTQjZ Ztm Ipis| < T”T’TO S S S TV 4+ Vi Vo).
=1 j=1 =1 j=1

By the Cauchy-Schwarz mequahty,

. . P Lo

E(lvrimvnmvriqvan < Ez [(VrimVnm)z]EQ [(Vr:qvnq)ﬂ < n2§
for some constant £, where m, ¢ = 1 ,T. Then by Markov’s inequality, —=5 > | > (V! Vi 4+
C; C; ~ n n T P
VwiTVnT)2|pij| = Op(1)~ As VT (Tnr — 7o) = Op(l)’ # Zi:1 Zj:l(% Zt:1 tit,3)2pij = Op(1)~ Simi-

larly, the terms in the expression of (A.12) involving two of ¢y 3, t; 4 and ¢, 5 are o,(1). For

1 n n T T T T
nT3 Z Z(ﬁ Ztit,l)(ﬁ tht,S)pij7
i=1 j=1 t=1 =1

12



T T T
nT3 ZZ Z i) (g D tis)lpis]
t=1

=1 j5=1
T - - T - - N
S m ;;(“((ezMnan)z + -+ (ezMnVnT)z)) <ﬁ(VT/Lan1 + -4 V,;tVnt)) (Tnt — T0>6|pij‘.

Then with an argument similar to that for the case with k = 1 and [ = 1, we have

n n T T T
T3 Z Z Z i) Y tj1.3)pi; = 0p(1).
T = = = 1 t=1

Thus, the terms in the expression of (A.12) involving ¢;; 5 and one of t;; ; and ¢;; 2, or t;; 5 and one of ¢;; 3 and
tit,4 are op(1). Hence, we have —= 31" | };1(% Z;T:l tit,k)(% ZtT:l tit1)pij = 0p(1). As shown in
the proof of Proposition 5 in the supplement to Debarsy et al. (2015) (page 12), terms in the expression of C3 in
(A.11) involving |b;¢| and |c;¢| are o, (1). Then by Markov’s inequality, the terms in the expression of C5 in (A.11)
involving b;; or ¢;; are 0,(1), and so are the terms involving a;;. Thus, C3 is 0,(1). Similarly, C; = o,(1) and
C2 = 0,(1). Hence, (b) holds under Assumption A.2. It follows that A; = 0,(1).

The proof of Ay = 0,(1): We shall show that (a) L2 Zt Dy Zj 1 (( A )(%@215) J?tcr]zt)pij =

T
0p(1) and (b) T73 Zt 12 1ZJ (75 zt)(TTl _72t) (7550%) ) pij = 0p(1). Note that
_9 T n n T
nTz Z ZZ T-1 7it) T-1 U3) — 050751)pij = B2y + Bao + Bas + Ba,
t=1 =1 j5=1
where
T n n
Boy = oy 2 23 Yl — BRI - BE)lb,
t=11i=1 j=1
T 9 T n n
Baa = or—iys 2 2 2 B@)E: ~ E@lpy,
t=1 i=1 j=1
T n n
Bos = or 1y OB B33P
t=1 i=1 j=1

and By 4 = nT? Zt > ZJ 1((T Ty E(0? )E(f;?—t)—a?ta?t)pij. For By 1, denote 0,7 = [Xh1s " s Xor)'s
where Xnt = [Xnt,1," " Xnt,n] With Xpei = v?t - E(ﬁft) Since Expt; = 0, and if ¢ = j, p;; = 0,

T
E(Zt:l > i 2?21 Xnt,ant,jpij)Z 0. As
T n n T n n
0nr (It @ Pp)onr 0 (I @ Py)onr = Z Z Z Z Z Z Xont.i Xt Xouor X 5D v
t=1i=1 j=1k=1r=1s=1

the mutual independence of X, ;’s over i, the correlation of x,,; ;’s over ¢ and p;; = 0 imply that E(o},(Ir ®
Pp)ont @ (It @ Pp)onr) only if (i = 7 # j = s)or (i = s # j = r). Note that as E|0};|’s exist and
are bounded uniformly in i and ¢, E(|Xnt,iXnt,; Xnk,jXnk,i]) = E(|Xnt,iXnk,i|)E(|Xnt,jXnk,;|) are uniformly

13



bounded for i # j. It follows that
Var (o, (It @ Po)ont) = El(0,r(IT © Po)onr)’]

T n o n
Z Z ZXm‘,,iXm‘,,jXnk,ank,spijprs)

t=11 r=

NgE
NgE
M=

Il
-

k

Il
-
Il
—
-
i

s=

J

NE
M=
M=
M=
M=
M=

E(|Xnt,ant,ank,TXnk:,s| . ‘ng| . |prs|)

1s=1

o~
I
—
s
Il
-
<.
Il
_
£
Il
—
5
I

n

T n T
E([XntiXnt i XnkiXonk 5| - D7) D 0N N> B([XntiXnt i Xnk,j Xnk.il - 1Pij]*)
1 i t=1i=1 k=1 j#i

3

Il
[M]=
[M]=
M'ﬂ

~
Il
-
.
Il
=
x~
Il

I
S

(nT?)

since P, is UB. Hence, the variance of By is o(1) as T tends to infinity. By the generalized Chebyshev in-
equality, Bo1 = o0,(1). Similarly, Bos = 0,(1) and Bo 3 = 0,(1) hold. As |75 E(33) — 02| = 71507 +

(1) as both n and T tend to infinity. The proof of (b) is

ﬁ ZL o < =1
omitted as it is similar to the proof of (b) in the proof of 4; = o0,(1).
The proof of (ii) is similar to the proof of (i).
Proof of (iii): As ||e(Tr7=70)Mn

Debarsy et al. (2015).

oo = 0p(1), it is similar to the proof of Proposition 5(iii) of the supplement to

Proof of (iv): We can rewrite (iv) as

1 R ;. ) /
el ;T(JT ® eTnT]V[")EnT(JT ® eT"TM")SnT - ;zT(JT & eToMTL)ZnT(JT ® eToMn)SnT
nT por

1 ! A~
- ﬁ[ ;T(JT ® eTOMn)(EnT - EnT)(JT ® eTOMn)SnT

+ Ry (Jr ® €M) (S — Sr) (Jr @ (€77 — e70M)) S, g (A.13)
TR T('] TnTJw; _ eTOJ\/[;l))(inT S (Jr @ T M) g
+ R/T(‘] TWTM; . eTOMTI"))ZnT(JT ® €+M”)SnT
F (T @ e ’,‘)EnT(JT @ (efrrMn _ eT‘JM“))SnT}-
For the first term on the r.h.s. of (A.13), it can be proved to be 0, (1) as the term in (ii). For the second term, note

that by the sub-multiplicative property of the row sum matrix norm,

1 NP .
| B (J1 © €M) (S = Sar) (Jr @ (€770 — eM0)) Sy
C ~ ~
< ﬁ||6T"TM" — ™| oo |[Enr — Znrlloo
c s - T
< =l i 0M"||c>oz:z: —7 iy — —3 Til) + (77— Ty — o))

t=1 i=1

for some constant c. We note that E| 72592 — 0%|< E(|7270%|+|0%|)< k for some constant k. Then by
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Markov’s inequality, -1 37" | S°7 |52 — 02|= O,(1). The equation of

1
Z Z |03, — 3| =0T Z a3, + b, + ¢, + 2aibiy + 2aicit

i=1 t=1 i=1 t=1

!

M=

+ 20103t + 20515t + 203405 + 2¢10i| = 0p(1)

can be shown as in the proof of (i)(b). By Lemma A.8 in the supplement to Debarsy et al. (2015), the second term
on the r.h.s. of (A.13) is 0,(1). Similarly, the third term is 0,(1). By using the sub-multiplicative property of the
row sum matrix norm, the last two terms are o,,(1). Hence, (iv) holds.

In summary, Theorem 3 holds when both n and T are large since (i)—(iv) hold.

(1) Proof of Hey nr — Heomr = 0p(1) and A, ur — Ay nr = 0,(1) under the conditions that 7 is large, T
is finite and 07, = o?: Note that E(7%) = L=1o?. Suppose that we replace o2, with 5 (vi — & 21—, vir)?.

Corresponding to (A.7) and (A.8), we have

tr[(Jr ® An)Sr] = (T = 1) > asio;.
=1

and
*]- Ezan 1 Uuﬁ Tzvit :(T*]-)Zano_ia
=1

and corresponding to (A.9) and (A.10), we have
T 1 T n
tr [Spr(Jr @ W) S (Jr © M) T DD opogwpmy,
t=1 p=1q=1
and

T
T—
Z vptvqupqm +— : Z Z Z vptvthpqm )

t=1p=1qg=1j t=1p=1q=1

Thus, we can replace o7 with %(Uﬁ — % Ethl v;¢)? instead to derive terms with expected value equal to

tr((Jr ® A,)E,7) and tr [E,LT(JT QWA r(Jr ® MS)] respectively.
When v;; are set as v;; ~ (0, 02), Theorem 3 holds since (i), (ii), (iii) and (iv) of (I) hold. Itis E(32,) = %Uf

that ensures that as long as n tends to infinity, the four equations hold regardless of whether 7 is fixed or tends to

infinity. In this case, the proofs of the four equations are similar to those proofs in (I), thus they are omitted.
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