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Abstract

This paper studies the non-Gaussian pseudo maximum likelihood (PML) estima-

tion of a spatial autoregressive (SAR) model with SAR disturbances. If the spatial

weights matrix Mn for the SAR disturbances is normalized to have row sums equal to

one or the model reduces to a SAR model with no SAR process of disturbances, the

non-Gaussian PML estimator (NGPMLE) for model parameters except the intercept

term and the variance σ2
0 of i.i.d. innovations in the model is consistent. Without row-

normalization of Mn, the symmetry of i.i.d. innovations leads to consistent NGPMLE

for model parameters except σ2
0. With neither row-normalization of Mn nor the sym-

metry of innovations, a location parameter can be added to the non-Gaussian pseudo

likelihood function to achieve consistent estimation of model parameters except σ2
0.
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The NGPMLE with no added parameter can have significant efficiency improvement

upon the Gaussian PML estimator and the generalized method of moments estimator

based on linear and quadratic moments. We also propose a non-Gaussian score test for

spatial dependence, which can be locally more powerful than the Gaussian score test.

Monte Carlo results show that our NGPMLE with no added parameter and the score

test based on it perform well in finite samples.

Keywords: Spatial autoregression, pseudo maximum likelihood, consistency, effi-

ciency, test for spatial dependence

JEL classification: C13, C21, C30, C31, R15

1 Introduction

The spatial autoregressive (SAR) model, originated in Cliff and Ord (1973, 1981), is a

popular spatial econometric model. It has been applied in a range of fields in economics to

capture spatial dependence.1 In this paper, we consider the non-Gaussian pseudo maximum

likelihood (PML) estimation of the SARmodel with SAR disturbances (SARARmodel), with

no need to correctly specify the distribution of i.i.d. innovations in the model. We provide

conditions for the consistency of the non-Gaussian PML estimator (NGPMLE) and prove

its asymptotic distribution. Our applications to several popular data sets in the spatial

econometric literature show some evidence of non-normal and leptokurtic innovations for

these data sets.2 In such situations, our NGPMLE on the basis of leptokurtic distributions

can have significant efficiency improvements over existing estimators including the Gaussian

PML estimator (GPMLE) (Lee, 2004), and lead to different but more reliable empirical

results.

1Reviews on studies about the class of SAR models can be found in, e.g., Anselin and Bera (1998), Anselin
(2010) and Arbia (2016).

2See Section 5 and a supplementary file.
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We consider the following SARAR model:

Yn = λ0WnYn +Xnβ0 + Un, Un = ρ0MnUn + σ0Vn, (1)

where n is the sample size, Yn = [yn1, · · · , ynn]′ is an n×1 vector of observations on the depen-

dent variable, Xn is an n× kx matrix of exogenous variables, Wn = [wn,ij] and Mn = [mn,ij]

are spatial weights matrices with zero diagonals,3 the innovations vi’s in Vn = [v1, · · · , vn]′

are i.i.d. with mean zero and unit variance, λ0 and ρ0 are scalar spatial dependence pa-

rameters, β0 is a kx × 1 parameter vector, and σ0 is a standard deviation parameter. We

formulate an NGPMLE using a chosen density function for vi that can differ from its true

density function. Our results on the consistency of the NGPMLE for the SARAR model

extend those in Newey and Steigerwald (1997) for conditional heteroskedasticity models, by

properly taking into account spatial dependence.4 We show that, when the spatial weights

matrixMn in the SAR process of disturbances is normalized to have row sums equal to one,5

the NGPMLE for model parameters except the intercept term and the variance σ2
0 of i.i.d.

innovations is consistent under regularity conditions; without row-normalization ofMn, if the

innovations are symmetric, the NGPMLE for model parameters except σ2
0 is consistent; and

with neither row-normalization of Mn nor the symmetry of innovations, a location parame-

ter can be added to the pseudo likelihood function to obtain consistent estimators of model

parameters except σ2
0. An important special case of the SARAR model is the SAR model

with exogenous variables but with no SAR process of disturbances. Consistent non-Gaussian

3The zero diagonals of the spatial weights matrices exclude self-influence. It is a normalization condition
usually maintained in the literature (see, e.g., Kelejian and Prucha, 1998; Lee, 2004). Indeed it is not used
in our theoretical analysis.

4Other studies on the NGPMLE include, among others, Gouriéroux et al. (1984), Francq et al. (2011),
Fan et al. (2014) and Fiorentini and Sentana (2019). The results in Gouriéroux et al. (1984) are on the basis
of a density function f(x,m) or f(x,m,Σ), where m is the mean and Σ is the variance of the distribution.
They focus on the exponential family, for which all moments exist. Our analysis does not restrict the density
function to be of the form f(x,m) or f(x,m,Σ), and we can use a density function which does not have a
finite moment with an order higher than 3. Francq et al. (2011) and Fan et al. (2014) propose modifications
of NGPMLEs for GARCH models with zero conditional mean. Fiorentini and Sentana (2019) propose
consistent NGPMLEs for GARCH models with nonzero conditional mean and for some other location-scale
models such as multivariate regressions.

5We refer to a matrix with all row sums equal to one as a row-normalized matrix hereafter.
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PML estimation of model parameters except σ2
0 only requires an intercept term in the model.

Furthermore, although we only consider SAR models in this paper, consistent NGPMLEs

can also be extended to other spatial econometric models.6 We expect that NGPMLEs for

those models can be more efficient than existing estimation methods.

We prove the
√
n-consistency and asymptotic normality of our NGPMLE under the con-

dition that the innovations have a finite third moment, which can allow for innovations with

relatively heavy tails. By contrast, the
√
n-consistency of the GPMLE is established un-

der the existence of a moment of innovations with an order higher than four (Lee, 2004).

Furthermore, using numerical integration and Student’s t distribution to formulate a like-

lihood function, we show that the NGPMLE with no added parameter can have uniform

efficiency improvement upon the GPMLE, and can also have significantly larger efficiency

improvement than the best generalized method of moments (GMM) estimator on the basis

of linear-quadratic moments (Liu et al., 2010), but the NGPMLE with an added parameter

can be less efficient than the GPMLE. An intuitive explanation from the non-Gaussian score

is that, unlike GPMLE and the best GMM estimator (BGMME), the NGPMLE with no

added parameter does not restrict the moments to be linear and quadratic in innovations.

The NGPMLE with an added parameter loses some efficiency since one more parameter has

to be estimated. Our Monte Carlo experiments further corroborate the efficiency improve-

ment of the NGPMLE with no added parameter upon the GPMLE and BGMME.

We also propose a non-Gaussian score test for spatial dependence in SAR models, which

only requires the restricted NGPMLE. The test statistic generalizes the Moran I test statistic

that is quadratic in estimated innovations (Moran, 1950). If the NGPMLE is asymptotically

more efficient than the GPMLE, then the non-Gaussian score test is locally more powerful

than the Gaussian score test.

Estimation methods for SAR models include maximum likelihood (ML) (Ord, 1975),

6For example, the matrix exponential spatial specification (LeSage and Pace, 2007), spatial moving av-
erage models (e.g., Haining, 1978; Cliff and Ord, 1981; Fingleton, 2008; Doğan and Taşpınar, 2013), and
high order versions of those models (e.g., Blommestein, 1983, 1985). See the supplementary file for some
consistency analysis.
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generalized spatial two stage least squares (GS2SLS) (Kelejian and Prucha, 1998), Gaussian

PML,7 GMM (Lee, 2007),8 best GMM, and adaptive estimation (Robinson, 2010; Lee and

Robinson, 2020), among others. GS2SLS is computationally simpler than ML, Gaussian

PML, GMM and best GMM, but is less efficient. Like our NGPMLE, the GPMLE does not

need the distribution of innovations to be correctly specified, and it is relatively efficient.9

Besides, whether the NGPMLE or the ML estimator based on non-normal distributions is

consistent or not is not clear according to the existing literature. Thus, the GPMLE is

popular in practice (see, e.g., Robinson, 2010). However, it can have a significant efficiency

loss compared with the ML estimator, when the innovations are far from normally distributed

(Fan et al., 2014). The adaptive estimation in Robinson (2010) requires that each unit is

influenced aggregately by a significant portion of units in the population, which is a very

stringent condition that may not be reasonable in some practical circumstances.10

This paper is organized as follows: In Section 2, we prove the convergence and asymptotic

distribution of the NGPMLE for the SARAR model, and compare its efficiency with those of

the GPMLE and BGMME. In Section 3, the non-Gaussian score test is investigated. Monte

Carlo and application results are reported in Sections 4–5 respectively. Section 6 concludes.

Proofs and other materials are collected in the Appendix and a supplementary file.

2 NGPMLE

Let θ0 = [λ0, ρ0, β
′
0, σ

2
0]

′ be the true parameter vector in model (1), and θ = [λ, ρ, β′, σ2]′ be a

general parameter vector. We consider a density function f(x, η) of a random variable with

mean zero and unit variance, where η is a kη × 1 parameter vector. For example, f(x, η) can

7Exact and high order properties of the GPMLE are studied in Bao (2013) and Hillier and Martellosio
(2018). Gupta and Robinson (2018) study the GPMLE of SAR models with increasingly many parameters.

8A related estimation method is the generalized empirical likelihood (Jin and Lee, 2019), which is asymp-
totically as efficient as the GMM with the same moments, but can have smaller higher order bias.

9It is asymptotically equivalent to a GMM estimator with linear and quadratic moments, where the
linear moments correspond to the instrumental variables estimation of the parameters in the equation on
the dependent variable in a GS2SLS approach.

10This condition is the same as that for the consistency of the ordinary least squares estimator (Lee, 2002).
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be the density function of a standardized Student’s t distribution with η degrees of freedom.

The pseudo log likelihood function of the SARAR model (1), as if vi had the density function

f(vi, η), is

lnLn(γ) =
n∑

i=1

ln f
(
vi(θ), η

)
− n

2
ln(σ2) + ln |Sn(λ)|+ ln |Rn(ρ)|, (2)

where γ = [θ′, η′]′, Sn(λ) = In − λWn with In being the n-dimensional identity matrix,

Rn(ρ) = In − ρMn, and vi(θ) =
1
σ
e′niRn(ρ)[Sn(λ)Yn − Xnβ], with eni being the ith column

of In. We may fix η at some particular value or estimate it jointly with θ. We focus on the

case where η is estimated jointly with θ, as in Fiorentini and Sentana (2019). An NGPMLE

of γ is derived by maximizing lnLn(γ) in (2).

We first introduce some regularity conditions for later analysis on model (1).

Assumption 1 (Topological space). Let D ⊂ Rcd, cd ≥ 1, be a lattice of (possibly) unevenly

placed locations in Rcd. D is infinitely countable and the distance d(i, j) between any two

elements i and j in D is larger than or equal to a specific positive constant, say 1 without

loss of generality. n individual units in an economy for model (1) are located or living in a

region Dn ⊂ D, where the cardinality of Dn is n.

Since the general density function f(x, η) can introduce nonlinearity into the pseudo log

likelihood function, we require a proper law of large numbers (LLN) for analysis. We use

the LLN for near-epoch dependent (NED) spatial processes, developed in Jenish and Prucha

(2012). Assumption 1 maintains some conditions required for such an LLN. The assumption

provides basic settings on individual units. The minimum distance assumption on individual

units corresponds to increasing domain asymptotics in the spatial literature.11

Let ∥ · ∥∞ and ∥ · ∥1 be, respectively, the row sum and column sum matrix norms.

11Another commonly used asymptotic method is called infill asymptotics, for which the sample region is
fixed and the growth of the sample size is achieved by sampling points arbitrarily dense in the given region.
See Cressie (1993) and Conley (1999) for more explanations and examples. If f(x, η) is the density function
of normal distributions, then ln f(x, η) is a quadratic function of x. In this special case, asymptotic analysis
can be based on the LLN for linear-quadratic forms (Kelejian and Prucha, 2001), therefore Assumption 1 is
not needed.
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Assumption 2 (Basic conditions on model elements). (i) vi’s are i.i.d. with mean zero

and unit variance. (ii) Wn and Mn are nonstochastic matrices such that supn ∥Wn∥∞ < ∞

and supn ∥Mn∥∞ < ∞. (iii) c0 ≡ max{|λ0| supn ∥Wn∥∞, |ρ0| supn ∥Mn∥∞} < 1. (iv) The

elements of Xn are uniformly bounded constants.

We consider i.i.d. innovations as in many papers on spatial econometric models. The uni-

form boundedness condition on the spatial weights matrices in Assumption 2(ii), originated

in Kelejian and Prucha (1998, 1999, 2001), limits the degree of spatial dependence to be

manageable.12 The elements of spatial weights matrices are often non-negative in practice,

but our theoretical analysis does not require such an assumption. Assumption 2(iii) implies

the nonsingularity of Rn ≡ Rn(ρ0) and Sn ≡ Sn(λ0) for any n. In Assumption 2(iv), the

elements of Xn are assumed to be constants for simplicity, as in Lee (2004).13

2.1 Consistency

Model (1) can be written as

RnSnYn = RnXnβ0 + σ0Vn. (3)

Thus, for given λ0 and ρ0, (3) is a linear regression model with RnSnYn being a vector of

observations on the dependent variable and RnXn being the explanatory variable matrix.

Newey and Steigerwald (1997) establish a set of results on the consistency of the NGPMLE

for coefficients in a conditional heteroskedasticity model, which nests the linear regression

model as a special case. These results depend on whether the model has an intercept term or

whether model innovations are symmetric.14 The regression (3) may not have an intercept

12In the spatial econometric literature, a spatial weights matrix is often assumed to be bounded in both the
row and column sum norms. Later we introduce conditions that imply supn ∥Wn∥1 < ∞ and supn ∥Mn∥1 <
∞, therefore Assumption 2(ii) only involves the row sum norms of Wn and Mn.

13Alternatively, Xn can be allowed to be stochastic with the existence of certain moments.
14To gain some intuition on the results, consider the case that the assumed density f is symmetric and

non-Gaussian. As f is not a Gaussian density, the mean of the dependent variable in a linear regression
model is generally not a natural location parameter of the assumed density. Thus, if f differs from the
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term, but if Mn is row-normalized and Xn contains an intercept term such that Xn =

[1n, X2n], where 1n is an n × 1 vector of ones, then RnXn = [(1 − ρ0)1n, RnX2n] contains

an intercept term. Hence, for given λ0 and ρ0, we expect the consistency of the NGPMLE

of some parameters in (3) under some regularity conditions. However, we have to properly

take into account that the spatial dependence parameters λ and ρ are also estimated. In the

following, we provide sufficient conditions for the consistent NGPMLE of some parameters

in (3).

Under regularity conditions, 1
n
lnLn(γ)− 1

n
E[lnLn(γ)] converges to zero uniformly on a

compact parameter space of γ. Suppose that limn→∞
1
n
E[lnLn(γ)] is uniquely maximized

at some pseudo-true value of γ, then the NGPMLE of γ converges to the pseudo-true value

in probability under regularity conditions. The following Assumptions 3–4 guarantee that

E[lnLn(γ)] is uniquely maximized at the pseudo-true value, where some components of

the pseudo-true value will be equal to their true values. Denote β = [β1, β
′
2]

′ in the case

that Xn contains an intercept term, where β1 is the parameter for 1n. Accordingly, let

β0 = [β10, β
′
20]

′. For a square matrix A, let vecD(A) be a column vector formed by the

diagonal elements of A. Denote A1n =MnR
−1
n , A2n = RnWnS

−1
n R−1

n , A3n =MnWnS
−1
n R−1

n ,

and Tn(τ) = Rn(ρ)Sn(λ)S
−1
n R−1

n = [tn,ij(τ)] with τ = [λ, ρ]′.

Assumption 3 (Identification A). (i) f(x, η) > 0 for any x and η, and E[ln f(vi(θ), η)] <∞

for all γ in its parameter space. (ii) X ′
nR

′
nRnXn is nonsingular. (iii) For any (α1, α2), every

element of 1n+α1 vecD(A1n)+α2 vecD(A2n)+α1α2 vecD(A3n) is nonzero. (iv) gn(τ) > 0 for

τ ̸= τ0, where gn(τ) =
∑n

i=1 ln |tn,ii(τ)| − ln |Tn(τ)|.

Assumption 3(i) is a usual regularity condition. The nonsingularity of X ′
nR

′
nRnXn in

true density, the consistency of the NGPMLE of the parameters for the mean is not guaranteed. When the
true density is symmetric, the mean, median and mode of the dependent variable are equal, thus the mean
and the natural location parameter are the same for f . It follows that the parameters for the mean can
be consistently estimated by the non-Gaussian PML under regularity conditions. In the case that the true
density is asymmetric, if there is no intercept term, the difference between the mean and the natural location
parameter for f leads to the inconsistency of the NGPMLE of the parameters for the mean. The existence
of an intercept in a linear regression model accounts for the difference, so other parameters for the mean can
still be consistently estimated by the non-Gaussian PML.
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Assumption 3(ii) is for the identification of β0. Assumption 3(iii) implies that tn,ii(τ) ̸= 0

for any i and any τ . Note that Tn(τ0) = In, whose diagonal elements are all equal to 1. Then

the assumption is satisfied at least for τ close to τ0.

Assumption 3(iv) is for the identification of τ0. It is a generalized version of Hadamard’s

inequality for positive semidefinite matrices. Lin and Sinnamon (2020) provide sufficient con-

ditions for Assumption 3(iv), which require all principal minors of Tn(τ) to be non-negative

and to satisfy a Fischer-type inequality. Alternatively, we could investigate conditions for As-

sumption 3(iv) in a neighborhood of τ0. Since gn(τ0) = 0 and ∂gn(τ0)
∂τ

= 0, we have gn(τ) > 0

for τ ̸= τ0 in a neighborhood of τ0 if ∂2gn(τ0)
∂τ∂τ ′

is positive definite. Let T1n = A1n − diag(A1n)

and T2n = A2n − diag(A2n), where diag(A) for a square matrix A denotes a diagonal ma-

trix formed by the diagonal elements of A. Then ∂2gn(τ0)
∂τ∂τ ′

is positive definite when Wn and

Mn are equal, T1n and T2n are linearly independent, and either Wn is symmetric or it is

row-normalized from a symmetric matrix (see Lemma B.1 in Appendix B).

Assumption 4 (Identification B). Either the following (i) or (ii) holds:

(i) (a) Mn is row-normalized, (b) Xn contains an intercept term, (c) E[ln f(σ0vi−α
σ

, η)] −

ln(σ) has a unique maximum at [σ∞, α∞, η
′
∞]′.

(ii) (a) vi is symmetrically distributed around zero with unimodal density k(v), which sat-

isfies that k(v1) ≤ k(v2) for |v1| ≥ |v2|. (b) For each η, f(v, η) = f(−v, η) and

f(v1, η) < f(v2, η) for |v1| > |v2|. (c) E[ln f(σ0vi
σ
, η)]− ln(σ) has a unique maximum at

[σ∞, η
′
∞]′.

The spatial weights matrix Mn can be either row-normalized or not row-normalized, but

a row-normalized Mn facilitates the interpretation of the spatial dependence parameter ρ,

since it indicates that each element of MnUn is a weighted average of Un for a non-negative

Mn. Thus, spatial weights matrices are often row-normalized in practice.15 An intercept

15Another reason is that it implies a simple interval of ρ for the nonsingularity of In − ρMn. See the
discussions in, e.g., Kelejian and Prucha (2010). Some authors prefer not to row-normalize a spatial weights
matrix, e.g., Baltagi et al. (2008).
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term is usually included in the SARAR model in empirical research.16 Assumptions 4(i)(c)

and 4(ii)(c) are the same as Assumptions 2.4 and 2.6 in Newey and Steigerwald (1997)

respectively. Assumption 4(i)(c) strengthens Assumption 4(ii)(c). With a row-normalized

Mn and an intercept term in Xn, the term 1
σ
(σ0vi − α) in Assumption 4(i)(c) is equal to

vi(θ) evaluated at θ = [λ0, ρ0,
α

1−ρ0
+ β10, β

′
20, σ

2]′. Newey and Steigerwald (1997) provide

some insights on Assumption 4(ii)(c). A necessary condition for it is that E[ln f(σ0vi
σ
, η∞)]−

lnσ is uniquely maximized at σ = σ∞. Therefore f(x, η) should be chosen such that σ∞

minimizes the Kullback-Leibler distance between the true innovation density and the pseudo

density σ0

σ
f(σ0x

σ
, η∞). Such an assumption holds for the Gaussian likelihood, the likelihood

for a standardized Student’s t distribution with more than two degrees of freedom, and a

generalized Gaussian likelihood with ln f(x, η) = −|x|η[Γ(3/η)/Γ(1/η)]η/2 + c, where c is

a constant and Γ(·) denotes the gamma function (Fan et al., 2014). The assumption also

implies that σ∞ is generally different from σ0, although it is straightforward to show that

σ∞ = σ0 if f(·) is a Gaussian density.17 For the case with symmetric innovations, Assumption

4(ii)(a)–(b) is the same as Assumption 2.3 in Newey and Steigerwald (1997). Both the true

density function of vi and the assumed density function f(v, η) are required to be unimodal.

Proposition 1. (i) If Assumptions 1–3 and 4(i) are satisfied, then E[lnLn(γ)] is uniquely

maximized at γ∗ = [λ0, ρ0, β1∞, β
′
20, σ

2
∞, η

′
∞]′, where β1∞ = β10+

α∞
1−ρ0

. (ii) If Assumptions 1–3

and 4(ii) are satisfied, then E[lnLn(γ)] is uniquely maximized at γ# = [λ0, ρ0, β
′
0, σ

2
∞, η

′
∞]′.

In the case with a row-normalizedMn, the intercept term and the variance parameter are

generally not consistently estimated, while other model parameters can be consistently esti-

mated; in the case with symmetric innovations, only the variance parameter is inconsistently

estimated.

16In some rare cases, an intercept term is not included, e.g., when Yn and Xn are normalized to have mean
zero. An example can be found in LeSage (1999, p. 72).

17Furthermore, σ∞/σ0 and η∞ only depend on the true disturbance distribution and the chosen density
function f(v, η), but do not depend on model characteristics such as spatial weights matrices, exogenous
variables and parameter values. The σ∞/σ0 differs from 1 even when the true innovation distribution and
the chosen density function f(v, η) are spherically symmetric. We report the values of σ∞/σ0 for some chosen
disturbance distributions and a density function f(v, η) in the supplementary file.
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Remark 1. For a SAR model with no SAR process of disturbances, i.e., Yn = λ0WnYn +

Xnβ0 + σ0Vn, a result similar to Proposition 1(i) holds, where Assumption 4(i) reduces to

that Xn contains an intercept term and E[ln f(σ0vi−α
σ

, η)]− ln(σ) has a unique maximum at

[σ∞, α∞, η
′
∞]′. As Mn does not appear in the model, the condition of a row-normalized Mn

is irrelevant. For a given λ0, the SAR model is a linear regression model with the dependent

variable SnYn and the exogenous variable matrix Xn. It can also be seen as a special case

of the SARAR model with a row-normalized Mn and ρ0 = 0, therefore it is not considered

separately.18

In the case with neither row-normalization of Mn nor the symmetry of innovations, we

could add a location parameter α to the non-Gaussian pseudo log likelihood function to

obtain the modified function19

lnLn(δ) =
n∑

i=1

ln f
(
vi(θ)−

1

σ
α, η

)
− n

2
ln(σ2) + ln |Sn(λ)|+ ln |Rn(ρ)|, (4)

where δ = [λ, ρ, β′, σ2, α, η′]′. This function is formed as if we had the model Yn = λ0WnYn+

Xnβ0 + Un, where Un = α01n + ρ0MnUn + σ0Vn. This model can be rewritten as RnSnYn =

RnXnβ0 +α01n + σ0Vn, which has an intercept term. Thus, as the above analysis under As-

sumption 4(i), we could show that E[lnLn(δ)] is uniquely maximized at δ# = [λ0, ρ0, β
′
0, σ

2
∞, α∞, η

′
∞]′

under regularity conditions.

Proposition 2. If Assumptions 1–3 and 4(i)(c) are satisfied and RnXn does not contain an

intercept term, then E[lnLn(δ)] is uniquely maximized at δ = δ#.

The identification results in Propositions 1–2 are for a finite n. To prove the convergence

of the NGPMLE, we need to strengthen the identification inequalities to the limit.20

18See the supplementary file for formal analysis.
19When Mn is row-normalized and Xn contains an intercept term, since vi(θ)− α

σ = 1
σ e

′
niRn(ρ)[Sn(λ)Yn−

X2nβ2]− (1−ρ)β1+α
σ , lnLn(δ) is not uniquely maximized and thus should not be used. When vi is symmetric,

lnLn(δ) can still be used to derive an NGPMLE, but there might be efficiency loss. Newey and Steigerwald
(1997) study such efficiency loss for conditional heteroskedasticity models. We do not examine the issue
theoretically for SAR models in this study, but we investigate it by Monte Carlo experiments.

20It is common to assume separate identification conditions for a finite n and for large samples in the
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Assumption 5 (Identification for large samples). For the log likelihood function lnLn(γ) in

(2), assume that lim supn→∞
1
n
{E[lnLn(γ)]−E[lnLn(γ∗)]} < 0 for any γ ̸= γ∗ if Assumption

4(i) holds, and assume that lim supn→∞
1
n
{E[lnLn(γ)] − E[lnLn(γ#)]} < 0 for any γ ̸= γ#

if Assumption 4(ii) holds. For lnLn(δ) in (4), assume that lim supn→∞
1
n
{E[lnLn(δ)] −

E[lnLn(δ#)]} < 0 for any δ ̸= δ#.

We introduce more regularity conditions for the analysis on the consistency of NGPMLEs.

Assumption 6 (Consistency A). (i) Sn(λ) is invertible for any λ in its parameter space Λ

and {S−1
n (λ)} is bounded in either the row sum or column sum matrix norm uniformly on

Λ. Similar conditions hold for Rn(ρ). (ii) The parameter space Γ of γ is a compact subset

of Rkγ , where kγ is the length of γ. Similar conditions hold for δ and κ.

Assumption 6(i) is required due to the nonlinearity involved in the log Jacobians ln |Sn(λ)|

and ln |Rn(ρ)| in the pseudo log likelihood functions. The compactness of parameter spaces

in Assumption 6(ii) is a familiar assumption on extremum estimators.

Assumption 7 (Consistency B). At least one of the following two conditions (i)–(ii) is

satisfied:

(i) Only individuals whose distances are less than or equal to some specific constant d̄0

may affect each other directly, i.e., wn,jk and mn,jk can be nonzero only if d(j, k) ≤ d̄0 for

any j, k and n.

(ii) (a) For every n, the number of columns wn,·j of Wn with |λ0|
∑n

i=1 |wn,ij| > c0 is less

than or equal to some fixed nonnegative integer that does not depend on n, denoted as N .21

A similar condition holds for Mn. (b) There are constants π1 and π2 with π2 > cd such that

|wn,jk| ≤ π1d(j, k)
−π2 and |mn,jk| ≤ π1d(j, k)

−π2, where cd is in Assumption 1.

spatial econometric literature. See, e.g., Assumption 8 in Xu and Lee (2015).
21The c0 here is some positive number smaller than one, which can be different from that in Assumption

2(iii). We use c0 for simplicity as in Xu and Lee (2015).
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Assumption 8 (Consistency C). (i) f(x, η) is differentiable with respect to x and η such

that |∂ ln f(x,η)
∂x

| ≤ cf (|x|ct+1) and ∥∂ ln f(x,η)
∂η

∥ ≤ cf (|x|1+ct+1) for some constant cf and ct = 0

or 1. (ii) For the ct in (i), E(|vi|2+2ct+ι) <∞ for some ι > 0.

Assumptions 7–8 are maintained to show the NED properties of some relevant terms.

Assumption 7 on the spatial weights matrices is the same as Assumption 3 in Xu and

Lee (2015) for a SAR Tobit model. Assumption 7(i) does not allow direct interactions

between individuals far from each other. While Assumption 7(ii)(b) allows any off-diagonal

element of spatial weights matrices to be nonzero, the interaction needs to decay fast enough.

Assumption 7(ii)(a) corresponds to the existence of a limited number of spatial units that

can have large aggregated effects on other spatial units.

Assumption 8(i) covers the case with a bounded ∂ ln f(x,η)
∂x

and the case where |∂ ln f(x,η)
∂x

| ≤

cf (|x| + 1) for some constant cf . The derivative ∂ ln f(x,η)
∂x

is bounded for a smooth enough

f(x, η) whose tail behavior is proportional to |x|−a for a ≥ 1 or e−b|x|a for 0 < a ≤ 1 and

b > 0. Examples include Student’s t and the logistic distributions. On the other hand,

|∂ ln f(x,η)
∂x

| ≤ cf (|x|+1) for some constant cf for a smooth enough f(x, η) whose tail behavior

is proportional to e−b|x|a for 0 < a ≤ 2 and b > 0. An example is the normal distribution.

The condition on ∂ ln f(x,η)
∂η

is also satisfied for Student’s t, logistic and normal distributions.

Depending on whether ∂ ln f(x,η)
∂x

is bounded or |∂ ln f(x,η)
∂x

| ≤ cf (|x| + 1), Assumption 8(ii)

requires different moment conditions on vi. With a bounded ∂ ln f(x,η)
∂x

, we only need vi to

have a finite moment with the order 2 + ι for some ι > 0.

Denote the NGPMLEs that maximize lnLn(γ) and lnLn(δ) by, respectively, γ̂ and δ̂.

The convergence of the NGPMLEs is summarized in the following theorem.

Theorem 1. Suppose that Assumptions 1–3 and 5–8 are satisfied.

(i) For the case with a row-normalized Mn, if Assumption 4(i) is also satisfied, then γ̂ =

γ∗ + op(1).

(ii) For the case with symmetric vi, if Assumption 4(ii) is also satisfied, then γ̂ = γ#+op(1).
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(iii) For the case with neither row-normalization of Mn nor the symmetry of vi, if As-

sumption 4(i)(c) is also satisfied and RnXn does not contain an intercept term, then

δ̂ = δ# + op(1).

2.2 Asymptotic distributions

The asymptotic distributions of the NGPMLEs can be derived by mean value theorem ex-

pansions of their first order conditions at the pseudo-true values, and applying a proper

central limit theorem (CLT).

As an example, consider the case with symmetric vi. With the reduced form Yn =

S−1
n (Xnβ0 + σ0R

−1
n Vn), each element of

∂ lnLn(γ#)

∂γ
is a special case of the general form

ωn = ε′nAnVn + b′nεn + 1′nΨn − E(ε′nAnVn), (5)

where εn = [
∂f(

σ0
σ∞

v1,η∞)

∂v
, · · · , ∂f(

σ0
σ∞

vn,η∞)

∂v
]′ ≡ [ϵi], Ψn = [

∂f(
σ0
σ∞

v1,η∞)

∂η
, · · · , ∂f(

σ0
σ∞

vn,η∞)

∂η
]′cη ≡

[ψi] with cη being a kη × 1 vector of constants, An = [an,ij] is an n×n nonstochastic matrix,

bn = [bni] is an n × 1 vector of constants, and εn, Vn and Ψn have zero means (see the

proof of Theorem 2). The ωn can be shown to be asymptotically normal by a CLT for

martingale difference arrays, as the proof for the asymptotic normality of linear-quadratic

forms of innovations in Kelejian and Prucha (2001). Such a result is provided in Lemma 6

of Yang and Lee (2017).

We maintain the following assumption for the analysis on the asymptotic distributions.

Assumption 9 (Asymptotic distributions). (i) γ∗, γ# and δ# are in the interior of their

respective parameter spaces. (ii) f(x, η) is thrice differentiable with respect to z = [x, η′]′,

such that ∥∂2 ln f(x,η)
∂z∂z′

∥ ≤ cf (|x|2ct + 1) and ∥∂3 ln f(x,η)
∂z∂z′∂zi

∥ ≤ cf (|x|3ct + 1) for each element zi of

z, where ct = 0 for the case with bounded ∂ ln f(x,η)
∂x

, and ct = 1 for the case with |∂ ln f(x,η)
∂x

| ≤

cf (|x| + 1), as stated in Assumption 8(i). (iii) E(|vi|3ct+3) < ∞. (iv) If Assumption 7(i)

holds, assume that supn ∥S−1
n ∥1 <∞ and supn ∥R−1

n ∥1 <∞.
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Assumption 9(i) is a familiar condition required for the
√
n-convergence of extremum

estimators. Assumption 9(ii) contains further smoothness conditions on f(x, η). It is similar

to Assumption 10 in Xu and Lee (2018) and it is satisfied with ct = 0 for Student’s t, logistic

and normal distributions. With Assumption 9(ii), only a finite third moment of innovations

is needed in Assumption 9(iii) for the case with bounded ∂ ln f(x,η)
∂x

.22 As the GPMLE is

shown to be
√
n-consistent only under the existence of moments of innovations with an

order higher than four, it is possible that it has a rate of convergence slower than
√
n when

innovations only have a finite third moment. In such a situation, the NGPMLE is certainly

more efficient than the GPMLE by Theorem 2 below. Assumption 9(ii)–(iii) are maintained

to show the convergence of the Hessian matrices 1
n
∂2 lnLn(γ̂)

∂γ∂γ′ and 1
n
∂2 lnLn(δ̂)

∂δ∂δ′
. Assumption

9(iv) of boundedness in the column sum norm of S−1
n and R−1

n is required for asymptotic

distributions as in Kelejian and Prucha (1998) and Lee (2004). It is not required in the

situation of Assumption 7(ii) since it can be directly proved (see Lemma B.6).

Theorem 2. Suppose that Assumptions 1–3 and 5–9 are satisfied.

(i) For the case with a row-normalized Mn, if Assumption 4(i) is also satisfied, then

√
n(γ̂ − γ∗)

d−→ N(0, limn→∞A−1BA−1), where A = − 1
n
E(∂

2 lnLn(γ∗)
∂γ∂γ′ ) and

B = 1
n
E(∂ lnLn(γ∗)

∂γ
∂ lnLn(γ∗)

∂γ′ ).

(ii) For the case with symmetric vi, if Assumption 4(ii) is also satisfied, then
√
n(γ̂−γ#)

d−→

N(0, limn→∞A−1BA−1), where A = − 1
n
E(

∂2 lnLn(γ#)

∂γ∂γ′ ) and B = 1
n
E(

∂ lnLn(γ#)

∂γ

∂ lnLn(γ#)

∂γ′ ).

(iii) For the case with neither row-normalization of Mn nor the symmetry of vi, if Assump-

tion 4(i)(c) is also satisfied and RnXn does not contain an intercept term, then
√
n(δ̂−

δ#)
d−→ N(0, limn→∞A−1BA−1), where A = − 1

n
E(

∂2 lnLn(δ#)

∂δ∂δ′
) and B = 1

n
E(

∂ lnLn(δ#)

∂δ

∂ lnLn(δ#)

∂δ′
).

The specific expressions of A and B are in Appendix A.23 For easy reference, denote

22It is possible to develop formal tests for finiteness of moments of innovations in the SARAR model,
which is beyond the scope of this paper.

23One may estimate A and B using the expressions in Appendix A for inference purposes. Alternatively,

A can be estimated using − 1
n

∂2 lnLn(γ̂)
∂γ∂γ′ or − 1

n
∂2 lnLn(δ̂)

∂δ∂δ′ , and B can be estimated according to the martingale
structure of the non-Gaussian score.
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the NGPMLE without added parameter by NGPMLEo, and that with an added parameter

by NGPMLEa. For the special case of a spatial error model with symmetric innovations,

i.e., model (1) with λ0WnYn omitted and symmetric vi, we could show that A and B for

NGPMLEo are block diagonal and the NGPMLEo of β has a more explicit expression, as

presented in the following corollary.

Corollary 1. For the spatial error model with symmetric vi, the NGPMLEo of β has

the asymptotic variance limn→∞
σ2
0 E(ξ21i)

[E(ξ2i)]2
( 1
n
X ′

nR
′
nRnXn)

−1, where ξ1i =
σ0

σ∞

∂ ln f(
σ0
σ∞

vi,η∞)

∂v
and

ξ2i = − σ2
0

σ2
∞

∂2 ln f(
σ0
σ∞

vi,η∞)

∂v2
, and the GPMLE and BGMME of β have the asymptotic variance

limn→∞ σ2
0(

1
n
X ′

nR
′
nRnXn)

−1.

By the above corollary, for the spatial error model with symmetric vi, the BGMME of

β has no efficiency improvement over the GPMLE, and the efficiency of NGPMLEo relative

to the GPMLE is determined by the scalar
E(ξ21i)

[E(ξ2i)]2
. For the general SARAR model, A and

B are not block diagonal and the estimation of η may affect the asymptotic efficiency of the

NGPMLE of model parameters. Thus it is not easy to compare analytically the efficiencies

of the NGPMLE and other estimators.

2.3 Efficiency comparisons

In this subsection, we compare the estimation efficiency of our NGPMLE with those of the

GPMLE and BGMME.24 For the asymptotic variance of the NGPMLE, as the closed form is

not available, we compute the asymptotic variance in Theorem 2 for a given sample size with

numerical integration. Student’s t distribution with unknown degrees of freedom is used in

deriving the NGPMLE.25

24Various impacts arising from a change in an exogenous explanatory variable, as defined in, e.g., LeSage
and Pace (2009), are functions of the spatial lag parameter λ0 and the coefficient on the variable. Then
by the delta method, if the NGPMLE is asymptotically more efficient than other estimators, so are the
impact estimators computed with the NGPMLE than those computed with other estimators. Some efficiency
comparisons for impact estimators based on numerical integration and Monte Carlo experiments are provided
in the supplementary file. The patterns are the same as those for estimators. We thank an anonymous referee
for the suggestion of considering impact estimators.

25In this study, we have not theoretically considered the choice of distributions used to derive the NGPM-
LEs. As suggested in Fan et al. (2014), the distributions can be chosen to minimize the asymptotic variance
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The considered models are listed in Table 1. For the SARAR model, the spatial weights

matrix Mn is block diagonal and each diagonal block is based on the matrix for the study of

crimes across 49 districts in Columbus, Ohio, in Anselin (1988); Mn is either row-normalized

or normalized by its spectral radius; Wn is set to be equal to Mn; the exogenous variable

matrix Xn contains an intercept term and a standard normal random variable; the spatial

dependence parameters λ0 and ρ0 are equal to 0.4 and 0.2 respectively; the coefficients for

Xn are set to 1; the true variance parameter σ2
0 is 0.25; and the sample size is 147. For the

case with symmetric innovations, vi is set to be a mixture of two normal distributions with

mean zero; and for the case with asymmetric innovations, vi is an admissible fourth order

Gram-Charlier expansion of the standard normal distribution as a function of the skewness

and kurtosis coefficients.26 The settings for the spatial error model are the same as for the

SARAR model, except for the omission of λ0WnYn.

Table 1: Models considered for efficiency comparisons

Row-normalized Mn Non-row-normalized Mn

Spatial error model: symmetric and asymmetric vi —
SARAR model: asymmetric vi symmetric and asymmetric vi

2.3.1 Spatial error model with a row-normalized Mn

We first consider the spatial error model with a row-normalized Mn. Figure 1 reports the

results for both symmetric and asymmetric innovations. We observe that NGPMLEo im-

of the NGPMLE in Theorem 2. In addition, the NGPMLE and GPMLE can be aggregated to derive an
estimator that is more efficient than both. A more practical method can be based on diagnostic tests. In the
supplementary file, we derive some diagnostic tests such as the normality and excess kurtosis tests of inno-
vations in the SARAR model. Non-normal innovations imply that a proper NGPMLE can be more efficient
than the GPMLE. If the excess kurtosis test suggests a positive excess kurtosis, then we can use a leptokurtic
distribution such as Student’s t distribution; otherwise, a platykurtic distribution such as the raised cosine
distribution can be used. Our applications imply leptokurtic distributions of innovations, therefore we use
Student’s t distribution with one parameter, which is relatively simple and can have various degrees of excess
kurtosis. As pointed out by the Co-Editor and an anonymous referee, using a sufficiently general family of
distributions can lead to efficiency loss because many more parameters are estimated alongside other model
parameters, while using diagnostic tests to choose distributions can suffer from the pre-testing issue (e.g.,
Giles and Giles, 1993). We leave those issues to future study.

26The admissible combinations of the skewness and kurtosis coefficients can be seen from, e.g., Spiring
(2011).
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Figure 1: Efficiency comparisons of different estimators for the spatial error model with a
row-normalized Mn. The lower mesh in each sub-figure shows the ratios of the asymptotic
variance of NGPMLEo to that of GPMLE, while the upper mesh shows the ratios of the
asymptotic variance of BGMME to that of GPMLE.
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proves upon GPMLE in all cases with a non-normal true disturbance distribution, and the

efficiency improvement can be up to about 50%. In the case with symmetric innovations,

BGMME shows almost no efficiency improvement over GPMLE; in the case with asymmetric

innovations, BGMME shows some efficiency improvement over GPMLE but usually much

less than NGPMLEo. Only in the case with asymmetric innovations and for the parameter

β2, BGMME can be slightly more efficient than NGPMLEo, which occurs when the skewness

coefficient is relatively large and the kurtosis coefficient is small. For the case with asym-

metric innovations, the efficiency of NGPMLEo relative to GPMLE increases with kurtosis,

while it is almost not affected by skewness.
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Figure 2: Efficiency comparisons of different estimators for the SARAR model with a row-
normalized Mn and asymmetric innovations. The vi is an admissible fourth order Gram-
Charlier expansion of the standard normal distribution as a function of the skewness and
kurtosis coefficients. The lower mesh in each sub-figure shows the ratios of the asymptotic
variance of NGPMLEo to that of GPMLE, while the upper mesh shows the ratios of the
asymptotic variance of BGMME to that of GPMLE.
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2.3.2 SARAR model with a row-normalized Mn and asymmetric vi

Figure 2 reports the efficiency comparison results for the SARARmodel with a row-normalized

Mn and asymmetric innovations. Similar to the results for the spatial error model, NGPMLEo

shows significant efficiency improvement over GPMLE, and the improvement is much larger

than that of BGMME in most cases.

2.3.3 SARAR model with a non-row-normalized Mn

We next consider the SARAR model with a non-row-normalized Mn. When the innovations

are symmetric, we consider NGPMLEo as well as NGPMLEa since both estimators of λ,

ρ and β2 are consistent. Figure 3 shows the results. NGPMLEo is still observed to have

significant efficiency improvement over GPMLE, but NGPMLEa only has smaller variance

than that of GPMLE for β2, and its variances for the spatial dependence parameters λ and ρ

are typically much larger than those of GPMLE. Figure 4 further demonstrates the efficiency

loss of NGPMLEa due to an added parameter, for the case with asymmetric innovations.

To summarize, our experiments based on Student’s t distribution in Sections 2.3.1–2.3.3

show that NGPMLEo has uniform efficiency improvement upon GPMLE, which is usually

much larger than the efficiency improvement of BGMME, but NGPMLEa, the NGPMLE
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Figure 3: Efficiency comparisons of different estimators for the SARAR model with a non-
row-normalized Mn and symmetric innovations. The vi is a mixture of two normal distribu-
tions with mean zero. For the first three sub-figures, the lower mesh in each sub-figure shows
the ratios of the asymptotic variance of NGPMLEo to that of GPMLE, while the upper mesh
shows the ratios of the asymptotic variance of BGMME to that of GPMLE. For the fourth
to sixth sub-figures, the mesh in each sub-figure shows the ratios of the asymptotic variance
of NGPMLEa to that of GPMLE.
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Figure 4: Efficiency comparisons of different estimators for the SARAR model with a non-
row-normalizedMn and asymmetric innovations. The vi is an admissible fourth order Gram-
Charlier expansion of the standard normal distribution as a function of the skewness and
kurtosis coefficients. The mesh in each sub-figure shows the ratios of the asymptotic variance
of NGPMLEa to that of GPMLE.
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with an added parameter, can be less efficient than GPMLE.

3 Non-Gaussian score test for spatial dependence

In this section, we propose a score test for spatial dependence based on the non-Gaussian

pseudo log likelihood function lnLn(γ) in (2).27

Consider a test of the null hypothesis that τ0 = 0. Let γ̌ = [0, 0, β̌′, σ̌2, η̌′]′ be the restricted

NGPMLE of γ, which is derived by maximizing lnLn(γ) in (2) with the restriction τ = 0

imposed. The non-Gaussian score test is based on the asymptotic distribution of 1√
n
∂ lnLn(γ̌)

∂τ
.

Note that

∂ lnLn(γ̌)

∂τ
=

[
− 1

σ̌

n∑
i=1

∂ ln f(vi(θ̌), η̌)

∂v
e′niWnYn, −

n∑
i=1

∂ ln f(vi(θ̌), η̌)

∂v
e′niMnVn(θ̌)

]′
,

where θ̌ = [0, 0, β̌′, σ̌2]′, vi(θ̌) =
1
σ̌
e′ni(Yn − Xnβ̌) and Vn(θ̌) = [v1(θ̌), · · · , vn(θ̌)]′. A special

case of interest is the test for spatial dependence in the spatial error model. In this case, the

test is based on the asymptotic distribution of −
∑n

i=1
∂ lnLn(vi(θ̌),η̌)

∂v
e′niMnVn(θ̌) for a spatial

weights matrix Mn. The statistic −
∑n

i=1
∂ lnLn(vi(θ̌),η̌)

∂v
e′niMnVn(θ̌) generalizes the quadratic

form V ′
n(θ̌)MnVn(θ̌) for Moran’s I test for spatial dependence, where V ′

n(θ̌)MnVn(θ̌) can also

be derived from the Gaussian score (Burridge, 1980).

We may apply the mean value theorem to derive the asymptotic distribution of 1√
n
∂ lnLn(γ̌)

∂τ

under the null hypothesis. Let A = − 1
n
E(∂

2 lnLn(γ∞)
∂γ∂γ′ ) and B = 1

n
E(∂ lnLn(γ∞)

∂γ
∂ lnLn(γ∞)

∂γ′ ).28

For any two subvectors γ1 and γ2 of γ, denote Aγ1γ2 = − 1
n
E(∂

2 lnLn(γ∞)
∂γ1∂γ′

2
) and Bγ1γ2 =

1
n
E(∂ lnLn(γ∞)

∂γ1

∂ lnLn(γ∞)
∂γ′

2
). Under the null hypothesis and regularity conditions,

1√
n

∂ lnLn(γ̌)

∂τ
=

1√
n

∂ lnLn(γ∞)

∂τ
+

1

n
E
(∂2 lnLn(γ∞)

∂τ∂γ′u

)√
n(γ̌u − γu∞) + op(1)

27A test based on lnLn(δ) in (4) is omitted since the last section shows that the resulting NGPMLE can
be less efficient than the GPMLE, and the efficiency of an estimator relates to the power of related tests, as
shown in Theorem 3.

28We use γ∞ here for simplicity. By τ0 = 0 and Theorem 1, γ∞ = [0, 0, β1∞, β′
20, σ

2
∞, η′∞]′ in the case with

a row-normalized Mn, and γ∞ = [0, 0, β′
0, σ

2
∞, η′∞]′ in the case with symmetric vi.
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= ∆
1√
n

∂ lnLn(γ∞)

∂γ
+ op(1)

d−→ N
(
0, lim

n→∞
∆B∆′

)
,

where γu = [β′, σ2, η′]′, γu∞ is the pseudo true value of γu, and ∆ = [I2,−AτγuA−1
γuγu ]. Let ∆̂

and B̂ be estimators of, respectively, ∆ and B, such that ∆̂ = ∆ + op(1) and B̂ = B + op(1)

under the null hypothesis. The test statistic has the form

tn =
1

n

∂ lnLn(γ̌)

∂τ ′
(∆̂B̂∆̂′)−1∂ lnLn(γ̌)

∂τ
, (6)

which is asymptotically chi-square distributed with 2 degrees of freedom under the null

hypothesis.

For the asymptotic analysis on tn, we assume that the true τ in the data generating

process follows the Pitman drift in the following assumption.

Assumption 10 (Pitman drift). τn = 1√
n
cτ , where cτ is a 2× 1 vector of constants.

Theorem 3. If Assumptions 1–4 and 5–10 are satisfied, then tn
d−→ χ2

2(limn→∞ c′τΛ(∆B∆′)−1Λcτ ),

where Λ = Aττ − AτγuA−1
γuγuAγuτ and χ2

a1
(a2) denotes a noncentral chi-squared distribution

with a1 degrees of freedom and noncentrality parameter a2.

By Theorem 2 and the partitioned matrix inverse formula, the asymptotic variance of

the NGPMLE τ̂ has the form Υ = limn→∞ Λ−1∆B∆′Λ−1. The noncentrality parameter for

the asymptotic noncentral chi-squared distribution of tn is equal to c′τΥ
−1cτ . Thus, if the

NGPMLE of τ is asymptotically more efficient than the GPMLE, then the non-Gaussian

score test is locally more powerful than the Gaussian score test.

4 Monte Carlo

In this section, we implement some Monte Carlo experiments to investigate the finite sample

performance of the NGPMLE and non-Gaussian score test. As in Section 2.3, the NGPMLE

is derived by assuming Student’s t distribution with unknown degrees of freedom.
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4.1 Estimators

We consider three cases: the SARAR model with a row-normalized Mn and asymmetric vi,

the SARAR model with a non-row-normalized Mn and symmetric vi, and the SAR model

with symmetric vi.
29 For the SAR model, we also consider the adaptive estimators pro-

posed in Robinson (2010).30 Parameters for the innovations correspond to cases where the

NGPMLE and BGMME show different levels of efficiency improvements in Section 2.3. The

number of Monte Carlo repetitions is 5, 000. Other settings are the same as those in Section

2.3.

Table 2 reports the biases, standard deviations (SD) and root mean squared errors

(RMSE) of various estimators for the SARAR model with a row-normalized Mn and asym-

metric innovations. The biases of GPMLE, BGMME and NGPMLEo are similar in magni-

tude. Since the biases are small compared to the SDs, the RMSEs are similar to the SDs.

NGPMLE has a smaller SD than GPMLE when the kurtosis coefficient of innovations is

equal to 4 or 6, while BGMME only has a smaller SD for λ and β2 when the kurtosis and

skewness coefficients are both the largest, i.e., the kurtosis coefficient is 6 and the skewness

coefficient is 0.8. When the kurtosis coefficient is 3.05 and the skewness coefficient is 0.05

so that the distribution of innovations is close to the normal distribution, NGPMLE and

BGMME have slightly larger SDs than GPMLE. For NGPMLE, a larger kurtosis leads to a

smaller SD, while skewness does not have much impact on the SD.

Table 3 reports the estimation results for the SARAR model with a non-row-normalized

Mn and symmetric innovations. In addition to NGPMLEo, GPMLE and BGMME, we also

consider NGPMLEa to investigate its efficiency loss due to an added parameter. The patterns

for the relative efficiencies of GPMLE, NGPMLEo and BGMME are similar to those in Table

29For the three cases considered, the identification conditions in Assumption 3 are satisfied. In the supple-
mentary file, we report some Monte Carlo results for the case when Assumption 3 fails. We observe that the
NGPMLE for the spatial dependence parameters and the coefficients on non-intercept exogenous variables
still has similar bias as the GPMLE. Thus, it is possible that the NGPMLE for some model parameters is
consistent even when Assumption 3 fails. We leave this question to future research.

30The adaptive estimators do not apply to the SARAR model (Remark 3 on page 9 of Robinson, 2010).
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Table 2: Performance of various estimators for the SARAR model with a row-normalized
Mn and asymmetric vi

λ ρ β2

Kurtosis Skewness Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel A: n = 147
6 0.8 GPMLE -0.008 0.076 0.077 -0.025 0.142 0.144 -0.001 0.042 0.042

BGMME -0.006 0.073 0.073 -0.013 0.143 0.144 0.000 0.040 0.040
NGPMLEo -0.006 0.059 0.060 -0.018 0.119 0.120 -0.001 0.032 0.032

6 0.05 GPMLE -0.006 0.076 0.076 -0.032 0.141 0.145 -0.002 0.041 0.041
BGMME -0.005 0.078 0.079 -0.017 0.146 0.147 -0.002 0.042 0.042
NGPMLEo -0.004 0.060 0.060 -0.026 0.120 0.123 -0.001 0.033 0.033

4 0.4 GPMLE -0.006 0.076 0.076 -0.029 0.143 0.146 -0.002 0.042 0.042
BGMME -0.005 0.077 0.077 -0.016 0.148 0.149 -0.002 0.042 0.042
NGPMLEo -0.005 0.073 0.074 -0.028 0.140 0.143 -0.002 0.040 0.041

4 0.05 GPMLE -0.008 0.077 0.078 -0.027 0.143 0.145 -0.001 0.042 0.042
BGMME -0.007 0.080 0.081 -0.012 0.148 0.149 -0.001 0.043 0.043
NGPMLEo -0.008 0.075 0.075 -0.026 0.141 0.143 -0.001 0.041 0.041

3.05 0.05 GPMLE -0.008 0.076 0.077 -0.027 0.142 0.144 -0.002 0.042 0.042
BGMME -0.007 0.080 0.080 -0.011 0.147 0.147 -0.002 0.043 0.043
NGPMLEo -0.009 0.079 0.080 -0.026 0.146 0.148 -0.002 0.043 0.043

Panel B: n = 294
6 0.8 GPMLE -0.003 0.052 0.052 -0.012 0.098 0.099 -0.001 0.030 0.030

BGMME -0.003 0.049 0.049 -0.007 0.098 0.098 -0.001 0.028 0.028
NGPMLEo -0.002 0.040 0.040 -0.009 0.082 0.083 -0.001 0.023 0.023

6 0.05 GPMLE -0.003 0.052 0.053 -0.014 0.099 0.100 -0.001 0.029 0.029
BGMME -0.002 0.053 0.053 -0.006 0.101 0.101 -0.001 0.030 0.030
NGPMLEo -0.001 0.041 0.041 -0.012 0.082 0.083 -0.001 0.023 0.023

4 0.4 GPMLE -0.003 0.052 0.052 -0.013 0.098 0.099 -0.001 0.029 0.029
BGMME -0.003 0.052 0.052 -0.007 0.099 0.099 0.000 0.029 0.029
NGPMLEo -0.003 0.050 0.050 -0.013 0.096 0.097 -0.001 0.028 0.028

4 0.05 GPMLE -0.004 0.051 0.052 -0.013 0.099 0.100 -0.001 0.029 0.029
BGMME -0.003 0.052 0.052 -0.006 0.101 0.101 -0.001 0.029 0.029
NGPMLEo -0.003 0.050 0.050 -0.012 0.097 0.098 -0.001 0.028 0.028

3.05 0.05 GPMLE -0.004 0.052 0.052 -0.014 0.098 0.099 0.000 0.029 0.029
BGMME -0.003 0.053 0.053 -0.005 0.099 0.099 -0.001 0.030 0.030
NGPMLEo -0.004 0.055 0.055 -0.013 0.101 0.102 -0.001 0.030 0.030

Notes: The true disturbance distribution is a fourth order Gram-Charlier expansion of the standard normal distri-
bution as a function of the skewness and kurtosis coefficients. β2 is the coefficient on the non-intercept variable in
Xn. λ0 = 0.4, ρ0 = 0.2, β10 = 1, β20 = 1 and σ2

0 = 0.25.
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2. When the disturbance distribution is a mixture of two normal distributions with mean

zero and the ratio of the variances for the two distributions being close to 1, or when the

innovations follow the normal distribution, NGPMLE and BGMME have slightly larger SDs

than that of GPMLE. While the NGPMLEa of β2 has a smaller SD than that of GPMLE in

some cases, the NGPMLEa of λ and ρ has a significantly larger SD than that of GPMLE in

most cases, which is consistent with the efficiency comparisons based on numerical integration

in Section 2.3.

Estimation results for the SAR model with symmetric innovations are presented in Table

4. The disturbance distribution is a mixture of two normal distributions with mean zero.

The ratio of variances for the two normal distributions is 10, and the mixing probability

is 0.3.31 We consider two adaptive estimators (AE) proposed in Robinson (2010): AEa

and AEb, where AEb is a bias-corrected version of AEa. As in Robinson (2010), we use

the polynomial functions (x, · · · , xL) or the bounded functions ( x
(1+x2)1/2

, · · · , xL

(1+x2)L/2 ) to

estimate the score function for the AEs. An AEa with (x, · · · , xL) is denoted as AEa(p, L),

and that with ( x
(1+x2)1/2

, · · · , xL

(1+x2)L/2 ) is denoted as AEa(b, L). AEb is similarly denoted.

We set L to 1, 2 or 4, as in Robinson (2010). The initial estimate for the AEs is either the

NGPMLE or ordinary least squares estimate (OLSE). Table 4 shows that, while the biases

of GPMLE, BGMME, and NGPMLE are relatively small, those of AEs can be large. Some

versions of AEs can have smaller SDs than GPMLE, but all AEs have uniformly larger SDs

and RMSEs than NGPMLE.

4.2 Non-Gaussian and Gaussian score tests

Tables 5–6 report, respectively, the empirical sizes and powers of score tests for spatial

dependence in the SARAR model with a row-normalized Mn and asymmetric innovations.

With a nominal size of 5%, the size distortions of the non-Gaussian and Gaussian score tests

are all within 0.5 percentage point. Neither the Gaussian score test nor the non-Gaussian

31Results for some other parameter settings are reported in the supplementary file. The patterns are
similar.
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Table 3: Performance of various estimators for the SARAR model with a non-row-normalized Mn

and symmetric vi

λ ρ β2

RV Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel A: n = 147
9 GPMLE -0.004 0.064 0.064 -0.046 0.172 0.178 -0.002 0.042 0.042

BGMME -0.003 0.067 0.067 -0.023 0.186 0.188 -0.002 0.042 0.042
NGPMLEo -0.003 0.049 0.049 -0.035 0.146 0.150 -0.001 0.032 0.032
NGPMLEa -0.007 0.080 0.080 -0.038 0.157 0.161 -0.002 0.032 0.032

6 GPMLE -0.004 0.064 0.064 -0.044 0.171 0.176 -0.001 0.042 0.042
BGMME -0.004 0.069 0.069 -0.022 0.187 0.188 -0.001 0.043 0.043
NGPMLEo -0.003 0.055 0.055 -0.038 0.158 0.162 -0.001 0.036 0.036
NGPMLEa -0.010 0.092 0.093 -0.040 0.175 0.179 -0.002 0.037 0.037

3 GPMLE -0.002 0.064 0.064 -0.044 0.168 0.173 -0.002 0.042 0.042
BGMME -0.002 0.068 0.068 -0.020 0.181 0.182 -0.002 0.043 0.043
NGPMLEo -0.003 0.062 0.062 -0.041 0.166 0.171 -0.002 0.041 0.041
NGPMLEa -0.010 0.104 0.105 -0.048 0.184 0.191 -0.003 0.041 0.042

1.1 GPMLE -0.005 0.064 0.064 -0.047 0.171 0.178 -0.001 0.042 0.042
BGMME -0.004 0.068 0.068 -0.021 0.184 0.185 -0.001 0.043 0.043
NGPMLEo -0.006 0.068 0.069 -0.045 0.175 0.181 -0.001 0.043 0.043
NGPMLEa -0.009 0.115 0.116 -0.069 0.194 0.206 -0.002 0.047 0.047

Panel B: n = 294
9 GPMLE -0.002 0.044 0.044 -0.024 0.115 0.118 0.000 0.030 0.030

BGMME -0.001 0.045 0.045 -0.013 0.119 0.119 0.000 0.030 0.030
NGPMLEo -0.001 0.034 0.034 -0.018 0.097 0.099 0.000 0.023 0.023
NGPMLEa -0.004 0.055 0.055 -0.018 0.109 0.110 -0.001 0.023 0.023

6 GPMLE -0.002 0.044 0.044 -0.021 0.117 0.119 0.000 0.030 0.030
BGMME -0.002 0.045 0.045 -0.009 0.120 0.121 0.000 0.030 0.030
NGPMLEo -0.002 0.038 0.038 -0.017 0.108 0.109 0.000 0.025 0.025
NGPMLEa -0.005 0.061 0.061 -0.018 0.119 0.121 -0.001 0.026 0.026

3 GPMLE -0.002 0.044 0.044 -0.021 0.118 0.119 0.000 0.029 0.029
BGMME -0.002 0.045 0.045 -0.009 0.121 0.121 0.000 0.030 0.030
NGPMLEo -0.002 0.042 0.042 -0.021 0.117 0.119 0.000 0.028 0.028
NGPMLEa -0.006 0.071 0.071 -0.022 0.132 0.133 -0.001 0.029 0.029

1.1 GPMLE -0.001 0.044 0.044 -0.022 0.115 0.117 0.000 0.029 0.029
BGMME -0.001 0.045 0.045 -0.009 0.118 0.118 0.000 0.029 0.029
NGPMLEo -0.002 0.044 0.044 -0.022 0.117 0.119 0.000 0.029 0.029
NGPMLEa 0.000 0.084 0.084 -0.043 0.152 0.158 -0.001 0.032 0.032

Panel C: Normal innovations, n = 147
GPMLE -0.004 0.063 0.064 -0.046 0.172 0.179 -0.001 0.042 0.042
BGMME -0.004 0.068 0.068 -0.021 0.186 0.187 -0.001 0.044 0.044
NGPMLEo -0.005 0.071 0.071 -0.045 0.179 0.184 -0.001 0.043 0.043
NGPMLEa -0.008 0.113 0.113 -0.069 0.197 0.208 -0.002 0.051 0.051

Panel D: Normal innovations, n = 294
GPMLE -0.001 0.044 0.044 -0.024 0.117 0.119 0.000 0.029 0.029
BGMME -0.001 0.045 0.045 -0.010 0.120 0.120 0.000 0.030 0.030
NGPMLEo -0.002 0.046 0.046 -0.023 0.118 0.121 0.000 0.030 0.030
NGPMLEa -0.003 0.088 0.088 -0.041 0.151 0.157 -0.001 0.033 0.033

Notes: For panels A and B, the true disturbance distribution is a mixture of two normal distribu-
tions with mean zero. The mixing probability of the two normal distributions is set to 0.3. “RV”
denotes the ratio of variances of the two distributions. β2 is the coefficient on the non-intercept
variable in Xn. λ0 = 0.4, ρ0 = 0.2, β10 = 1, β20 = 1 and σ2

0 = 0.25.
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Table 4: Performance of various estimators for the SAR model
with symmetric vi

λ β2

Bias SD RMSE Bias SD RMSE

GPMLE -0.010 0.055 0.055 0.000 0.042 0.042
BGMME -0.008 0.055 0.056 -0.002 0.042 0.042
NGPMLEo -0.007 0.043 0.044 0.000 0.032 0.032

AEs with GPMLE as the initial estimate
AEa(p, 1) 0.100 0.066 0.120 -0.010 0.043 0.044
AEa(b, 1) 0.078 0.053 0.094 -0.008 0.034 0.035
AEb(p, 1) 0.327 0.105 0.343 -0.031 0.050 0.059
AEb(b, 1) 0.229 0.080 0.243 -0.023 0.038 0.044

AEa(p, 2) 0.095 0.067 0.116 -0.010 0.044 0.045
AEa(b, 2) 0.075 0.054 0.092 -0.008 0.035 0.036
AEb(p, 2) 0.308 0.103 0.325 -0.030 0.050 0.059
AEb(b, 2) 0.222 0.080 0.236 -0.022 0.039 0.045

AEa(p, 4) 0.074 0.062 0.096 -0.008 0.042 0.042
AEa(b, 4) 0.060 0.063 0.087 -0.006 0.042 0.042
AEb(p, 4) 0.235 0.088 0.251 -0.023 0.045 0.051
AEb(b, 4) 0.189 0.086 0.207 -0.018 0.044 0.048

AEs with OLSE as the initial estimate
AEa(p, 1) 0.044 0.060 0.074 -0.005 0.042 0.042
AEa(b, 1) 0.022 0.048 0.053 -0.003 0.033 0.034
AEb(p, 1) 0.318 0.109 0.336 -0.030 0.050 0.058
AEb(b, 1) 0.206 0.081 0.222 -0.020 0.037 0.043

AEa(p, 2) 0.041 0.061 0.074 -0.005 0.043 0.044
AEa(b, 2) 0.021 0.050 0.054 -0.003 0.035 0.035
AEb(p, 2) 0.298 0.108 0.317 -0.029 0.050 0.058
AEb(b, 2) 0.199 0.081 0.215 -0.020 0.039 0.043

AEa(p, 4) 0.018 0.059 0.061 -0.003 0.041 0.041
AEa(b, 4) 0.013 0.060 0.061 -0.002 0.042 0.042
AEb(p, 4) 0.214 0.089 0.232 -0.021 0.044 0.049
AEb(b, 4) 0.170 0.085 0.190 -0.017 0.044 0.047

Notes: The true disturbance distribution is a mixture of two nor-
mal distributions with mean zero. The ratio of variances for the
two normal distributions is 10, and the mixing probability is 0.3.
β2 is the coefficient on the non-intercept variable in Xn. λ0 = 0.4,
ρ0 = 0.2, β10 = 1, β20 = 1 and σ2

0 = 0.25. The sample size is 147.
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Table 5: Empirical sizes of score tests for spatial dependence in the
SARAR model with a row-normalized Mn and asymmetric vi

n = 147 n = 294

Kurtosis Skewness GPMLE NGPMLEo GPMLE NGPMLEo

6 0.8 0.051 0.051 0.048 0.049
6 0.05 0.047 0.044 0.052 0.051
4 0.4 0.048 0.047 0.045 0.046
4 0.05 0.056 0.051 0.049 0.047

3.05 0.05 0.046 0.049 0.045 0.046

Notes: The nominal size is 5%. The true disturbance distribution is a
fourth order Gram-Charlier expansion of the standard normal distribution
as a function of the skewness and kurtosis coefficients. β10 = 1, β20 = 1
and σ2

0 = 0.25.

score test dominates each other in terms of size distortions. For the empirical powers, we

observe that the non-Gaussian score test is uniformly more powerful than the Gaussian score

test, except for the case when the innovations are very close to be normally distributed. The

power of each test increases as λ0 or ρ0 increases.

5 Empirical application

In this section, we apply our NGPMLE to the well-known Harrison and Rubinfeld (1978)

hedonic pricing data from the Boston Standard Metropolitan Statistical Area with 506 ob-

servations.32 This data set is popular in the spatial econometric literature. It has been used

in textbooks such as LeSage (1999), LeSage and Pace (2009), and Arbia (2014).

Following LeSage (1999, p. 78), we estimate an SARAR model, where the dependent

variable is the log median value of owner-occupied homes in $1, 000’s, and the explanatory

variables include crime rate (CRIM), proportion of area zoned with large lots (ZN), propor-

tion of nonretail business areas (INDUS), location contiguous to the Charles River (CHAS),

32Available at http://lib.stat.cmu.edu/datasets/. Gilley and Pace (1996) corrected several miscoded
observations and Pace and Gilley (1997) added the location of each tract in latitude and longitude. In the
supplementary file, we also apply our NGPMLE to the crime data set with 49 observations in Anselin (1988)
and to the presidential election data set with 3, 107 observations in Pace and Barry (1997).
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Table 6: Empirical powers of score tests for spatial dependence in the SARAR model with a row-
normalized Mn and asymmetric vi

λ0 = 0 ρ0 = 0

Kurtosis Skewness ρ0 = 0.1 ρ0 = 0.2 ρ0 = 0.3 λ0 = 0.1 λ0 = 0.2 λ0 = 0.3

Panel A: n = 147
6 0.8 GPMLE 0.114 0.330 0.663 0.259 0.784 0.982

NGPMLEo 0.144 0.436 0.794 0.369 0.918 0.998

6 0.05 GPMLE 0.106 0.330 0.673 0.255 0.777 0.983
NGPMLEo 0.128 0.420 0.789 0.355 0.909 0.996

4 0.4 GPMLE 0.111 0.321 0.656 0.254 0.779 0.985
NGPMLEo 0.119 0.340 0.679 0.272 0.800 0.990

4 0.05 GPMLE 0.112 0.340 0.666 0.261 0.789 0.982
NGPMLEo 0.119 0.352 0.684 0.275 0.798 0.985

3.05 0.05 GPMLE 0.103 0.328 0.653 0.259 0.772 0.984
NGPMLEo 0.104 0.328 0.652 0.260 0.772 0.983

Panel B: n = 294
6 0.8 GPMLE 0.171 0.598 0.929 0.473 0.974 1.000

NGPMLEo 0.237 0.738 0.978 0.661 0.998 1.000

6 0.05 GPMLE 0.182 0.589 0.928 0.478 0.980 1.000
NGPMLEo 0.237 0.714 0.977 0.660 0.998 1.000

4 0.4 GPMLE 0.182 0.601 0.933 0.470 0.972 1.000
NGPMLEo 0.190 0.623 0.941 0.498 0.977 1.000

4 0.05 GPMLE 0.176 0.587 0.931 0.463 0.975 1.000
NGPMLEo 0.188 0.608 0.940 0.491 0.982 1.000

3.05 0.05 GPMLE 0.174 0.591 0.927 0.479 0.977 1.000
NGPMLEo 0.175 0.589 0.925 0.478 0.976 1.000

Notes: The true disturbance distribution is a fourth order Gram-Charlier expansion of the standard
normal distribution as a function of the skewness and kurtosis coefficients. β10 = 1, β20 = 1 and
σ2
0 = 0.25.
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squared levels of nitrogen oxides (NOX2), squared average number of rooms (RM2), propor-

tion of structures built before 1940 (AGE), weighted distances to the employment centers

(DIS), an index of accessibility (RAD), property tax rate (TAX), pupil-teacher ratio (PTRA-

TIO), black population proportion (B), and lower status population proportion (LSTAT).

All variables are normalized to have mean zero and unit variance as in LeSage (1999). The

spatial weights matrix Wn is a first order continuity matrix and row-normalized. The Mn is

set to equal Wn.

Table 7 reports the empirical results. We carry out several diagnostic tests. First, a

normality test of innovations rejects the null of normal innovations at the 1% level. With

non-normal innovations, the GPMLE will lose efficiency compared to a true ML estimator.

We further test skewness and excess kurtosis of innovations.33 While the null hypothesis of

zero skewness is not rejected at any usual significance level, the null hypothesis of zero excess

kurtosis is rejected at the 1% level. The estimated kurtosis coefficient is 5.751. These results

show some evidence of symmetric and leptokurtic innovations for this data set. GPMLE,

BGMME and NGPMLE have the same sign for each model parameter except the coefficient

on INDUS, but their differences in magnitude can be relatively large.34 For example, for the

variable AGE, BGMME is about 60% larger in magnitude than GPMLE, while NGPMLE

is more than three times that of GPMLE. The standard errors (SE) of BGMME are very

close to those of GPMLE, while the SEs of NGPMLE are about 30% smaller than those of

GPMLE. Due to the differences in the estimates and SEs, for the variables NOX2 and AGE,

we observe different results on coefficient significance from different estimation methods.

For the coefficient on NOX2, GPMLE and BGMME are significant at the 1% level, while

NGPMLE is significant only at the 10% level; for the coefficient on AGE, GPMLE is not

significant at any usual significance level, BGMME is significant at the 5% level, while

33All the test statistics are derived in the supplementary file. The normality test is a special case of that
for the SARAR model with parametric heteroskedasticity in Jin et al. (2022), which follows the Lagrange
multiplier principle as in Jarque and Bera (1980). We present it in the supplementary file for completeness.
The skewness and excess-kurtosis tests are on the basis of the delta method, as in Godfrey and Orme (1991).

34We only consider the NGPMLE with no added parameter, since the NGPMLE with an added parameter
does not perform well in Monte Carlo experiments.
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Table 7: Empirical results for the hedonic pricing data

GPMLE BGMME NGPMLE

estimate SE estimate SE estimate SE

λ 0.188∗∗∗ 0.060 0.267∗∗∗ 0.055 0.121∗∗∗ 0.044
ρ 0.626∗∗∗ 0.061 0.612∗∗∗ 0.062 0.673∗∗∗ 0.048
CRIM −0.187∗∗∗ 0.023 −0.177∗∗∗ 0.023 −0.166∗∗∗ 0.015
ZN 0.065∗∗ 0.031 0.063∗∗ 0.031 0.046∗∗ 0.021
INDUS 0.016 0.046 −0.001 0.046 0.001 0.031
CHAS −0.007 0.021 −0.010 0.021 −0.014 0.014
NOX2 −0.191∗∗∗ 0.055 −0.310∗∗∗ 0.055 −0.071∗ 0.038
RM2 0.199∗∗∗ 0.024 0.193∗∗∗ 0.024 0.415∗∗∗ 0.016
AGE −0.046 0.036 −0.074∗∗ 0.037 −0.161∗∗∗ 0.025
DIS −0.256∗∗∗ 0.055 −0.207∗∗∗ 0.055 −0.172∗∗∗ 0.039
RAD 0.342∗∗∗ 0.061 0.387∗∗∗ 0.061 0.202∗∗∗ 0.041
TAX −0.259∗∗∗ 0.057 −0.234∗∗∗ 0.057 −0.213∗∗∗ 0.038
PTRATIO −0.127∗∗∗ 0.030 −0.103∗∗∗ 0.030 −0.079∗∗∗ 0.021
B 0.119∗∗∗ 0.026 0.131∗∗∗ 0.026 0.152∗∗∗ 0.018
LSTAT −0.378∗∗∗ 0.035 −0.373∗∗∗ 0.035 −0.155∗∗∗ 0.023

Test for normality of innovations:
Test statistic: 67.742; p-value: 0.000.

Test for skewness of innovations:
Test statistic: 0.755; p-value: 0.450; estimated skewness coefficient = 0.267.

Test for excess kurtosis of innovations:
Test statistic: 4.115; p-value: 0.000; estimated kurtosis coefficient = 5.751.

Notes: ∗, ∗∗ and ∗∗∗ denote significance at, respectively, the 10%, 5% and 1% levels.

NGPMLE is significant at the 1% level. These differences in coefficient significance also

carry over to impact measures such as the average total, direct and indirect impacts, which

we report in the supplementary file. Overall, the application shows that more efficient

estimation methods for the SARAR model can be valuable in practice.

6 Conclusions

This study considers the non-Gaussian PML estimation of the SARAR model. If the spatial

weights matrixMn in the SAR process of disturbances is row-normalized or the model reduces
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to the SAR model with no SAR process of disturbances, the NGPMLE for model parameters

except the intercept term and the variance parameter σ2 is consistent. If Mn is not row-

normalized but innovations are symmetric, the NGPMLE for model parameters except σ2

is consistent. With neither row-normalization of Mn nor the symmetry of innovations, a

location parameter can be added to the non-Gaussian pseudo log likelihood function to obtain

consistent estimation of model parameters except σ2. We formally prove the convergence

and asymptotic normality of the NGPMLE. An advantage of the NGPMLE is that it can

have significant efficiency improvement upon the GPMLE and BGMME. We also propose

a non-Gaussian score test for spatial dependence, which is locally more powerful than the

Gaussian score test when the NGPMLE is more efficient than the GPMLE. Using Student’s t

distribution to formulate the non-Gaussian likelihood function, our numerical integration and

Monte Carlo results show that the NGPMLE with no added parameter can have significant

efficiency improvement upon the GPMLE and BGMME, but the NGPMLE with an added

parameter can be less efficient than the GPMLE. The non-Gaussian score test based on the

NGPMLE with no added parameter is more powerful than the Gaussian score test in finite

samples. Therefore, we recommend the use of the NGPMLE with no added parameter and

the non-Gaussian score test based on it when they are applicable.
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Appendix A Expressions for asymptotic variances

In this appendix, we present the expressions for asymptotic variances of NGPMLEs in The-

orem 2.

A.1 Row-normalized Mn

For model (1) with a row-normalized Mn, the NGPMLE maximizes lnLn(γ) in (2). Note

that vi(θ∗) =
σ0

σ∞
vi+

σ0

σ∞
cv, where cv = − 1

σ0
(1−ρ0)(β1∞−β10). Denote ζ1i = σ0

σ∞

∂ ln f(vi(θ∗),η∞)
∂v

,

ζ2i = ζ1ivi + 1, ζ3i = −∂ ln f(vi(θ∗),η∞)
∂η

, ζ4i = − σ2
0

σ2
∞

∂2 ln f(vi(θ∗),η∞)
∂v2

, ζ5i =
σ0

σ∞

∂2 ln f(vi(θ∗),η∞)
∂v∂η

, ζ6i =

−∂2 ln f(vi(θ∗),η∞)
∂η∂η′

, Dn = RnWnS
−1
n R−1

n = [dn,ij], Zn =MnR
−1
n = [zn,ij], Qn = 1

σ0
RnWnS

−1
n Xnβ0 =

[qni], and cβ = − 1
σ0
(β1∞−β10). By Assumption 4(i)(c), E(ζji) = 0 for j = 1, 2, 3. For any two

subvectors δ1 and δ2 of δ, let Bδ1δ2 =
1
n
E(∂ lnLn(γ∗)

∂δ1

∂ lnLn(γ∗)
∂δ′2

) and Aδ1δ2 = − 1
n
E(∂

2 lnLn(γ∗)
∂δ1∂δ′2

).

For the expression of B, using the reduced form of Yn, we have
∂ lnLn(γ∗)

∂λ
= −

∑n
i=1 qniζ1i−∑n

i=1 dn,iiζ2i−
∑n

i=1 ζ1i
∑

j ̸=i dn,ijvj,
∂ lnLn(γ∗)

∂ρ
= −

∑n
i=1 cβζ1i−

∑n
i=1 zn,iiζ2i−

∑n
i=1 ζ1i

∑
j ̸=i zn,ijvj,

∂ lnLn(γ∗)
∂β

= − 1
σ0

∑n
i=1 ζ1iX

′
nR

′
nei,

∂ lnLn(γ∗)
∂σ2 = − 1

2σ2
∞

∑n
i=1(cvζ1i+ζ2i) and

∂ lnLn(γ∗)
∂η

= −
∑n

i=1 ζ3i.

Then,

Bλλ =
1

n
E(ζ21i)

n∑
i=1

q2ni +
2

n
E(ζ1iζ2i)

n∑
i=1

qnidn,ii +
1

n
E(ζ22i)

n∑
i=1

d2n,ii +
1

n
E(ζ21i)

n∑
i=1

∑
j ̸=i

d2n,ij

+
1

n

n∑
i=1

∑
j ̸=i

dn,ijdn,ji

=
1

n
E(ζ21i)Q

′
nQn +

2

n
E(ζ1iζ2i)Q

′
n vecD(Dn)

+
1

n
[E(ζ22i)− E(ζ21i)− 1] vecD

′(Dn) vecD(Dn) +
1

n
E(ζ21i) tr(D

′
nDn) +

1

n
tr(D2

n),

Bλρ =
cβ
n

E(ζ21i)Q
′
n1n +

1

n
E(ζ1iζ2i)[Q

′
n vecD(Zn) + cβ tr(Dn)]

+
1

n
[E(ζ22i)− E(ζ21i)− 1] vecD

′(Dn) vecD(Zn) +
1

n
E(ζ21i) tr(D

′
nZn) +

1

n
tr(DnZn),

Bλβ = 1
nσ0

E(ζ21i)Q
′
nRnXn+

1
nσ0

E(ζ1iζ2i) vecD
′(Dn)RnXn, Bλσ2 = 1

2nσ2
∞
[cv E(ζ

2
1i)+E(ζ1iζ2i)]Q

′
n1n+
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1
2nσ2

∞
[cv E(ζ1iζ2i) + E(ζ22i)] tr(Dn), Bλη =

1
n
E(ζ1iζ

′
3i)Q

′
n1n +

1
n
E(ζ2iζ

′
3i) tr(Dn),

Bρρ = c2β E(ζ
2
1i) +

2cβ
n

E(ζ1iζ2i) tr(Zn) +
1

n
[E(ζ22i)− E(ζ21i)− 1] vecD

′(Zn) vecD(Zn)

+
1

n
E(ζ21i) tr(Z

′
nZn) +

1

n
tr(Z2

n),

Bρβ =
cβ
nσ0

E(ζ21i)1
′
nRnXn + 1

nσ0
E(ζ1iζ2i) vecD

′(Zn)RnXn, Bρσ2 =
cβ

2σ2
∞
[cv E(ζ

2
1i) + E(ζ1iζ2i)] +

1
2nσ2

∞
[cv E(ζ1iζ2i)+E(ζ22i)] tr(Zn), Bρη = cβ E(ζ1iζ

′
3i)+

1
n
E(ζ2iζ

′
3i) tr(Zn), Bββ = 1

nσ2
0
E(ζ21i)X

′
nR

′
nRnXn,

Bβσ2 = 1
2nσ2

∞σ0
[cv E(ζ

2
1i)+E(ζ1iζ2i)]X

′
nR

′
n1n, Bβη =

1
nσ0

X ′
nR

′
n1n E(ζ1iζ

′
3i), Bσ2σ2 = 1

4σ4
∞
[c2v E(ζ

2
1i)+

2cv E(ζ1iζ2i) + E(ζ22i)], Bσ2η =
1

2σ2
∞
[cv E(ζ1iζ

′
3i) + E(ζ2iζ

′
3i)] and Bηη = E(ζ3iζ

′
3i).

For the expression of A, using the explicit form of ∂ lnLn(γ)
∂γ∂γ′ in the supplementary file and

the reduced form of Yn, we have

Aλλ =
1

n
E(ζ4i)Q

′
nQn +

2

n
E(ζ4ivi)Q

′
n vecD(Dn)

+
1

n
[E(ζ4iv

2
i )− E(ζ4i)] vecD

′(Dn) vecD(Dn) +
1

n
E(ζ4i) tr(D

′
nDn) +

1

n
tr(D2

n),

Aλρ =
cβ
n

E(ζ4i)Q
′
n1n +

1

n
E(ζ4ivi)[Q

′
n vecD(Zn) + cβ tr(Dn)]

+
1

n
[E(ζ4iv

2
i )− E(ζ4i)] vecD

′(Dn) vecD(Zn) +
1

n
E(ζ4i) tr(D

′
nZn) +

1

n
tr(DnZn),

Aλβ =
1

nσ0
E(ζ4i)Q

′
nRnXn +

1

nσ0
E(ζ4ivi) vecD

′(Dn)RnXn,

Aλσ2 =
1

2nσ2
∞
[cv E(ζ4i) + E(ζ4ivi)]Q

′
n1n +

1

2nσ2
∞
[cv E(ζ4ivi) + E(ζ4iv

2
i ) + 1] tr(Dn),

Aλη =
1

n
E(ζ ′5i)Q

′
n1n +

1

n
E(viζ

′
5i) tr(Dn),

Aρρ = c2β E(ζ4i) +
2cβ
n

E(ζ4ivi) tr(Zn)

+
1

n
[E(ζ4iv

2
i )− E(ζ4i)] vecD

′(Zn) vecD(Zn) +
1

n
E(ζ4i) tr(Z

′
nZn) +

1

n
tr(Z2

n),

Aρβ =
cβ
nσ0

E(ζ4i)1
′
nRnXn + 1

nσ0
E(ζ4ivi) vecD

′(Zn)RnXn, Aρσ2 =
cβ

2σ2
∞
[cv E(ζ4i) + E(ζ4ivi)] +

1
2nσ2

∞
[cv E(ζ4ivi)+E(ζ4iv

2
i )+1] tr(Zn),Aρη = cβ E(ζ

′
5i)+

1
n
E(viζ

′
5i) tr(Zn),Aββ = 1

nσ2
0
E(ζ4i)X

′
nR

′
nRnXn,

Aβσ2 = 1
2nσ2

∞σ0
[cv E(ζ4i)+E(ζ4ivi)]X

′
nR

′
n1n, Aβη =

1
nσ0

X ′
nR

′
n1n E(ζ

′
5i), Aσ2σ2 = 1

4σ4
∞
[c2v E(ζ4i)+

2cv E(ζ4ivi) + E(ζ4iv
2
i ) + 1], Aσ2η =

1
2σ2

∞
[cv E(ζ

′
5i) + E(viζ

′
5i)] and Aηη = E(ζ6i).
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A.2 Symmetric vi

As in the last subsection, the NGPMLE in this case maximizes lnLn(γ) in (2). In this and

the next subsections, let ζ1i to ζ6i be as defined in the last subsection except that vi(θ
∗) is

replaced by σ0

σ∞
vi. It is shown in the proof of Theorem 2 that E(ζji) = 0 for j = 1, 2, 3.

Then the expressions of A and B are the same as those in the last subsection, except the

additional restrictions cv = 0 and cβ = 0.

With symmetric vi, it is shown in the proof of Corollary 1 that E(ζ1iζ2i) = 0, E(ζ1iζ3i) = 0,

E(ζ4ivi) = 0 and E(ζ5i) = 0. Then Aβρ = 0, Aβσ2 = 0, Aβη = 0, Bβρ = 0, Bβσ2 = 0 and

Bβη = 0.

In the case that τ0 = 0, Dn = Wn and Zn = Mn. As Wn and Mn have zero diagonals,

vecD(Dn) = 0, vecD(Zn) = 0, tr(Dn) = 0 and tr(Tn) = 0. Then some components of A and

B can be simplified accordingly. In particular, Aρσ2 = 0, Aρη = 0, Bρσ2 = 0 and Bρη = 0.

A.3 Non-row-normalized Mn and asymmetric vi

In this case, the NGPMLE maximizes lnLn(δ) in (4). By Assumption 4(i)(c), E(ζji) = 0 for

j = 1, 2, 3. The expressions of Bδ1δ2 =
1
n
E(

∂ lnLn(δ#)

∂δ1

∂ lnLn(δ#)

∂δ′2
) and Aδ1δ2 = − 1

n
E(

∂2 lnLn(δ#)

∂δ1∂δ′2
)

for δ1 and δ2 not containing α can be derived by imposing cv = −α∞
σ0

and cβ = 0 in the

corresponding expressions in Appendix A.1. The remaining components of B are Bαλ =

1
nσ0

E(ζ21i)Q
′
n1n + 1

nσ0
E(ζ1iζ2i) tr(Dn), Bαρ = 1

nσ0
E(ζ1iζ2i) tr(Zn), Bαβ = 1

nσ2
0
E(ζ21i)1

′
nRnXn,

Bασ2 = 1
2σ2

∞σ0
[−α∞

σ0
E(ζ21i)+E(ζ1iζ2i)], Bαα = 1

σ2
0
E(ζ21i), and Bαη =

1
σ0

E(ζ1iζ
′
3i). The remaining

components of A are Aαλ = 1
nσ0

E(ζ4i)Q
′
n1n +

1
nσ0

E(ζ4ivi) tr(Dn), Aαρ =
1

nσ0
E(ζ4ivi) tr(Zn),

Aαβ = 1
nσ2

0
E(ζ4i)1

′
nRnXn, Aασ2 = 1

2σ2
∞σ0

[−α∞
σ0

E(ζ4i) + E(ζ4ivi)], Aαα = 1
σ2
0
E(ζ4i), and Aαη =

1
σ0

E(ζ ′5i).
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Appendix B Lemmas

The following Lemma B.1 provides more primitive conditions for gn(τ) > 0 at τ ̸= τ0 in a

neighborhood of τ0, where gn(τ) is in Assumption 3. The matrices T1n and T2n below are

defined after Assumption 3.

Lemma B.1. Suppose that Wn = Mn, and T1n and T2n are linearly independent. If Wn is

symmetric or is row-normalized from a symmetric matrix, then gn(τ) > 0 at τ ̸= τ0 in a

neighborhood of τ0.

Proof. As explained below Assumption 3, we need to show that ∂2gn(τ0)
∂τ∂τ ′

is positive definite,

which requires that tr(T 2
1n) > 0, tr(T 2

2n) > 0 and tr(T 2
1n) tr(T

2
2n) > tr2(T1nT2n), by some

calculation.

If Wn is symmetric, with Wn =Mn, it is obvious that T1n and T2n are symmetric. Then

tr(T 2
jn) = tr(T ′

jnTjn) ≥ 0 for j = 1, 2. By the Cauchy-Schwarz inequality, tr(T 2
1n) tr(T

2
2n) =

tr(T ′
1nT1n) tr(T

′
2nT2n) ≥ tr2(T ′

1nT2n) = tr2(T1nT2n). The inequality is strict when T1n and T2n

are linearly independent, which also implies that tr(T 2
jn) > 0 for j = 1, 2.

If Wn is row-normalized from a symmetric matrix such that Wn = HnAn, where Hn =

diag(1/(e′n1An1n), . . . , 1/(e
′
nnAn1n)) and An is symmetric, let Bn = H

1/2
n AnH

1/2
n and Cn(λ) =

In − λBn. Then Bn and Cn(λ) are symmetric and satisfy BnCn(λ) = Cn(λ)Bn. We have

Sn(λ) = H
1/2
n Cn(λ)H

−1/2
n , A1n = HnAn · H1/2

n C−1
n (ρ0)H

−1/2
n = H

1/2
n BnC

−1
n (ρ0)H

−1/2
n and

A2n = H
1/2
n Cn(ρ0)H

−1/2
n ·HnAn·H1/2

n C−1
n (λ0)H

−1/2
n ·H1/2

n C−1
n (ρ0)H

−1/2
n = H

1/2
n BnC

−1
n (λ0)H

−1/2
n .

For n × n matrices E1n and E2n, if E2n is diagonal, then diag(E1nE2n) = diag(E1n)E2n.

Thus, T1n = H
1/2
n D1nH

−1/2
n , T2n = H

1/2
n D2nH

−1/2
n , and T1nT2n = H

1/2
n D1nD2nH

−1/2
n , where

D1n = BnC
−1
n (ρ0)−diag(BnC

−1
n (ρ0)) and D2n = BnC

−1
n (λ0)−diag(BnC

−1
n (λ0)) are symmet-

ric. Thus, tr(T 2
jn) = tr(D2

jn) = tr(D′
jnDjn) ≥ 0, for j = 1, 2. Furthermore, tr(T 2

1n) tr(T
2
2n) =

tr(D2
1n) tr(D

2
2n) = tr(D′

1nD1n) tr(D
′
2nD2n) ≥ tr2(D′

1nD2n) = tr2(T1nT2n) by the Cauchy-

Schwarz inequality. The inequality is strict when D1n and D2n are linearly independent, i.e.,

T1n and T2n are linearly independent, which also implies that tr(T 2
jn) > 0 for j = 1, 2.
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Lemma B.2. For j = 1, . . . , l, let Ajn be n×n nonstochastic matrices that are bounded in the

row sum norm, and Ujn = [ujn,1, · · · , ujn,n]′ be n×1 vectors such that supi,j,n E(|ujn,i|aj) <∞

for aj > 1. Then supi,n E[(
∏l

j=1 |e′niAjnUjn|)
1/

∑l
j=1

1
aj ] <∞.

Proof. This is a special case of Lemma 1(ii) in Jin and Lee (2019).

Lemma B.3. Suppose that h(x) is a scalar function, vi’s in Vn = [v1, · · · , vn]′ are i.i.d. with

mean zero and variance σ2
0, An = [an,ij] and Bn = [bn,ij] are n × n nonstochastic matrices

that are bounded in both the row and column sum norms, E(|vi|cv) < ∞ and E(|h(vi)|ch) <

∞ for some cv > 0 and ch > 0. Then c1n − E(c1n) = op(1) if 1
ch

+ 2
cv
< 1, and c2n −

E(c2n) = op(1) if 1
ch

+ 1
cv
< 1, where c1n = 1

n

∑n
i=1 h(vi)(

∑n
j=1 an,ijvj)(

∑n
k=1 bn,ikvk) and

c2n = 1
n

∑n
i=1 h(vi)(

∑n
j=1 an,ijvj).

Proof. This lemma is proved by an LLN for martingale differences. The details are in the

supplementary file.

Lemma B.4. Suppose that An = [an,ij] is an n × n nonstochastic matrix that is bounded

in both the row and column sum norms; bn = [bni] is an n × 1 vector of uniformly bounded

constants; εn = [ϵni], Vn = [vni] and Ψn = [ψni] are n × 1 random vectors with mean zero;

[ϵni, vni, ψni] for i = 1, . . . , n are independent; and supi,n E(|ϵnivni|2+ι) + supi,n E(|ϵni|2+ι) +

supi,n E(|vni|2+ι) + supi,n E(|ψni|2+ι) < ∞ for some ι > 0. Let ωn = ε′nAnVn + b′nΨn −

E(ε′nAnVn) and σ
2
ωn

= var(ωn). If infn
1
n
σ2
ωn
> 0, then ωn

σωn

d−→ N(0, 1).

Proof. This lemma is a special case of Lemma 6 in Yang and Lee (2017).

Lemma B.5. Suppose that Assumption 1 holds. Let each of An = [an,ij] and Bn =

[bn,ij] be one of the matrices Wn, Mn, Rn and Sn. Denote Cn = AnBn = [cn,ij]. If

limr→∞ supi,n

∑
j: d(i,j)>r |an,ij| = 0, limr→∞ supi,n

∑
j: d(i,j)>r |bn,ij| = 0 and supn ∥An∥∞ +

supn ∥Bn∥∞ <∞, then limr→∞ supi,n

∑
j: d(i,j)>r |cn,ij| = 0.

Proof. As cn,ij =
∑n

k=1 an,ikbn,kj,

sup
i,n

∑
j: d(i,j)>r

|cn,ij| ≤ sup
i,n

∑
j: d(i,j)>r

∑
k: d(j,k)>r/2

|an,ikbn,kj|+ sup
i,n

∑
j: d(i,j)>r

∑
k: d(j,k)≤r/2

|an,ikbn,kj|
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≤ sup
i,n

n∑
k=1

|an,ik|
∑

j: d(j,k)>r/2

|bn,kj|+ sup
i,n

∑
k: d(i,k)>r/2

|an,ik|
n∑

j=1

|bn,kj|

≤ sup
n

∥An∥∞ sup
k,n

∑
j: d(j,k)>r/2

|bn,kj|+ sup
i,n

∑
k: d(i,k)>r/2

|an,ik| · sup
n

∥Bn∥∞,

where the second inequality holds because d(i, j) > r and d(j, k) ≤ r/2 imply that d(i, k) >

r/2. Thus, limr→∞ supi,n

∑
j: d(i,j)>r |cn,ij| = 0.

For any matrix A = [aij], denote abs(A) = [|aij|].

Lemma B.6. (i) If Assumptions 1 and 2(iii) hold, then supn ∥S−1
n ∥∞ <∞ and supn ∥R−1

n ∥∞ <

∞. (ii) If Assumptions 1, 2(ii) and 7 hold, then limr→∞ supi,n

∑
j: d(i,j)>r |wn,ij| = 0,

limr→∞ supi,n

∑
j: d(i,j)>r |mn,ij| = 0, supn ∥Wn∥1 < ∞, and supn ∥Mn∥1 < ∞. (iii) If As-

sumptions 1, 2(ii)(iii) and 7(ii) hold, then supn ∥S−1
n ∥1 <∞ and supn ∥R−1

n ∥1 <∞.

Proof. (i) As ∥λ0Wn∥∞ ≤ c0 < 1, S−1
n =

∑∞
k=0(λ0Wn)

k. Thus, by the triangle inequality,

supn ∥S−1
n ∥∞ ≤ supn

∑∞
k=0(∥λ0Wn∥∞)k ≤

∑∞
k=0 c

k
0 = 1

1−c0
< ∞. Similarly, supn ∥R−1

n ∥∞ <

∞.

(ii) Under Assumption 7(i), wn,ij = 0 if d(i, j) > d̄0. Then limr→∞ supi,n

∑
j: d(i,j)>r |wn,ij| =

0. By Lemma A.1 in Jenish and Prucha (2009), |{j: k ≤ d(i, j) < k+1}| ≤ ckcd−1 for k ≥ 1

and some constant c > 0, where |A| for a set A denotes its cardinality. Then supn ∥Wn∥1 =

supj,n

∑
i: d(i,j)≤d̄0

|wn,ij| ≤ supj,n

∑[d̄0]+1
k=1

∑
i: k≤d(i,j)<k+1 cw = ccw

∑[d̄0]+1
k=1 kcd−1 < ∞, where

cw = supn ∥Wn∥∞ < ∞ under Assumption 2(ii) and [d̄0] is the smallest integer that is

non-greater than d̄0.

Under Assumption 7(ii), supi,n

∑
j: d(i,j)>r |wn,ij| ≤ supi,n

∑∞
k=[r]

∑
j: k≤d(i,j)<k+1 |wn,ij| ≤

supi,n

∑∞
k=[r]

∑
j: k≤d(i,j)<k+1 π1k

−π2 ≤
∑∞

k=[r] cπ1k
cd−π2−1. As π2 > cd,

∑∞
k=1 cπ1k

cd−π2−1 <

∞. Then limr→∞
∑∞

k=[r] cπ1k
cd−π2−1 = 0. It follows that limr→∞ supi,n

∑
j:d(i,j)>r |wn,ij| = 0.

Similarly, supn ∥Wn∥1 = supj,n

∑
i: d(i,j)≥1 |wn,ij| ≤

∑∞
k=1 cπ1k

cd−π2−1 <∞.

The results on Mn can be similarly proved.

(iii) Under the maintained assumptions, we have ∥λl0[abs(Wn)]
l∥1 ≤ max{lN, 1}ωcl−1

0 ,

where ω = |λ0| supn ∥Wn∥1 <∞, as in the proof of Lemma 1 of Xu and Lee (2015). The only
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difference is that our upper bound max{lN, 1}ωcl−1
0 has cl−1

0 instead of ζ l−1, where ζ is the up-

per bound of the compact parameter space of λ. Since we have a linear SAR process, there is

no need to introduce ζ and the proof is similar. Then supn ∥S−1
n ∥1 ≤ supn

∑∞
k=0(∥λ0Wn∥1)k ≤

c(1 +
∑∞

k=1 kc
k−1
0 ) <∞ for some constant c. Similarly, supn ∥R−1

n ∥1 <∞.

Lemma B.7. Under Assumptions 1, 2(i)–(iii) and 7, {e′niAnVn} is L2-NED on {v1, . . . , vn},

where An is either S−1
n R−1

n , WnS
−1
n R−1

n , MnS
−1
n R−1

n or WnMnS
−1
n R−1

n .

Proof. As ∥λ0Wn∥∞ ≤ c0 < 1, S−1
n =

∑∞
k=0(λ0Wn)

k. Then abs(S−1
n ) ≤∗ ∑∞

k=0[abs(λ0Wn)]
k ≤∗

[In−abs(λ0Wn)]
−1, where An ≤∗ Bn for two n×nmatrices An = [an,ij] and Bn = [bn,ij] means

that an,ij ≤ bn,ij for any i, j. Since the proof of Proposition 1 in Xu and Lee (2015, p. 274)

shows that [In−abs(λ0Wn)]
−1 satisfies limr→∞ supi,n

∑
j: d(i,j)>r |e′ni[In−abs(λ0Wn)]

−1enj| = 0

under Assumptions 1, 2(iii) and 7, we also have limr→∞ supi,n

∑
j: d(i,j)>r |e′niS−1

n enj| = 0.

Similarly, limr→∞ supi,n

∑
j: d(i,j)>r |e′niR−1

n enj| = 0. By Lemma B.6, limr→∞ supi,n

∑
j: d(i,j)>r |wn,ij| =

0, limr→∞ supi,n

∑
j: d(i,j)>r |mn,ij| = 0, supn ∥S−1

n ∥∞ < ∞ and supn ∥R−1
n ∥∞ < ∞. Thus, by

Lemma B.5, limr→∞ supi,n

∑
j: d(i,j)>r[abs(An)]ij = 0, where An is either S−1

n R−1
n ,WnS

−1
n R−1

n ,

MnS
−1
n R−1

n orWnMnS
−1
n R−1

n . Hence, by Proposition 1 in Jenish and Prucha (2012), {e′niAnVn}

is L2-NED on {v1, . . . , vn}.

Appendix C Proofs

For the following proofs of Propositions 1–2, denote Ψni(θ) = σ0e
′
niTn(τ)Vn − σ0vitn,ii(τ) +

e′niRn(ρ)[Sn(λ)S
−1
n Xnβ0−Xnβ], which does not depend on vi. As Yn = S−1

n (Xnβ0+σ0R
−1
n Vn),

vi(θ) =
1
σ
Ψni(θ) +

1
σ
σ0vitn,ii(τ).

Proof of Proposition 1. (i) We first prove the result under Assumption 4(i). As Tn(τ) =

In + (ρ0 − ρ)A1n + (λ0 − λ)A2n + (ρ0 − ρ)(λ0 − λ)A3n, under Assumption 3(iii), tn,ii(τ) ̸= 0

for any i and τ . Since Mn is row-normalized, Rn1n = (1 − ρ0)1n. Then the nonsingularity

of Rn implies that ρ0 ̸= 1. Denote Q(σ, β1, η) = E[ln f(σ0vi−(1−ρ0)(β1−β10)
σ

, η)] − 1
2
ln(σ2),
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σni =
σ

tn,ii(τ)
, and β1,ni = β10− 1

(1−ρ0)tn,ii(τ)
Ψni(θ). Since E[ln f(

σ0vi−α
σ

, η)]− 1
2
ln(σ2) is uniquely

maximized at (σ∞, α∞, η∞), Q(σ, β1, η) is uniquely maximized at (σ∞, β1∞, η∞), where β1∞ =

β10 +
α∞
1−ρ0

. Let E−i(·) be the conditional expectation given v1, ..., vi−1, vi+1, ..., vn. Then,

E[lnLn(γ)] =
n∑

i=1

E{E−i[ln f(vi(θ), η)]} −
n

2
ln(σ2) + ln |Sn(λ)|+ ln |Rn(ρ)|

=
n∑

i=1

E[Q(σni, β1,ni, η)]−
n∑

i=1

ln |tn,ii(τ)|+ ln |Sn(λ)|+ ln |Rn(ρ)|

≤ nQ(σ∞, β1∞, η∞)−
n∑

i=1

ln |tn,ii(τ)|+ ln |Sn(λ)|+ ln |Rn(ρ)| (C.1)

= nQ(σ∞, β1∞, η∞)−
n∑

i=1

ln |tn,ii(τ)|+ ln |Tn(τ)|+ ln |Sn|+ ln |Rn|

≤ E[lnLn(γ∗)], (C.2)

where (C.1) uses the property that Q(σ, β1, η) is uniquely maximized at (σ∞, β1∞, η∞) and

(C.2) uses the assumption that ln |Tn(τ)| ≤
∑n

i=1 ln |tn,ii(τ)|. The inequality in (C.2) is

strict if τ ̸= τ0. With τ = τ0, we have Tn(τ) = In, tn,ii(τ) = 1, σni = σ, and β1,ni =

β10 − 1
1−ρ0

e′niRnXn(β0 − β) = β1 − 1
1−ρ0

e′niRnX2n(β20 − β2). Since RnXn has full column

rank, β1,ni ̸= β1∞ for some i if β2 ̸= β20. Thus, with τ = τ0, the inequality in (C.1) is strict

if (β2, σ, η) ̸= (β20, σ∞, η∞). It follows that E[lnLn(γ)] is uniquely maximized at γ = γ∗.

(ii) We next prove the result under Assumption 4(ii). Because vi’s are symmetrically dis-

tributed around zero with unimodal density, by Lemma A in Newey and Steigerwald (1997),

E[ln f(vi(θ), η)] = E{E−i[ln f(vi(θ), η)]} ≤ E{E−i[ln f(
σ0

σ
vitn,ii(τ), η)]} = E[ln f(σ0

σ
vitn,ii(τ), η)],

where the inequality is strict if Ψni(θ) ̸= 0. DenoteQ(σ, η) = E[ln f(σ0vi
σ
, η)]− 1

2
ln(σ2). Then,

E[lnLn(γ)] ≤
n∑

i=1

Q(σni, η)−
n∑

i=1

ln |tn,ii(τ)|+ ln |Sn(λ)|+ ln |Rn(ρ)| (C.3)

≤ nQ(σ∞, η∞)−
n∑

i=1

ln |tn,ii(τ)|+ ln |Sn(λ)|+ ln |Rn(ρ) (C.4)

≤ E[lnLn(γ#)], (C.5)
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where (C.4) uses the assumption that Q(σ, η) is uniquely maximized at (σ∞, η∞), and (C.5)

uses the assumption that ln |Tn(τ)| ≤
∑n

i=1 ln |tn,ii(τ)| as in the proof for (i) above. Further-

more, the inequality in (C.5) is strict if τ ̸= τ0. With τ = τ0, the inequality in (C.4)

is strict if (σ, η) ̸= (σ∞, η∞). With (τ, σ, η) = (τ0, σ∞, η∞), we have Tn(τ) = In and

Ψni(θ) = e′niRnXn(β0 − β). Since RnXn has full column rank, with (τ, σ, η) = (τ0, σ∞, η∞),

the inequality in (C.3) is strict if β ̸= β0. Hence, E[lnLn(γ)] is uniquely maximized at

γ#.

Proof of Proposition 2. Denote Q(σ, α, η) = E[ln f(σ0vi−α
σ

, η)] − 1
2
ln(σ2), σni =

σ
tn,ii(τ)

,

and αni =
α−Ψni(θ)
tn,ii(τ)

. Then,

E[lnLn(δ)] =
n∑

i=1

E
{
E−i

[
ln f

(
vi(θ)−

α

σ
, η
)]}

− n

2
ln(σ2) + ln |Sn(λ)|+ ln |Rn(ρ)|

=
n∑

i=1

E[Q(σni, αni, η)]−
n∑

i=1

ln |tn,ii(τ)|+ ln |Sn(λ)|+ ln |Rn(ρ)|

≤ nQ(σ∞, α∞, η∞)−
n∑

i=1

ln |tn,ii(τ)|+ ln |Sn(λ)|+ ln |Rn(ρ)| (C.6)

= nQ(σ∞, α∞, η∞)−
n∑

i=1

ln |tn,ii(τ)|+ ln |Tn(τ)|+ ln |Sn|+ ln |Rn|

≤ E[lnLn(δ#)], (C.7)

where (C.6) uses the property that Qn(σ, α, η) is uniquely maximized at (σ∞, α∞, η∞) and

(C.7) uses the assumption that ln |Tn(τ)| ≤
∑n

i=1 ln |tn,ii(τ)|. The inequality in (C.7) is

strict if τ ̸= τ0. With τ = τ0, we have Tn(τ) = In, tn,ii(τ) = 1, σni = σ, and αni =

α − e′niRnXn(β0 − β). Since RnXn has full column rank and does not contain an intercept

term, αni ̸= α∞ for some i if β ̸= β0. Thus, with τ = τ0, the inequality in (C.6) is

strict if (β, σ, α, η) ̸= (β0, σ∞, α∞, η∞). It follows that E[lnLn(δ)] is uniquely maximized at

δ = δ#.

Proof of Theorem 1. We only prove the convergence of γ̂ in the case with symmetric
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vi, since the proofs for other cases are similar. As Yn = S−1
n (Xnβ0 + σ0R

−1
n Vn), Rn(ρ) =

Rn + (ρ0 − ρ)Mn and Sn(λ) = Sn + (λ0 − λ)Wn, we have

Rn(ρ)[Sn(λ)Yn −Xnβ]

= σ0Vn + (λ0 − λ)RnWnS
−1
n Xnβ0 + σ0(λ0 − λ)RnWnS

−1
n R−1

n Vn +RnXn(β0 − β)

+ σ0(ρ0 − ρ)MnR
−1
n Vn + (ρ0 − ρ)(λ0 − λ)MnWnS

−1
n Xnβ0

+ σ0(ρ0 − ρ)(λ0 − λ)MnWnS
−1
n R−1

n Vn + (ρ0 − ρ)MnXn(β0 − β).

Under Assumption 2(iii), by Lemma B.6, R−1
n and S−1

n are bounded in the row sum norm. As

Wn and Mn are also bounded in the row sum norm, so are the products of Wn, Mn, R
−1
n and

S−1
n . With supi E(|vi|2+2ct+ι) < ∞ in Assumption 8(ii) , vi(θ) =

1
σ
e′niRn(ρ)[Sn(λ)Yn −Xnβ]

is uniformly L(2+2ct+ι) bounded by Lemma B.2. Furthermore, by Lemma B.7, {vi(θ)} is

L2-NED on {v1, . . . , vn}. With |∂ ln f(x,η)
∂x

| ≤ cf (|x|ct + 1) for ct = 0 in Assumption 8(i), i.e.,

∂ ln f(x,η)
∂x

is bounded, by Proposition 2 of Jenish and Prucha (2012), ln f(vi(θ), η) is L2-NED

on {v1, . . . , vn}; on the other hand, with |∂ ln f(x,η)
∂x

| ≤ cf (|x|ct + 1) for ct = 1 in Assumption

8(i), by Lemma A.4 in Xu and Lee (2015), ln f(vi(θ), η) is uniformly L2-NED on {v1, . . . , vn}.

By the mean value theorem, ln f(vi(θ), η) = ln f(0, η) + ∂ ln f(cvi(θ),η)
∂v

vi(θ), where c is some

constant between 0 and 1. Thus, with supi E(|vi|2+2ct+ι) < ∞, ln f(vi(θ), η) is uniformly L2

bounded by Lemma B.2. It follows by the LLN in Theorem 1 of Jenish and Prucha (2012)

that 1
n
lnLn(γ)− 1

n
E[lnLn(γ)] = op(1).

We next prove that 1
n
lnLn(γ) is stochastically equicontinuous (SE) and 1

n
E[Ln(γ)] is

equicontinuous. With |∂ ln f(x,η)
∂x

| ≤ cf (|x|ct + 1),

1

n
E
∣∣∣∂ lnLn(γ)

∂λ

∣∣∣ ≤ cf
nσ

E
n∑

i=1

[|vi(θ)|ct + 1] · |e′niRn(ρ)WnYn|+
1

n
| tr[WnS

−1
n (λ)]|, (C.8)

where
cf
nσ

E
∑n

i=1[|vi(θ)|ct + 1] · |e′niRn(ρ)WnYn| = O(1) by Yn = S−1
n (Xnβ0 + σ0R

−1
n Vn) and

Lemma B.2, and 1
n
| tr[WnS

−1
n (λ)]| = O(1) since supn ∥Wn∥∞ < ∞ by Assumption 2(ii),
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supn ∥Wn∥1 < ∞ by Lemma B.6 and S−1
n (λ) is bounded in either the row or column sum

norm. Thus, 1
n
E |∂ lnLn(γ)

∂λ
| = O(1) and 1

n
∂ lnLn(γ)

∂λ
= Op(1). As σvi(θ) is linear in every ele-

ment of θ and the parameter space of γ is compact, by (C.8), E supγ∈Γ | 1n
∂ lnLn(γ)

∂λ
| = O(1) and

supγ∈Γ | 1n
∂ lnLn(γ)

∂λ
| = Op(1). Similarly, for other elements γj of γ, E supγ∈Γ | 1n

∂ lnLn(γ)
∂γj

| = O(1)

and supγ∈Γ | 1n
∂ lnLn(γ)

∂γj
| = Op(1). Hence, E supγ∈Γ ∥ 1

n
∂ lnLn(γ)

∂γ
∥ = O(1) and supγ∈Γ ∥ 1

n
∂ lnLn(γ)

∂γ
∥ =

Op(1). By Lemma 3.6 in Newey and McFadden (1994), E supγ∈Γ ∥ 1
n
∂ lnLn(γ)

∂γ
∥ = O(1) implies

that 1
n
∂ E[lnLn(γ)]

∂γ
= 1

n
E(∂ lnLn(γ)

∂γ
). Therefore, by the mean value theorem and Theorem 21.10

in Davidson (1994), 1
n
lnLn(γ) is SE, and

1
n
E[Ln(γ)] is equicontinuous.

The pointwise convergence 1
n
lnLn(γ) − 1

n
E[lnLn(γ)] = op(1) and the SE of 1

n
lnLn(γ)

imply that supγ∈Γ | 1n lnLn(γ) − 1
n
E[lnLn(γ)]| = op(1). As

1
n
E[lnLn(γ)] is equicontinuous

and limn→∞
1
n
E[lnLn(γ)] is uniquely maximized at γ = γ#, we have γ̂ = γ# + op(1) (White,

1994, Theorem 3.4).

Proof of Theorem 2. We only prove the asymptotic distribution of γ̂ in the case with

symmetric vi, and omit similar proofs for other cases. By the mean value theorem, 0 =

∂ lnLn(γ̂)
∂γ

=
∂ lnLn(γ#)

∂γ
+ ∂2 lnLn(γ̃)

∂γ∂γ′ (γ̂ − γ#), where γ̃ lies between γ̂ and γ#. Then,

√
n(γ̂ − γ#) = −

( 1
n

∂2 lnLn(γ̃)

∂γ∂γ′

)−1 1√
n

∂ lnLn(γ#)

∂γ
. (C.9)

We prove that (i) 1
n
∂2 lnLn(γ̃)

∂γ∂γ′ = 1
n

∂2 lnLn(γ#)

∂γ∂γ′ + op(1) and (ii) 1
n

∂2 lnLn(γ#)

∂γ∂γ′ = 1
n
E(

∂2 lnLn(γ#)

∂γ∂γ′ ) +

op(1) so that 1
n
∂2 lnLn(γ̃)

∂γ∂γ′ = 1
n
E(

∂2 lnLn(γ#)

∂γ∂γ′ ) + op(1).

For (i), we prove that every element of 1
n
∂2 lnLn(γ)

∂γ∂γ′ is SE under Assumption 9(ii)–(iii).

With ∥∂3 ln f(vi(θ),η)
∂z∂z′∂zi

∥ ≤ cf (|vi(θ)|3ct+1) in Assumption 9(ii), we could show that supγ∈Γ ∥
∂3 lnLn(γ)
∂γ∂γ′∂γj

∥ =

Op(1), where γj is the jth element of γ. As an example, consider

∂3 lnLn(γ)

∂λ3
= − 1

σ3

n∑
i=1

∂3 ln f(vi(θ), η)

∂v3
[e′niRn(ρ)WnYn]

3 − 2 tr{[WnS
−1
n (λ)]3},

where |∂
3 ln f(vi(θ),η)

∂v3
| ≤ c[|vi(θ)|3ct+1]. With the reduced form Yn = S−1

n (Xnβ0+σ0R
−1
n Vn) and
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E(|vi|3+3ct) <∞, 1
n
∂3 lnLn(γ)

∂λ3 = Op(1) by Lemma B.2. As vi(θ) =
1
σ
e′niRn(ρ)[Sn(λ)Yn−Xnβ] is

linear in each element of [λ, ρ, β′]′, {S−1
n (λ)} is bounded in either the row sum or column sum

norm uniformly on the parameter space of λ and Γ is compact, supγ∈Γ | 1n
∂3 lnLn(γ)

∂λ3 | = Op(1).

Hence, (i) holds by the mean value theorem.

We prove (ii) by Lemma B.3. As an example, consider

1

n

∂2 lnLn(γ#)

∂λ2
=

1

nσ2
∞

n∑
i=1

∂2 ln f( σ0

σ∞
vi, η∞)

∂v2
(e′niRnWnYn)

2 − 1

n
tr[(WnS

−1
n )2].

Under Assumption 9(ii),
∂2 ln f(

σ0
σ∞

vi,η∞)

∂v2
is either bounded or |∂

2 ln f(
σ0
σ∞

vi,η∞)

∂v2
| ≤ cf (

σ2
0

σ2
∞
|vi|2 +

1). In the latter case, as supi E(|vi|4+ι) < ∞, E[|∂
2 ln f(

σ0
σ∞

vi,η∞)

∂v2
|2+ι/2] < ∞. Then using

Yn = S−1
n (Xnβ0 + σ0R

−1
n Vn) and supi E(|vi|2+2ct+ι) < ∞, where ct = 0 for the case with

bounded
∂2 ln f(

σ0
σ∞

vi,η∞)

∂v2
and ct = 1 for the case with |∂

2 ln f(
σ0
σ∞

vi,η∞)

∂v2
| ≤ cf (

σ2
0

σ2
∞
|vi|2 + 1), we

have 1
n

∂2 lnLn(γ#)

∂λ2 − E( 1
n

∂2 lnLn(γ#)

∂λ
) = op(1) by Lemma B.3.

With (i) and (ii), by (C.9),
√
n(γ̂−γ#) = −

(
1
n
E

∂2 lnLn(γ#)

∂γ∂γ′

)−1 1√
n

∂ lnLn(γ#)

∂γ
+op(1). Under

Assumption 4(ii), E[ln f(σ0

σ
vi + c, η)] is uniquely maximized at c = 0 for any σ and η, by

Lemma A in Newey and Steigerwald (1997). Then E(ζ1i) = 0, where ζ1i =
σ0

σ∞

∂ ln f(
σ0
σ∞

vi,η∞)

∂v
.

By Assumption 4(ii)(c), E(ζ2i) = 0 and E(ζ3i) = 0, where ζ2i = ζ1ivi + 1 and ζ3i =

−∂ ln f(
σ0
σ∞

vi,η∞)

∂η
. Hence, every element of

∂ lnLn(γ#)

∂γ
is a special case of the general linear-

quadratic form ωn in Lemma B.4. By Assumption 2(ii), Assumption 9(iv) and Lemma

B.6, the involved matrices S−1
n R−1

n , WnS
−1
n R−1

n , MnS
−1
n R−1

n and WnMnS
−1
n R−1

n in ωn are

bounded in both the row and column sum norms. As |∂ ln f(
σ0
σ∞

vi,η∞)

∂v
| ≤ cf (| σ0

σ∞
vi|ct + 1) and

supi E(|vi|2+2ct+ι) <∞, we have E[|∂ ln f(
σ0
σ∞

vi,η∞)

∂v
vi|2+ι/(1+ct)] <∞ and E[|∂ ln f(

σ0
σ∞

vi,η∞)

∂v
|2+2ct+ι] <

∞ for ct = 0 or 1. As ∥∂ ln f(
σ0
σ∞

vi,η∞)

∂η
∥ ≤ cf (| σ0

σ∞
vi|1+ct + 1) and supi E(|vi|2+2ct+ι) < ∞,

E[∥∂ ln f(
σ0
σ∞

vi,η∞)

∂η
∥2+ι/(1+ct)] <∞. Then Lemma B.4 implies that 1√

n

∂ lnLn(γ#)

∂γ

d−→ N(0, limn→∞ B),

where B = 1
n
E(

∂ lnLn(γ#)

∂γ

∂ lnLn(γ#)

∂γ′ ). Hence,
√
n(γ̂ − γ#)

d−→ N(0, limn→∞A−1BA−1), where

A = − 1
n
E(

∂2 lnLn(γ#)

∂γ∂γ′ ).

Proof of Corollary 1. We first prove that: (i) E(ζ1iζ2i) = 0, (ii) E(ζ1iζ3i) = 0, (iii) E(ζ4ivi) =
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0 and (iv) E(ζ5i) = 0, where ζ1i to ζ5i are defined in Appendix A.2 and they satisfy E(ζ1i) = 0,

E(ζ2i) = 0 and E(ζ3i) = 0, as shown in the proof of Theorem 2.

(i) Note that for any even function h1(v) of v, h1(v) = h1(|v|) = h2(v
2), where h2(z) ≡

h1(z
1/2) for z ≥ 0. Then a symmetrically distributed vi is also spherically symmetric (Fang

et al., 1990, p. 35). Define g(ς, η) = f(ς1/2, η) for ς ≥ 0 so that f(v, η) = f(|v|, η) = g(v2, η).

Then ∂ ln f(v,η)
∂v

= 2∂ ln g(v2,η)
∂ς

v and E(
∂ ln f(

σ0
σ∞

vi,η∞)

∂v
) = 2σ0

σ∞
E(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς
vi). Let vi = |vi| ·ϖi.

It follows that |vi| and ϖi are independent (Fang et al., 1990, p. 30). Then E(ζ1iζ2i) =

E[ζ1i(ζ1ivi + 1)] = E(ζ21ivi) =
4σ4

0

σ4
∞
E[(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς
)2v3i ] =

4σ4
0

σ4
∞
E[(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς
)2|vi|3 · ϖ3

i ] =

4σ4
0

σ4
∞
E[(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς
)2|vi|3] E(ϖ3

i ). Since 0 = E(v3i ) = E(|vi|3 ·ϖ3
i ) = E(|vi|3) E(ϖ3

i ), E(ϖ
3
i ) =

0. Thus, E(ζ1iζ2i) = 0.

(ii) E(ζ1iζ3i) = E(2σ0

σ∞

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς
vi·

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂η
) = 2σ0

σ∞
E(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂η
|vi|·

ϖi) = 2σ0

σ∞
E(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂η
|vi|) E(ϖi) = 0, where we use E(ϖi) = 0 implied by

0 = E(vi) = E(|vi|) E(ϖi).

(iii) As ∂ ln f(v,η)
∂v

= 2∂ ln g(v2,η)
∂ς

v, ∂2 ln f(v,η)
∂v2

= 4∂2 ln g(v2,η)
∂ς2

v2 + 2∂ ln g(v2,η)
∂ς

. Then E(ζ4ivi) =

−4σ4
0

σ4
∞
E(

∂2 ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς2
v3i )−

2σ2
0

σ2
∞
E(

∂ ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς
vi) = 0.

(iv) As ∂ ln f(v,η)
∂v

= 2∂ ln g(v2,η)
∂ς

v, ∂2 ln f(v,η)
∂v∂η

= 2∂2 ln g(v2,η)
∂ς∂η

v. Then E(ζ5i) =
2σ0

σ∞
E(

∂2 ln g(
σ2
0

σ2∞
v2i ,η∞)

∂ς∂η
vi) =

0.

By (i)–(iv) and Appendix A, we have Aβρ = 0, Aβσ2 = 0, Aβη = 0, Bβρ = 0, Bβσ2 = 0 and

Bβη = 0. Hence, for the spatial error model, by Theorem 1, the asymptotic variance of the

NGPMLE β̂ is limn→∞ A−1
ββBββA−1

ββ = limn→∞[ 1
nσ2

0
E(ζ4i)X

′
nR

′
nRnXn]

−1· 1
nσ2

0
E(ζ21i)X

′
nR

′
nRnXn·

[ 1
nσ2

0
E(ζ4i)X

′
nR

′
nRnXn]

−1 = limn→∞
σ2
0 E(ζ21i)

[E(ζ4i)]2
( 1
n
X ′

nR
′
nRnXn)

−1. The GPMLE is a special case

of the NGPMLE with f(v, η) = 1√
2π
e−v2/2 and σ2

∞ = σ2
0. Then for the GPMLE, ζ1i = −vi,

ζ4i = 1, and the asymptotic variance for β is limn→∞ σ2
0(

1
n
X ′

nR
′
nRnXn)

−1. The BGMME of

β has the same asymptotic variance as the GPMLE, by Corollary 3 in Liu et al. (2010).

Proof of Theorem 3. We could show that γ̌ = γ∞ + op(1) as the proof of Theorem 2. By

the mean value theorem, 0 = ∂ lnLn(γ̌)
∂γu

= ∂ lnLn(γn)
∂γu

− ∂2 lnLn(γ̄)
∂γu∂τ ′

τn +
∂2 lnLn(γ̄)
∂γu∂γ′

u
(γ̌u − γu∞), where
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γn = [τ ′n, γ
′
u∞]′ and γ̄ lies between γ̌ and γ∞. Thus,

√
n(γ̌u−γu∞) = −( 1

n
∂2 lnLn(γ̄)
∂γu∂γ′

u
)−1( 1√

n
∂ lnLn(γn)

∂γu
−

1
n
∂2 lnLn(γ̄)
∂γu∂τ ′

·
√
nτn).As in the proof of Theorem 2, we could show that 1

n
∂2 lnLn(γ̄)
∂γu∂γ′

u
= 1

n
E(∂

2 lnLn(γn)
∂γu∂γ′

u
)+

op(1) and
1
n
∂2 lnLn(γ̄)
∂γu∂τ ′

= 1
n
E(∂

2 lnLn(γn)
∂γu∂τ ′

) + op(1). Hence,

√
n(γ̌u−γu∞) = −

( 1
n
E
∂2 lnLn(γn)

∂γu∂γ′u

)−1[ 1√
n

∂ lnLn(γn)

∂γu
− 1

n
E
(∂2 lnLn(γn)

∂γu∂τ ′

)
·
√
nτn

]
+op(1).

(C.10)

Similarly,

1√
n

∂ lnLn(γ̌)

∂τ
=

1√
n

∂ lnLn(γn)

∂τ
− 1

n

∂2 lnLn(γ̄)

∂τ∂τ ′
·
√
nτn+

1

n

∂2 lnLn(γ̄)

∂τ∂γ′u
·
√
n(γ̌u−γu∞), (C.11)

where 1
n
∂2 lnLn(γ̄)

∂τ∂τ ′
= 1

n
E(∂

2 lnLn(γn)
∂τ∂τ ′

)+op(1) and
1
n
∂2 lnLn(γ̄)

∂τ∂γ′
u

= 1
n
E(∂

2 lnLn(γn)
∂τ∂γ′

u
)+op(1). Plugging

(C.10) into (C.11) yields 1√
n
∂ lnLn(γ̌)

∂τ
= ∆· 1√

n
∂ lnLn(γn)

∂γ
+ 1

n
Λ·

√
nτn+op(1). Since

1√
n
∂ lnLn(γn)

∂γ

d−→

N(0, limn→∞ B), the result in the proposition follows.

Online supplementary material

Fei Jin and Yuqin Wang (2023): Supplement to “Consistent non-Gaussian pseudo maximum

likelihood estimators of spatial autoregressive models”, Econometric Theory Supplementary

Material. To view, please visit:
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