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1 Derivatives of the pseudo log likelihood function for
the SARAR model

In this section, we present the first and second order derivatives of the pseudo log likelihood
function In L,,(0) in (4) for the SARAR model in (1). The derivatives of In L, () in (2) for
model (1) can be derived by removing irrelevant components of the derivatives below.

The first order derivatives of In L,,(d) are
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The second order derivatives are:
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2 Tests for normality, skewness and excess kurtosis of

the innovations in the SARAR model

In this section, we consider tests for normality, skewness and excess kurtosis of the innovations
in the following SARAR model:

Y, = AW,Y, + X000+ U,, U,=pM,U, + V,, (S7)

" are independent with mean zero. The above

where the elements v;’s of V,, = [vq,-- -, 4]
model with V,, = 0V}, is the same as that in (1) of the main text, but we write V, as a
whole term for analytic convenience. Note that by removing some irrelevant terms in the

test statistics of the following subsections, we can easily obtain tests for the SAR model and



the spatial error model, which are nested in the SARAR model.

2.1 Test for normality of the innovations

Assume that v; follows the Pearson distribution with the probability density function:

ot
h(z,n) = XP(— | e ) exp(—hu(w,m))
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where 7y, no and 13 are constants, n = [11,m2, 73], and hy(x,n) = [ M% dz. The null
hypothesis for the normality test is Hy: 1o = 13 = 0. The log likelihood function of model

(S7) is

In Ly,(y) = Z I h(vi(0),n) + I [Sy(A)] + In | B (p)]
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where 0 = [\, p, B, v = [0',7], and v4(0) = €, R,,(p)[Sn(N)Y,,— X, 5]. We have the following
derivatives of In L, (7):
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The second order derivatives of In L, () are
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and hy(n) = [ exp(—hi(z, n))m dz.
Let ¥ = [0,7] be the restricted MLE with 7, = 0 and n3 = 0 imposed, where 7 =

[71,0,0). With 7o = 0 and 73 = 0, since h(z,n) = \/W exp(— 721) is the probability
density function of the normal distribution N(0,7,), by Lee (2004), i = V!V, where V,, =
Ro(9)[Sn(N)Y, — X, 3. With n = 5, we have hy(z,1) = 71, ha(z, n) T Putea) — ﬁ—llx,
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At the true parameter value vy = [}, 710, 0, 0], we have the reduced form Y;,, = S, 1 (X, 5y +
R-YW,), where V, ~ N(0,7m0l,). Denote D, = R,W,S;'R' Z, = M,R;', T, =
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where A®* = A 4+ A’ for any square matrix A. Let ,le-j be the matrices derived by replacing
Yo = [0),m0) in A with 5, = [@,7). Then by the Lagrange multiplier principle, the

normality test statistic
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Y2
is asymptotically chi-squared distributed with 2 degrees of freedom. We omit the detailed
proof for this asymptotic distribution. The analysis will follow by the asymptotic properties
of the maximum likelihood estimator 4; for the SARAR model, which are provided in, e.g.,

Jin and Lee (2013).

2.2 Test for skewness of the innovations

In this and the next subsections, let o® be the variance of v; in model (S7) and 6 =
[\, p, B',0?)'. Denote the GPMLE of § by 0, 7, = v;(6) = €, R.(p)[Sn (5\)Y — X,,3], and
ko = E(vf) for k= 3,...,8. The ug can be estimated by i, = £ >

assumptions in the spatial econometric literature, we have fiy = pgo +0,(1) for k =3,...,8,

Under typical

111'

for which the proof is omitted for simplicity. To test for skewness of v;, we investigate the

asymptotic distribution of the third moment fi3. By the mean value theorem,

) O B 9 () LT ($10)

where 0 lies between 6, and 0. Let In £, () be the pseudo Gaussian log likelihood func-
tion of model (S7). By Jin and Lee (2018), under regularity conditions, /n(f — 6y) =

A~ 1\/15—81“[:”(90) + 0,(1), where
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and A = — E(}l%) has the expression
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where D,,, Z, and Y,, are defined in the last subsection. Thus, by (S10),
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Under the condition that 39 = 0, by Lemma B.4, [\/Iﬁ S v, \}%&(%)]’ is asymptotically
normal with mean zero. The variance B = Var(\lfaln gg (%)) has the expression
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where vecp(A) for a square matrix A denotes a column vector formed by the diagonal
elements of A, By; = %(‘;7—4; — 3) veep'(Dy,) veen(Dy) + = tr(DsD,) + QTL’%JT; veep (D) +
n%‘gT’HTn, By = %(’% — 3)vecp' (D) veep(Z,) + +tr(D5Z,) + B4, veep(Zy), and By, =
%(’%}—3) veep'(Z,) veen (Z,)+ + tr(Z5 Zy,). Using pzo = 0, some terms of B can be simplified.
With pzp = 0, we have var(\/iﬁ S U3 = o,
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Furthermore, under the assumption that psy = 0,

n
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where F = —%[%TM 0,1/ R, X,,0]. Let C be an estimate of C = var([\lf S v \lfalngg,(eo)]’)

by replacing 6o, a0, fso, feo in C with, respectively 6, fis, fis, jig. Define A and F similarly.
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is asymptotically standard normal under the condition that usg = 0. This statistic can be

used to test skewness of v;.

2.3 Test for excess kurtosis of the innovations

To test whether the kurtosis of v; is greater than 3 or not, we consider the asymptotic

distribution of ji; — 36*. As 30? = 3(0?)?, by expanding 35 at 0% = 02, we have 35 =

304 + 65%(6% — 02), where 62 lies between ¢2 and o2. Then by the mean value theorem,
Vn(jiy —36%) = Vn(js — 305) — 65° - /n(6* — a7)
1 ¢ 1 <
BRI ST I N
Vi Vi
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where 6 lies between 6, and 0, and A is in the last subsection. With s = 303, we have
var( Y (v — 30d)] = pso — 908, B[k Y0, (v — B0d) - = 0 (0 — 03)] = pugo — 307,
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and B = Var(\/iﬁ%g(eo)) in the last subsection can be simplified using p149 = 303. Further-
more,

LS80 a0 1=, s 5. 9vi(bo)

=~ _[4r(0) = 126%0,(0))— 0 =~ > (4 - 12050:)— 5= + 0,(1) = G + 0,(1),

i=1 =1

where G = —#%[1' Y, 0,1/ R,X,,,0]. Let H be an estimate of H = Valr([\/iﬁ S (vt —

308), \/%7 Yo (v —od), \%%&‘,(90)]’) by replacing o, pso, ..., fso in H with, respectively, 6,

i3, ..., f1g. Define G similarly. Then,

Vn(fia — 36%)
V/[1. 662, GA-1JH[1, —662, GA-1)

is asymptotically standard normal under the condition that p0 = 303. This statistic can be

used to test for excess kurtosis.

3 Ratios of the pseudo-true value of the variance pa-

rameter to its true value

Figure S1 reports the ratios of the pseudo-true value of the variance parameter to its true
value, where the density function of Student’s ¢ distribution is used for the NGPMLE. For
the case that the true disturbance distribution is a mixture of two normal distributions with
mean zero so that it is symmetric, the pseudo-true value is derived from the maximization of
Elln f(%2%,7)] —In(o) by choosing o and n; for the case that true disturbance distribution is

a Gram-Charlier expansion of the standard normal distribution so that it is asymmetric, the

pseudo-true value is derived from the maximization of E[ln f (‘70”_(1_?)(5 1=51) )] —In(o) by
choosing o, 1 and 7. The latter case corresponds to the situation when the spatial weights
matrix M, for the spatial error dependence process is row-normalized and X, contains an

intercept term, so that the NGPMLE of model parameters except the variance parameter can

be consistent. Since maximizing E[ln f(”ovi_(l_p;’)(ﬁl_ﬁm) ,n)] —1In(e) by choosing o, 8; and 7
is equivalent to maximizing E[ln f(%“== n)]—In(c) by choosing o, a and 7, it is unnecessary
to specify the values of pg and 519. The pseudo-true values are generally different from the

true values, even when the true disturbance disturbance distribution is symmetric.

11



Figure S1: Ratios of the pseudo-true value of the variance parameter to its true value

Mixture of two normal distributions with mean zero Gram-Charlier expansion of the standard normal distribution
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4 Efficiency comparisons for impact estimators in the
SARAR model

Let A and Bk be estimators of the parameters, respectively, A and (3, in the SARAR model,
where f is the kth element of 5. The average total impact (ATI) computed with [5\, Bk]’
is %1%551(5\)17131@ (LeSage and Pace, 2009). Suppose that ¢ = [S\,Bk]' is asymptotically
normal such that /n(@r — ko) N N(0,Ag). By the mean value theorem,

1 a1 1 ; 1 3 )
— 1,5, (N 1B = = 17,5, 1 Bro + [—1;5;1(A)Wn5;1(A)1n5k, —1;5;1(A)1n] (& — ko),
n n n n
where @y, = [\, 5]’ lies between ¢ and (. Then,
1 I a—1/3 D 1 1 o—1
Jn [51715” (V1B = ~1,5; 1n5ko]
1 1
_ [51' S, 1, Bro, 51;13,;114 V(G — o) + 0,(1)
d

1 1 1 1 :
4 N (0, lim [-1;5;1Wn5;11n5k0, —1;15,;114 A, [—1;5;1Wn57;11n5k0, —1;5511n]
n—oo LN n n n

Thus, if the NGPMLE is asymptotically more efficient than other estimators, so is the
ATT computed with the NGPMLE than the ATIs computed with other estimators. Similar
analysis applies to the average direct impacts (ADI) and the average indirect impacts (AII).
With @y, the ADI is L tr[S; " (A)]By, and the ATl is {1175, (A1, — Ltr[S; (A)]} G

Figures S2-S4 compare the efficiencies of impact estimators computed with the NGPMLE,
GPMLE and BGMME using numerical integration, as in the main text. The patterns are

similar to those for the efficiency comparisons between the NGPMLE, GPMLE and BG-

12



Figure S2: Efficiency comparisons of different impact estimators for the SARAR model with a
row-normalized M,, and asymmetric innovations. The v; is an admissible fourth order Gram-
Charlier expansion of the standard normal distribution as a function of the skewness and
kurtosis coefficients. The lower mesh in each sub-figure shows the ratios of the asymptotic
variance of an impact estimator computed with NGPMLE, to that computed with GPMLE,
while the upper mesh shows the ratios of the asymptotic variance of the impact estimator
computed with BGMME to that computed with GPMLE.

Ratios for ATI Ratios for ADI Ratios for All

Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness

MME. The original NGPMLE has uniform efficiency improvement over the GPMLE, and
has significantly larger efficiency improvement than the BGMME in most cases.
Tables S1-S2 further report Monte Carlo results on impact estimators computed with

different estimators. The patterns are consistent with those in Figures S2-54.

5 More Monte Carlo results

5.1 SAR model

Tables S3-S5 report more Monte Carlo results for the estimation of the SAR model, where
the true disturbance distribution is a mixture of two normal distributions with mean zero.
Each table corresponds to a different ratio of variances (RV) of the two normal distributions.

The patterns are similar to those in the main text.

5.2 Bias of the NGPMLE when Assumption 4 is not satisfied

We investigate the possible bias of the NGPMLE when Assumption 4 is not satisfied. We
consider two cases: (i) M, is not row-normalized and v; is asymmetric; and (ii) M, is row-
normalized, X,, does not contain an intercept term and v; is asymmetric. For case (i7), X,
still contains 2 exogenous variables, but both are randomly drawn from the standard normal
distribution. Other settings are the same as in the main text.

Tables S6-S7 report the results. We observe that NGPMLE has similar bias as GPMLE

for different sets of parameters and different sample sizes. Then it is possible that the

13



Figure S3: Efficiency comparisons of different impact estimators for the SARAR model with
a non-row-normalized M,, and symmetric innovations. The v; is a mixture of two normal
distributions with mean zero. For the first three sub-figures, the lower mesh in each sub-
figure shows the ratios of the asymptotic variance of an impact estimator computed with
NGPMLE, to that computed with GPMLE, while the upper mesh shows the ratios of the
asymptotic variance of the impact estimator computed with BGMME to that computed with
GPMLE. For the fourth to sixth sub-figures, the mesh in each sub-figure shows the ratios of
the asymptotic variance of an impact estimator computed with NGPMLE, to that computed
with GPMLE.

Ratios for ATI Ratios for ADI Ratios for AII

Ratio of variances Mixing probability  Ratio of variances Mixing probability Ratio of variances Mixing probability

NGPMLE, vs. GPMLE: ATI NGPMLE, vs. GPMLE: ADI NGPMLE, vs. GPMLE: AII
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Figure S4: Efficiency comparisons of different impact estimators for the SARAR model with
a non-row-normalized M,, and asymmetric innovations. The v; is an admissible fourth order
Gram-Charlier expansion of the standard normal distribution as a function of the skewness
and kurtosis coefficients. The mesh in each sub-figure shows the ratios of the asymptotic
variance of an impact estimator computed with NGPMLE, to that computed with GPMLE.

NGPMLE, vs. GPMLE: ATI NGPMLE, vs. GPMLE: ADI NGPMLE, vs. GPMLE: AII
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Table S1: Performance of various impact estimators for the SARAR model with a row-
normalized M,, and asymmetric v;

ATI ADI ATl
Kurtosis Skewness Bias SD RMSE Bias SD  RMSE Bias SD  RMSE
Panel A: n = 147
6 0.8 GPMLE 0.003 0.220  0.220 0.000 0.048 0.048 0.003 0.190  0.190

BGMME  0.007 0.212 0.213 0.001 0.046 0.046 0.006 0.183 0.184
NGPMLE -0.002 0.173 0.173 -0.001 0.037  0.037 -0.001 0.149  0.149

6 0.05 GPMLE 0.006 0.221  0.221 0.000 0.048  0.048 0.006 0.191  0.191
BGMME  0.010 0.229  0.229 0.000 0.049  0.049 0.010 0.198  0.198
NGPMLE 0.002 0.174 0.174 -0.001 0.038  0.038 0.002 0.151  0.151

4 0.4 GPMLE 0.006 0.219 0.219 -0.001 0.048  0.048 0.006 0.190  0.190
BGMME  0.010 0.223 0.224 0.000 0.048  0.048 0.011 0.194  0.195
NGPMLE 0.007 0.213 0.213 -0.001 0.046  0.046 0.007 0.185  0.185

4 0.05 GPMLE 0.003 0.224 0.224 0.000 0.048  0.048 0.003 0.194 0.194
BGMME  0.008 0.232  0.232 0.000 0.050  0.050 0.008 0.201  0.201
NGPMLE 0.001 0.216 0.216 0.000 0.047  0.047 0.002 0.187  0.187

3.05 0.05 GPMLE 0.001 0.221  0.221 -0.001 0.048  0.048 0.002 0.191  0.191
BGMME  0.006 0.231  0.231 0.000 0.049  0.049 0.007 0.200  0.200
NGPMLE 0.000 0.226  0.226 -0.001 0.049  0.049 0.001 0.195 0.195

Panel B: n =294

6 0.8 GPMLE 0.001 0.153  0.153 -0.001 0.034 0.034 0.002 0.132  0.132
BGMME 0.002 0.144 0.145 -0.001 0.032  0.032 0.002 0.125 0.125
NGPMLE 0.001 0.118 0.118 0.000 0.026  0.026 0.001 0.102 0.102

6 0.05 GPMLE 0.003 0.153  0.153 -0.001 0.033  0.033 0.004 0.133 0.133
BGMME  0.005 0.156  0.156 0.000 0.034 0.034 0.006 0.135 0.135
NGPMLE 0.004 0.120 0.120 0.000 0.026  0.026 0.004 0.104 0.104

4 0.4 GPMLE 0.002 0.151  0.151 0.000 0.033  0.033 0.002 0.131  0.131
BGMME  0.004 0.150  0.150 0.000 0.033  0.033 0.004 0.130  0.130
NGPMLE 0.003 0.145 0.145 0.000 0.032  0.032 0.003 0.126  0.126

4 0.05 GPMLE 0.001 0.149  0.149 0.000 0.033  0.033 0.001 0.129  0.129
BGMME  0.003 0.153 0.153 0.000 0.033  0.033 0.003 0.132  0.132
NGPMLE 0.001 0.144 0.144 0.000 0.032  0.032 0.001 0.125 0.125

3.05 0.05 GPMLE 0.001 0.151  0.151 0.000 0.033  0.033 0.001 0.131  0.131
BGMME  0.003 0.155 0.155 0.000 0.034 0.034 0.003 0.135  0.135
NGPMLE 0.000 0.154 0.154 0.000 0.034 0.034 0.000 0.134 0.134

Notes: The true disturbance distribution is a fourth order Gram-Charlier expansion of the standard normal
distribution as a function of the skewness and kurtosis coefficients. [y is the coefficient on the non-intercept
variable in X,,. Ag = 0.4, pg = 0.2, 819 =1, 8o = 1 and 02 = 0.25.
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Table S2: Performance of various impact estimators for the SARAR model with a non-row-
normalized M,, and symmetric v;

ATI ADI All
RV Bias SD  RMSE Bias SD  RMSE Bias SD RMSE

Panel A: n = 147

9 GPMLE 0.003 0.149  0.149 -0.001 0.044 0.044 0.004 0.125 0.125
BGMME 0.005 0.154  0.154 -0.001 0.045 0.045 0.006 0.131  0.131
NGPMLE, 0.000 0.113 0.113 -0.001 0.034  0.034 0.001 0.096  0.096
NGPMLE, 0.003 0.174 0.174 -0.001 0.035  0.035 0.004 0.154 0.154

6 GPMLE 0.004 0.147  0.147 0.000 0.044  0.044 0.004 0.124 0.124
BGMME 0.005 0.155  0.155 -0.001 0.045 0.045 0.005 0.132  0.132
NGPMLE, 0.003 0.127 0.127 0.000 0.038  0.038 0.003 0.107  0.107
NGPMLE, 0.003 0.196 0.196 -0.001 0.040  0.040 0.004 0.175  0.175

3 GPMLE 0.006 0.148 0.148 -0.001 0.044 0.044 0.007 0.126  0.126
BGMME 0.008 0.156  0.157 -0.001 0.046  0.046 0.009 0.133  0.133
NGPMLE, 0.004 0.148 0.148 -0.001 0.043 0.043 0.006 0.126  0.126
NGPMLE, 0.107 4.895 4.896 0.002 0.162  0.162 0.105 4.739  4.740

1.1 GPMLE 0.002 0.147  0.147 0.000 0.044 0.044 0.002 0.125 0.125
BGMME 0.004 0.155 0.155 0.000 0.046  0.046 0.005 0.132  0.132
NGPMLE, 0.001 0.151  0.151 0.000 0.045 0.045 0.001 0.128  0.128
NGPMLE, 0.017 0.245 0.246 0.000 0.051  0.051 0.017 0.216  0.217

Panel B: n =294

9 GPMLE 0.002 0.101  0.101 0.000 0.031 0.031 0.002 0.086  0.086
BGMME 0.003 0.103  0.103 0.000 0.031 0.031 0.003 0.088  0.088
NGPMLE, 0.002 0.078 0.078 0.000 0.024 0.024 0.002 0.066  0.066
NGPMLE, -0.001 0.119 0.119 -0.001 0.025 0.025 0.000 0.106  0.106

6 GPMLE 0.002 0.103  0.103 0.000 0.031  0.031 0.002 0.087  0.087
BGMME 0.003 0.105  0.105 0.000 0.032  0.032 0.003 0.089  0.089
NGPMLE, 0.001 0.087 0.087 0.000 0.027  0.027 0.001 0.073  0.073
NGPMLE, 0.000 0.132 0.132 0.000 0.028  0.028 0.000 0.118 0.118

3 GPMLE 0.001 0.102  0.102 0.000 0.031  0.031 0.001 0.086  0.086
BGMME 0.002 0.104  0.104 0.000 0.031  0.031 0.002 0.088  0.088
NGPMLE, 0.001 0.099 0.099 0.000 0.030  0.030 0.001 0.083  0.083
NGPMLE, 0.003 0.188 0.188 0.000 0.033  0.033 0.003 0.169  0.169

1.1 GPMLE 0.003 0.101  0.101 0.000 0.030  0.030 0.003 0.085  0.085
BGMME 0.004 0.104 0.104 0.000 0.031  0.031 0.004 0.088  0.088
NGPMLE, 0.002 0.104 0.104 0.000 0.031  0.031 0.002 0.089  0.089
NGPMLE, 0.166 5.372 5.375 0.005 0.170  0.170 0.161 5.205  5.208

Panel C: Normal innovations, n = 147

GPMLE 0.004 0.149  0.149 0.000 0.045  0.045 0.004 0.126  0.126
BGMME 0.006 0.157  0.157 0.000 0.046  0.046 0.006 0.133  0.133
NGPMLE, 0.003 0.171 0.171 0.000 0.046  0.046 0.004 0.146  0.146
NGPMLE, 0.163 6.776  6.778 0.005 0.239  0.239 0.158 6.542  6.544

Panel D: Normal innovations, n = 294

GPMLE 0.003 0.102  0.102 0.000 0.031 0.031 0.003 0.086  0.087
BGMME 0.005 0.105  0.105 0.000 0.031 0.031 0.004 0.088  0.089
NGPMLE, 0.003 0.104 0.104 0.000 0.031 0.031 0.003 0.088  0.088
NGPMLE, 0.114 5.132 5.133 0.004 0.165 0.165 0.110 4.971  4.972

Notes: The true disturbance distribution is a mixture of two normal distributions with mean
zero. The mixing probability of the two normal distributions is set to 0.3. ‘RV’ denotes the ratio
of variances of the two distributions. [, is the coefficient on the non-intercept variable in X,,.
Ao =04, pg=0.2, Bio=1, 8o = 1 and o2 = 0.25.
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Table S3: Performance of various estimators for the SAR model
with symmetric v; (RV = 6)

A B2
Bias SD RMSE Bias SD RMSE

GPMLE  -0.012 0.055  0.056 0.001 0.042  0.042
BGMME -0.010 0.055  0.056 -0.001 0.042  0.042
NGPMLE -0.009 0.048 0.049 0.001 0.036  0.036

AEs with GPMLE as the initial estimate
AFE,(p, 1) 0.099 0.067 0.119 -0.009 0.043 0.044

(
AE,(b,1)  0.083 0.059 0101  -0.008 0.038 0.039
AEy(p,1)  0.324 0.105 0.341  -0.031 0.049  0.058
AE,(b,1) 0257 0.090 0272  -0.024 0.042 0.049
AE.(p,2) 0.094 0.068 0116  -0.009 0.044 0.045
AE,(b,2)  0.080 0.061 0.100  -0.008 0.040  0.040
AE,(p,2) 0308 0.104 0325  -0.030 0.050  0.058
AE,(b,2) 0249 0.090 0265  -0.024 0.044  0.050
AE.(p,4) 0.081 0.065 0104  -0.008 0.043  0.044
AE,(b,4)  0.070 0.067 0.097  -0.007 0.044  0.045
AE,(p,4) 0260 0.095 0277  -0.025 0.047 0.053
AEy(b,4) 0224 0.094 0243  -0.022 0.047  0.052

AE,(p,1)  0.043 0.060 0.074 -0.004 0.042  0.042
AE,(b,1) 0.027 0.053  0.060 -0.003 0.038  0.038
AEy(p, 1) 0.315 0.110  0.334 -0.030 0.049  0.057
AFE,(b, 1) 0.238 0.092  0.255 -0.022 0.042  0.048
AE,(p,2)  0.040 0.061 0.073 -0.004 0.043  0.044
AE,(b,2) 0.026 0.056  0.061 -0.002 0.039  0.039
AE(p, 2) 0.299 0.109  0.318 -0.028 0.050  0.057
AFE, (b, 2) 0.231 0.092  0.249 -0.022 0.043  0.048
AE.(p,4)  0.026 0.060  0.066 -0.003 0.042  0.043
AE,(b,4) 0.024 0.063  0.068 -0.003 0.044  0.044
AFE,(p,4) 0.243 0.097  0.262 -0.023 0.047  0.052
AFE,(b,4) 0.212 0.095  0.232 -0.020 0.047  0.051

Notes: The true disturbance distribution is a mixture of two
normal distributions with mean zero. The ratio of variances for
the two normal distributions is 6, and the mixing probability is
0.3. [, is the coefficient on the non-intercept variable in X,.
)\0 = 04, Po = 02, 510 = ]., 620 =1 and O'g = 0.25.
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Table S4: Performance of various estimators for the SAR model
with symmetric v; (RV = 3)

A B2
Bias SD RMSE Bias SD RMSE

GPMLE  -0.012 0.054  0.055 0.002 0.042  0.042
BGMME -0.010 0.055  0.056 0.000 0.043  0.043
NGPMLE -0.011 0.054  0.055 0.002 0.042  0.042

AEs with GPMLE as the initial estimate
AFE,(p, 1) 0.098 0.066 0.118 -0.009 0.043 0.044

(
AE,(b,1) 0.092 0.068  0.114 -0.008 0.045  0.046
AEy(p, 1) 0.321 0.103  0.337 -0.031 0.049  0.058
AE,(b, 1) 0.305 0.104  0.322 -0.029 0.050  0.058
AE.(p,2) 0.095 0.068 0.116 -0.008 0.045  0.046
AE,(b,2) 0.089 0.069 0.113 -0.007 0.047  0.047
AE(p, 2) 0.310 0.103  0.327 -0.030 0.050  0.058
AE(b,2) 0.297 0.104  0.315 -0.028 0.052  0.059
AE,(p,4) 0.089 0.069 0.113 -0.008 0.047  0.047
AE,(b,4) 0.082 0.073  0.110 -0.007 0.050  0.050
AEy(p,4) 0.290 0.102  0.308 -0.028 0.051  0.058
AFE,(b,4) 0.268 0.104  0.287 -0.025 0.054  0.059

AE,(p,1)  0.043 0.059 0.073 -0.003 0.042  0.043
AE,(b,1) 0.036 0.062  0.072 -0.002 0.045  0.045
AEy(p, 1) 0.311 0.108  0.329 -0.029 0.049  0.057
AFE,(b, 1) 0.293 0.108  0.313 -0.027 0.050  0.057
AE,(p,2) 0.041 0.061 0.074 -0.003 0.044  0.044
AE,(b,2) 0.036 0.064  0.073 -0.002 0.046  0.046
AE(p, 2) 0.301 0.108  0.320 -0.028 0.050  0.058
AFE, (b, 2) 0.287 0.108  0.307 -0.026 0.052  0.058
AE.(p,4) 0.038 0.064 0.075 -0.003 0.046  0.046
AE,(b,4) 0.038 0.069  0.079 -0.002 0.049  0.050
AFE,(p,4) 0.282 0.106  0.301 -0.027 0.051  0.058
AFE,(b,4) 0.262 0.107  0.283 -0.024 0.054  0.059

Notes: The true disturbance distribution is a mixture of two
normal distributions with mean zero. The ratio of variances for
the two normal distributions is 3, and the mixing probability is
0.3. [, is the coefficient on the non-intercept variable in X,.
)\0 = 04, Po = 02, 510 = ]., 620 =1 and O'g = 0.25.
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Table S5: Performance of various estimators for the SAR model
with symmetric v; (RV = 1.1)

A B2
Bias SD RMSE Bias SD RMSE

GPMLE  -0.012 0.054  0.055 0.001 0.042  0.042
BGMME -0.010 0.055  0.056 -0.001 0.043  0.043
NGPMLE -0.012 0.054  0.056 0.001 0.043  0.043

AEs with GPMLE as the initial estimate
AFE,(p, 1) 0.099 0.065 0.118 -0.010 0.044 0.045

(
AE,(b,1) 0.099 0.072  0.122 -0.010 0.049  0.050
AEy(p, 1) 0.322 0.101  0.338 -0.031 0.050  0.059
AE,(b, 1) 0.342 0.110  0.359 -0.033 0.055  0.065
AE,(p,2) 0.097 0.066 0.117 -0.010 0.045  0.046
AE,(b,2) 0.096 0.074  0.121 -0.010 0.051  0.051
AE(p, 2) 0.316 0.101  0.332 -0.031 0.051  0.059
AE(b,2) 0.333 0.110  0.351 -0.032 0.056  0.065
AE,(p,4) 0.091 0.072 0.115 -0.009 0.049  0.050
AE,(b,4) 0.086 0.075  0.114 -0.009 0.051  0.052
AEy(p,4) 0.296 0.104 0.313 -0.029 0.054  0.061
AFE,(b,4) 0.286 0.107  0.306 -0.028 0.056  0.063

AE,(p,1)  0.043 0.058 0.073 -0.004 0.043  0.043
AE,(b,1) 0.042 0.066  0.078 -0.004 0.048  0.049
AEy(p, 1) 0.313 0.105  0.330 -0.030 0.050  0.058
AFE,(b, 1) 0.336 0.115  0.355 -0.032 0.055  0.064
AE,(p,2)  0.043 0.060 0.074 -0.004 0.044  0.044
AE,(b,2) 0.042 0.069  0.081 -0.004 0.050  0.050
AE(p, 2) 0.308 0.105  0.325 -0.030 0.051  0.059
AFE, (b, 2) 0.329 0.115  0.348 -0.031 0.056  0.065
AE.(p,4)  0.044 0.067  0.080 -0.005 0.049  0.049
AE,(b,4) 0.043 0.070  0.083 -0.005 0.051  0.051
AFE,(p,4) 0.292 0.107 0.311 -0.028 0.054  0.061
AFE,(b,4) 0.285 0.110  0.306 -0.028 0.056  0.062

Notes: The true disturbance distribution is a mixture of two
normal distributions with mean zero. The ratio of variances for
the two normal distributions is 1.1, and the mixing probability
is 0.3. (5 is the coefficient on the non-intercept variable in X,.
)\0 = 04, Po = 02, 510 = ]., 620 =1 and O'g = 0.25.
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NGPMLE for the spatial dependence parameters and coefficients on non-intercept exogenous
variables can still be consistent when Assumption 4 is not satisfied. The SD of NGPMLE
is significantly smaller than that of GPMLE when the kurtosis coefficient is 6, and it is the
same as or slightly larger than that of GPMLE for smaller kurtosis coefficients.

6 More application results

In this section, we first report impact estimates for the application in the main text on the

hedonic pricing data, and then report application results on two more data sets.

6.1 Impact estimates for the hedonic pricing data

Table S8 reports impact estimates for the hedonic pricing data. For some variables, we
observe relatively large differences in the impact estimates computed with different parameter
estimates. We also observe differences in impact significance. In particular, in the main text,
the GPMLEs, BGMMEs and NGPMLEs of the coefficients on NOX? and AGE are observed
to have different significance results. Here we also observe that the impacts for NOX? and
AGE computed with different parameter estimates have different significance results. For
example, for the variable AGE, the average total, direct and indirect impacts computed with
GPMLE are all insignificant at any usual significance level, but these impacts computed with
NGPMLE are significant at the 1% or 5% level.

6.2 Application to the crime data in Anselin (1988)

In this subsection, we apply our NGPMLE to the crime data for 49 neighborhoods in Colum-
bus, Ohio in Anselin (1988). This data set has been used in, e.g., LeSage (1999a.b), LeSage
and Pace (2009), and Arbia (2014).

We first estimate an SARAR model, where the dependent variable is Crime, defined
as the total of residential burglaries and vehicle thefts per thousand households, and the
explanatory variables include an intercept term, income in thousand dollars (Income) and
house value in thousand dollars (House_value). The spatial weights matrix W, for the spatial
lag process is based on first order contiguity and is row-normalized. The spatial weights
matrix M, for the spatial error process is set to be the same as W,. Table S9 reports the
results of estimation and some diagnostic tests. We observe that the normality of innovations
is rejected at the 1% level. At the 10% level, while the skewness coefficient of innovations

being zero is not rejected, the excess kurtosis coefficient being zero is rejected, with a p-

value equal to 0.064. The GPMLEs, BGMMEs and NGPMLEs of model parameters are
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Table S6: Performance of various estimators for the SARAR model with a non-row-
normalized M,, and asymmetric v;

A p B2
Kurtosis Skewness Bias SD RMSE Bias SD  RMSE Bias SD  RMSE
Panel A: n = 147
6 0.8 GPMLE -0.004 0.063  0.063 -0.044 0.169 0.175 0.000 0.042 0.042

BGMME  -0.002 0.063 0.064 -0.027 0.182  0.184 0.000 0.040  0.040
NGPMLE, -0.007 0.050 0.051 -0.028 0.148  0.151 0.000 0.032  0.032

6 0.05 GPMLE -0.004 0.064 0.064 -0.047 0.170  0.176 -0.001 0.042  0.042
BGMME  -0.004 0.069 0.069 -0.023 0.18  0.187 -0.001 0.044 0.044
NGPMLE, -0.003 0.050 0.050 -0.039 0.147  0.152 -0.001 0.033  0.033

4 0.4 GPMLE -0.004 0.065  0.065 -0.045 0.172  0.178 -0.001 0.042 0.042
BGMME  -0.002 0.067 0.067 -0.025 0.186  0.188 -0.001 0.042  0.042
NGPMLE, -0.005 0.069 0.069 -0.043 0.176  0.181 -0.001 0.044 0.044

4 0.05 GPMLE -0.004 0.064  0.065 -0.043 0.169 0.174 -0.001 0.042  0.042
BGMME  -0.004 0.070 0.070 -0.018 0.184  0.185 -0.001 0.044 0.044
NGPMLE, -0.005 0.065 0.065 -0.042 0.171  0.176 -0.001 0.043  0.043

3.05 0.05 GPMLE -0.005 0.064  0.064 -0.044 0.172  0.177 -0.001 0.042  0.042
BGMME  -0.005 0.071 0.071 -0.017 0.187  0.188 -0.001 0.043 0.043
NGPMLE, -0.006 0.066 0.067 -0.043 0.178  0.183 -0.001 0.042  0.042

Panel B: n = 294

6 0.8 GPMLE -0.002 0.044 0.044 -0.021 0.116  0.118 0.000 0.030  0.030
BGMME -0.001 0.042  0.042 -0.014 0.118  0.119 0.000 0.028  0.028
NGPMLE, -0.006 0.035 0.036 -0.011 0.103  0.104 0.000 0.023  0.023

6 0.05 GPMLE -0.001 0.044 0.044 -0.022 0.117  0.119 0.000 0.029  0.029
BGMME  -0.001 0.045 0.045 -0.010 0.120  0.120 0.000 0.030  0.030
NGPMLE, -0.001 0.034 0.034 -0.018 0.100  0.101 0.000 0.023  0.023

4 0.4 GPMLE -0.002 0.044 0.044 -0.021 0.115  0.117 0.000 0.030  0.030
BGMME 0.000 0.043 0.043 -0.013 0.118  0.119 0.000 0.029  0.029
NGPMLE, -0.002 0.045 0.045 -0.019 0.117  0.118 0.000 0.029  0.029

4 0.05 GPMLE -0.002 0.043  0.043 -0.020 0.116  0.118 0.000 0.029  0.029
BGMME  -0.001 0.044 0.044 -0.008 0.119  0.119 0.000 0.030  0.030
NGPMLE, -0.002 0.044 0.044 -0.020 0.116  0.118 0.000 0.029 0.029

3.05 0.05 GPMLE -0.003 0.044  0.044 -0.019 0.119  0.121 0.000 0.030  0.030
BGMME  -0.002 0.045 0.045 -0.006 0.123  0.123 0.000 0.030  0.030
NGPMLE, -0.003 0.045 0.045 -0.019 0.120  0.122 0.000 0.030  0.030

Notes: The true disturbance distribution is a fourth order Gram-Charlier expansion of the standard normal distri-
bution as a function of the skewness and kurtosis coefficients. (5 is the coefficient on the non-intercept variable in
Xn. )\0 = 04, Po = 027 /)’10 = 1, ﬁgo =1and (75 = 0.25.
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Table S7: Performance of various estimators for the SARAR model with a row-normalized
M,,, no intercept term and asymmetric v;

A p B2
Kurtosis Skewness Bias SD RMSE Bias SD  RMSE Bias SD  RMSE
Panel A: n = 147
6 0.8 GPMLE -0.003 0.053  0.053 -0.013 0.128  0.129 -0.001 0.042  0.042

BGMME  -0.002 0.051 0.052 0.000 0.133  0.133 0.000 0.039  0.039
NGPMLE, -0.003 0.043 0.043 -0.010 0.113  0.114 -0.001 0.033  0.033

6 0.05 GPMLE -0.004 0.052  0.053 -0.012 0.128  0.128 -0.001 0.042  0.042
BGMME  -0.004 0.055 0.055 0.002 0.134 0.134 -0.001 0.043 0.043
NGPMLE, -0.003 0.041 0.041 -0.009 0.109  0.109 0.000 0.033  0.033

4 0.4 GPMLE -0.003 0.054 0.054 -0.014 0.130  0.130 -0.001 0.042 0.042
BGMME  -0.003 0.054 0.054 0.000 0.135 0.135 -0.001 0.042 0.042
NGPMLE, -0.004 0.056 0.056 -0.013 0.130  0.131 -0.001 0.043  0.043

4 0.05 GPMLE -0.002 0.053  0.053 -0.017 0.127  0.128 -0.001 0.043  0.043
BGMME  -0.002 0.056 0.056 -0.003 0.133  0.133 0.000 0.044 0.044
NGPMLE, -0.002 0.054 0.054 -0.017 0.129  0.130 -0.001 0.043  0.043

3.05 0.05 GPMLE -0.003 0.053  0.053 -0.012 0.126  0.127 -0.001 0.042  0.042
BGMME  -0.002 0.055 0.055 0.002 0.132  0.132 -0.001 0.043 0.043
NGPMLE, -0.003 0.055 0.055 -0.012 0.127  0.128 -0.001 0.042  0.042

Panel B: n = 294

6 0.8 GPMLE -0.001 0.036  0.036 -0.007 0.087  0.087 -0.001 0.030  0.030
BGMME 0.000 0.034  0.034 -0.001 0.088  0.088 -0.001 0.028  0.028
NGPMLE, -0.001 0.030 0.030 -0.005 0.076  0.076 -0.001 0.023  0.023

6 0.05 GPMLE -0.003 0.037  0.037 -0.006 0.089  0.090 0.000 0.029  0.029
BGMME  -0.002 0.038 0.038 0.002 0.091 0.091 0.000 0.030  0.030
NGPMLE, -0.001 0.029 0.029 -0.005 0.075  0.075 0.000 0.022  0.022

4 0.4 GPMLE -0.001 0.037  0.037 -0.005 0.089  0.089 0.000 0.029  0.029
BGMME  -0.001 0.037 0.037 0.002 0.090  0.090 0.000 0.029  0.029
NGPMLE, -0.001 0.038 0.038 -0.004 0.089  0.089 0.000 0.031  0.031

4 0.05 GPMLE -0.002 0.037  0.037 -0.007 0.089  0.090 -0.001 0.029  0.029
BGMME  -0.002 0.038 0.038 0.000 0.091 0.091 -0.001 0.030  0.030
NGPMLE, -0.002 0.037 0.037 -0.007 0.089  0.089 -0.001 0.029  0.029

3.05 0.05 GPMLE -0.002 0.037  0.037 -0.007 0.090  0.091 -0.001 0.029  0.029
BGMME  -0.002 0.038 0.038 0.001 0.092  0.092 -0.001 0.030  0.030
NGPMLE, -0.002 0.037  0.037 -0.007 0.091  0.092 -0.001 0.034 0.034

Notes: The true disturbance distribution is a fourth order Gram-Charlier expansion of the standard normal distri-
bution as a function of the skewness and kurtosis coefficients. (5 is the coefficient on the second exogenous variable
in Xn. )\0 = 04, Po = 02, ﬁlO = 1./ 520 =1 and 0'8 = 0.25.
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Table S8: Impact estimates for the hedonic pricing data

Average total impacts

Average direct impacts

Average indirect impacts

estimate SE estimate SE estimate SE
CRIM GPMLE —0.230*** 0.032 —(.188*** 0.023 —0.042** 0.017
BGMME  —0.241** 0.035 —0.179*** 0.023 —0.062*** 0.018
NGPMLE —0.188*** 0.019 —0.166*** 0.015 —0.022** 0.009
ZN GPMLE 0.080** 0.039 0.065** 0.031 0.015 0.009
BGMME 0.086** 0.043 0.064** 0.031 0.022* 0.013
NGPMLE 0.052** 0.024 0.046** 0.021 0.006 0.004
INDUS GPMLE 0.020 0.056 0.016 0.046 0.004 0.011
BGMME —0.001 0.062 —0.001 0.046 —0.000 0.016
NGPMLE 0.001 0.035 0.001 0.031 0.000 0.004
CHAS GPMLE —0.008 0.026 —0.007 0.021 —0.002 0.005
BGMME -0.014 0.028 —0.010 0.021 —0.004 0.007
NGPMLE -0.016 0.016 —0.014 0.014 —0.002 0.002
NOX? GPMLE —0.235%** 0.068 —0.192*** 0.055 —0.043** 0.019
BGMME  —0.423*** 0.075 —0.314*** 0.056 —0.109*** 0.032
NGPMLE —0.081* 0.043 —0.071* 0.038 —0.010 0.006
RM? GPMLE 0.246*** 0.036 0.201*** 0.024 0.045** 0.018
BGMME 0.263*** 0.040 0.195*** 0.025 0.068*** 0.021
NGPMLE 0.472*** 0.032 0.416*** 0.016 0.056** 0.023
AGE GPMLE —0.057 0.045 —0.046 0.037 —0.010 0.009
BGMME  —0.101* 0.050 —0.075** 0.037 —0.026* 0.014
NGPMLE —0.183*** 0.029 —0.162*** 0.025 —0.022** 0.009
DIS GPMLE —0.315% 0.074 —(0.258*** 0.056 —0.058** 0.026
BGMME  —0.282*** 0.083 —0.210*** 0.056 —0.073** 0.031
NGPMLE —0.196*** 0.047 —0.173** 0.039 —0.023** 0.012
RAD GPMLE 0.421*** 0.081 0.344*** 0.061 0.077** 0.033
BGMME 0.528*** 0.090 0.392*** 0.061 0.136** 0.042
NGPMLE 0.230*** 0.049 0.202*** 0.042 0.027** 0.013
TAX GPMLE —0.319*** 0.073 —0.261*** 0.057 —0.058** 0.026
BGMME  —0.320*** 0.081 —(.238*** 0.058 —0.082*** 0.030
NGPMLE —0.243** 0.045 —0.214** 0.038 —0.029** 0.013
PTRATIO GPMLE —0.156™** 0.038 —0.128"** 0.030 —0.029** 0.012
BGMME  —0.140** 0.042 —0.104*** 0.031 —0.036*** 0.014
NGPMLE —0.089*** 0.023 —0.079*** 0.021 —0.011** 0.005
B GPMLE 0.147*** 0.033 0.120*** 0.026 0.027* 0.011
BGMME 0.179*** 0.037 0.133*** 0.026 0.046*** 0.015
NGPMLE 0.173*** 0.021 0.153*** 0.018 0.021** 0.008
LSTAT GPMLE —0.465%** 0.048 —0.380*** 0.035 —0.085*** 0.032
BGMME  —0.509*** 0.054 —0.378*** 0.035 —0.131%** 0.035
NGPMLE —0.176** 0.026 —0.155™** 0.023 —0.021** 0.008

Notes: *, ** and *** denote significance at, respectively, the 10%, 5% and 1% levels.
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Table S9: Results of estimation and diagnostic tests based on the SARAR model for
the crime data

GPMLE BGMME NGPMLE
estimate SE estimate SE estimate SE
A 0.368* 0.189 —0.364 0.293 0.444*** 0.128
p 0.167 0.294 0.826***  0.103 0.110 0.239
Constant 47.784***  9.553 62.039*** 11.088 46.420***  7.525
Income —1.026"* 0.324 —0.775** 0.317 —1.645*** 0.279
House_value —0.282*** 0.090 —0.241*** 0.084 —0.066 0.073

Test for normality of innovations:
Test statistic: 11.094; p-value: 0.004.

Test for skewness of innovations:
Test statistic: —0.764; p-value: 0.445; estimated skewness coefficient = —0.712.

Test for excess kurtosis of innovations:
Test statistic: 1.526; p-value: 0.064; estimated kurtosis coefficient = 5.846.

Notes: *, ** and *** denote significance at, respectively, the 10%, 5% and 1% levels.

very different. In particular, for the spatial lag dependence parameter A, GPMLE and
NGPMLE are positive, but BGMME is negative. NGPMLEs have uniformly smaller SEs
than GPMLEs, but BGMMEs have larger SEs than GPMLE for some parameters. For A,
GPMLE is only significant at the 10% level, but NGPMLE is significant at the 1% level. For
the spatial error dependence parameter p, both GPMLE and NGPMLE are insignificant.

Since the GPMLE and NGPMLE of p are insignificant, we estimate a SAR model and
report the results in Table S10. The results for the normality test, the skewness test and the
excess kurtosis test of innovations are similar to those for the SARAR model, showing some
evidence of leptokurtic innovations. We still observe that NGPMLEs have uniformly smaller
SEs than GPMLEs, but BGMMEs do not. All parameter estimates are significant at the 1%
level, except the NGPMLE of the coefficient on House_value, which is not significant even
at the 10% level.

Table S11 reports the impact estimates based on the SAR model. All impact estimates
are significant at the 1% level, except that the average indirect impacts computed with
GPMLE are significant at the 5% level. The impacts computed with NGPMLE have the
same sign as those computed with GPMLE, although their differences can be large. The
average indirect impacts computed with BGMME have different signs from those computed
with GPMLE and NGPMLE.

Overall, for this data set with a small sample size, there is some evidence of non-normal
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Table S10: Results of estimation and diagnostic tests based on the SAR model for

the crime data

GPMLE BGMME NGPMLE
estimate SE estimate SE estimate SE
A 0.431** 0.118 0.332**  0.121 0.469***  0.092
Constant 45.079***  7.163 50.960*** 7.166 45.105***  6.057
Income —1.032*** 0.304 —1.264** 0.294 —1.633*** 0.266
House_value —0.266"* 0.089 —0.244***  0.084 —0.060 0.073

Test for normality of innovations:
Test statistic: 12.472; p-value: 0.002.

Test for skewness of innovations:
Test statistic: —0.800; p-value: 0.424; estimated skewness coefficient = —0.772.

Test for excess kurtosis of innovations:

Test statistic: 1.492; p-value: 0.068; estimated kurtosis coefficient = 5.981.

Notes: *, ** and *** denote significance at, respectively, the 10%, 5% and 1% levels.

Table S11: Impact estimates based on the SAR model for the crime data

Average total impacts

Average direct impacts

Average indirect impacts

estimate SE estimate SE estimate SE
Income GPMLE 75.615*** 14.322 49.525*** 1.423 26.090** 12.924
BGMME 45.493*** 4.127 63.731*** 1.043 —18.238*** 5.128
NGPMLE 83.533*** 14.008 49.054*** 1.467 34.479** 12.558
House_value GPMLE —1.623*** 0.324 —1.063*** 0.094 —0.560** 0.276
BGMME  —0.568*** 0.077 —0.796*** 0.089 0.228*** 0.071
NGPMLE —2.961** 0.505 —1.739*** 0.090 —1.222%** 0.445

Notes: *, ** and *** denote significance at, respectively, the 10%, 5% and 1% levels.

and leptokurtic innovations, and different estimation methods lead to very different results.

6.3 Application to a presidential election data set

In this section, we apply our NGPMLE to the data set in Pace and Barry (1997), which
is on the votes cast in the 1980 presidential election across 3,107 U.S. counties. This data
set is used in LeSage (1999b) and LeSage and Pace (2009). As in LeSage (1999b, p. 95),
we estimate an SARAR model, where the dependent variable is the logged proportion of

voting age population that voted in the election, and the explanatory variables include an

intercept term, the logged proportion of the population with high school level education or

higher (Education), the logged proportion of the population that are homeowners (Home-
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Table S12: Results of estimation and diagnostic tests for the presidential election
data

GPMLE BGMME NGPMLE
estimate SE estimate  SE estimate SE
A 0.311*** 0.021 0.259***  0.023 0.343** 0.019
p 0.591***  0.029 0.666*** 0.025 0.605***  0.026
constant 0.586** 0.054 0.206*** 0.057 0.765** 0.048
Education 0.245*** 0.020 0.129***  0.021 0.302***  0.018
Homeowners 0.557** 0.015 0.602*** 0.016 0.523*** 0.013
Income —0.113*** 0.020 0.033 0.021 —0.187*** 0.018

Test for normality of innovations:
Test statistic: 7.336 x 10%; p-value: 0.000.

Test for skewness of innovations:
Test statistic: 0.277; p-value: 0.782; estimated skewness coefficient = 0.086.

Test for excess kurtosis of innovations:
Test statistic: 2.627; p-value: 0.004; estimated kurtosis coefficient = 9.042.

Notes: *, ** and *** denote significance at, respectively, the 10%, 5% and 1% levels.

owners), and the logged income per capita (Income). The spatial weights matrix W, is a
first order contiguity matrix, and the spatial weights matrix M, is on the basis of second
order contiguity, i.e., two counties are treated as connected if they are contiguous or have a
joint neighbor. Both W,, and M,, are row-normalized.

Table S12 reports the results of estimation and some diagnostic tests. The normality test
of innovations rejects the normality of innovations. The skewness test of innovations does not
show evidence of skewed innovations, while the excess kurtosis test shows some evidence of
leptokurtic innovations, with a p-value smaller than 0.01 and a kurtosis coefficient estimate
of 9.042. The GPMLEs, BGMMEs and NGPMLEs of model parameters can have large
differences. The SEs of BGMME are slightly larger than those of GPMLE, except the SE for
the spatial error dependence parameter p, but the SEs of NGPMLE are uniformly smaller
than those of GPMLE. All coefficient estimates are significant at the 1% level, except that
the BGMME of the coefficient on Income is not significant at any usual significance level.

The impact estimates computed with different parameter estimates are reported in Table
S13. For a given variable and a given kind of impact, different parameter estimates can
generate very different impact estimates. All the impacts are significant at the 1% level,
except that the average total, direct and indirect impacts of Income computed with BGMME

are all insignificant.

26



Table S13: Impact estimates for the presidential election data

Average total impacts Average direct impacts Average indirect impacts
estimate SE estimate SE estimate SE
Education GPMLE 0.356*** 0.029 0.251** 0.021 0.105*** 0.012
BGMME 0.175*** 0.028 0.131* 0.021 0.043*** 0.008
NGPMLE  0.459*** 0.027 0.310** 0.018 0.149** 0.013
Homeowners GPMLE 0.808*** 0.032 0.570** 0.016 0.238*** 0.023
BGMME 0.813*** 0.031 0.612** 0.016 0.201*** 0.023
NGPMLE  0.796** 0.029 0.538*** 0.014 0.258*** 0.022
Income GPMLE  —0.164** 0.029 —0.115** 0.021 —0.048*** 0.009
BGMME 0.045 0.028 0.034 0.021 0.011 0.007
NGPMLE —0.284*** 0.027 —0.192** 0.018 —0.092*** 0.011

Notes: *, ** and ** denote significance at, respectively, the 10%, 5% and 1% levels.

7 Proof of Lemma B.3

Lemma B.3. Suppose that h(zx) is a scalar function, v;’s in 'V, = [vy,- -+ ,v,|" are i.i.d. with
mean zero and variance o3, A, = [ani;] and B, = [b,.;] are n x n nonstochastic matrices
that are bounded in both the row and column sum norms, E(|v;|*) < oo and E(|h(v;)|) <
oo for some ¢, > 0 and ¢, > 0. Then ¢, — E(c1,) = 0,(1) if i + % < 1, and ¢y, —
E(con) = 0,(1) if i + c%, < 1, where ¢1,, = 2377 h(vi) (35— @n,ijvi) (D j—y bnikvx) and
n = iy M) (307 anijvy).

Proof. We only prove the result for ¢y, as that for cy, is similar. The relations between
the indices 7, j and k include the following cases: ¢ = j =k, 1 = j # k, 1 = k # j,
i #j=kand (i # j,j # k,k # i). For simplicity, denote ho(v;) = h(v;) — E[h(v;)],
hi(v;) = h(v;)v; — E[h(v;)v;] and ho(v;) = h(v;)v? — E[h(v;)v?]. Then,

Cin — Cln - ZhQ Uz anu n,it + = ZZ{hl Uz +E[ (UZ),UZ}}/U](GJTL’L] .01 +anzzbn2])

zl];ﬁz

+- Z > {ho(v) (v} = 05) + a3ho(vi) + ElR(v))(v] — 7) }anisbni

'Llj;éz

. % SN ST (o) + ElR(vs)] oy 0ktn b

i=1 j#i ki ki k]

n
1
= E E Cin,i,
i=1
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where

i—1 i—1
Cini = ha(V3)anaibris + Ba(00) Y 03 (@n,iibis + nibg) + 0 Y 71 (05) (@n by + Gn,jibn i)
j=1 =1

—_

71—

+ B[ vilvi Y (anjibn j; + anjibnji) + ho(vi) Y (07 = 08)an ijbnis

i =1
1—1
+ (v = 00) Y ho(v))an jibnji + 050 (v:) D anijbuis + E[l(v)] (v = 03) Y an jibni
i=1 i i
i—1 5—1
+ (7o (03) UV (A b ik + O ikeDni )
71=1 k=1

+ v;ho (V) Uk (@ jibn jk + G jkbn ji) + Vivjho (V) (A kibn kj + QngejOn ki)

i—1
+ E[h(vi)]v; Z v; Z (A kibnkj + A kjbn ki) -
J=1 ki kA

Note that each term in ¢;,; has a zero conditional mean given vy, ...,v;—;. Then each term
is a martingale difference. Furthermore, each term in ¢;,; can be shown to be uniformly
integrable (UI). We only prove that the typical terms (i) 215 = ho(0i)aniibnii, (17) 220, =
hq(v;) 22;11 VjQy,ijbyi; and

i—1 j—1 i—1 j—1
(Z@Z) Z3n,i — ho(Ui)UjUkan,z’jbn,ik = ho(%‘) E Qp 5V E bn,ikvk
j=1 k=1 j=1 k=1

are UL Note that the three terms all have the form H§:1(€;¢iAjntn) in Lemma B.2, where
each A;, is bounded in both the row and column sum norms. Let 1 = 1/(& + Cl) > 1.
Then by Hélder’s inequality, E[|h(v;)vZ|*t] < [E |h(v;)|ren/a]/en[B(|v;[2-ee/G)))2alee < oo,
Thus, E[|ha(v;)|t] < A{E[|h(v;)v?]|] + | E[h(v;)v?]|*} < oo for some constant ¢ by the c,-
inequality and Jensen’s inequality. Similarly, we have E[|h;(v;)]*?] < oo for 15 =1/ (i + i)
and E[|ho(v;)|*] < oco. Then by Lemma B.2, Z?zl sup; , B(|zjn|"") < co. Thus, zj,; is Ul
for 7 = 1,2,3. Hence, by the LLN for martingale differences in Theorem 19.7 of Davidson
(1994, p. 299), c1,, — E(c1n) = 0,(1). O

8 NGPMLE for the SAR model

In Remark 1 of the main text, we claim that, for the SAR model with no SAR process of

disturbances, a result similar to Proposition 1(¢) holds when Assumption 4(7) is replaced by
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the conditions that (a) X,, contains an intercept term and (b) E[ln f(%%=2 n)] — 1In(0?) is
uniquely maximized at (s, Moo, o). We prove the claim in this section. Note that () is
equivalent to that Q(c, 51,n) = E[ln f (M, n)] — 3 In(0?) is uniquely maximized at

(0, 51,m) = (0o, P00, Moo) TOT Broe = P10 + (eo- Consider the SAR model:
Yn = AOWnYn =+ Xnﬂo + O'Ovn, (Sll)

where the notations are similar to those for the SARAR model in the main text. For a
given \g, the model is a linear regression model S,,Y,, = X,,80 + 0oV, with S,,Y,, being the
dependent variable and X,, being the exogenous variable matrix. The pseudo log likelihood

function of model (S11), as if v; had the density function f(v;,n), is
In Ly(7) = > In f(0:(6).n) — 5 In(0?) + In[S, (V). (S12)
i=1

where 0 = [\, 3, 0%, v = [¢/,1] and v;(0) = Ze/,;[S.(N)Y,, — X,,8]. Denote T,()\) =
Sn()\)S;I = [tnﬂj<)\)], and \I/m(ﬁ) = O'()@;uTn<)\)Vn — Uovitn,ii()\) -+ e;”[Sn()\)S;anﬂo — Xnﬁ]
Note that ¥,,;(0) does not depend on v;. As Y, = S, Y X,00 + coV,), vi(0) = %E’Z(G) +

%aovitn,ii()\). Denote o,,; = ﬁ, and B = Bio — —=,,i(). Let E_;(-) be the condi-

tn,ii (T)
tional expectation given vy, ..., v;_1, Vi1, ..., U,. Then,

Efln L, ()] = Y- E{E-{In /(0:(60), )]} ~ 5 In(0%) + In|S,(N)
= > EIQus: Arir )] = Y- Inltua(N] + I [Su(N)
< Q[0 fhocs M) = Y I [tni(N)] + 10| (M)] (S13)

= 1Q(0o0, Broc: o) = I [t ()] + In [T,(\)| + In |3,
=1
< E[ln Ly ()], (514)

where (S13) uses the assumption that Q(o, $1,n) is uniquely maximized at (o, 51,n) =
(Ooos Bioos Moo)s (S14) uses the assumption that In|T,(A)] < D77 Inlt,;(N)], and v =
(Ao, Biroos Bho, 0%, mL). The inequality in (S14) is strict if A # Ag. With A = )g, we have
To(A) = In, thii(N) = 1, 0 = 0, and B1 = Bro — €, Xn(Bo — B) = b1 — €,;Xon (P20 — P2).
Since X,, has full column rank, £ ,; # B for some i if By # [Bo. Thus, with A = Ao,
the inequality in (S13) is strict if (8, 0,1) # (820, 0, 1leo). Hence, E[In L, ()] is uniquely
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maximized at .

9 NGPMLESs for other spatial econometric models

In this section, we show that the NGPMLESs for some other spatial econometric models can
also be consistent under conditions similar to those for the SARAR model. We consider the
SAR model with spatial moving average (MA) disturbances, the matrix exponential spatial
specification (MESS) model, and a high order SARAR model.

9.1 The SAR model with spatial M A disturbances

Consider the following SAR model with spatial MA disturbances:
Yn = AOWnYn + Xnﬁo + Un7 Un = 00<pOMnVn + Vn)a (815)

where the notations are similar to those for the SARAR model in the main text. The pseudo
log likelihood function of model (S15), as if v; had the density function f(v;,n), is

InL,(y) = Zlnf(v@-(e),n) _ gln(a2) FIn|S,(\)] = In | Ju(p)], (S16)

where 0 = [\, p, 8, 0%, v = [0',7], Su(A) = I, = A\W,,, J.(p) = I, + pM,,, and v;(0) =
Let T2 (p)[Sn(N)Y,, — X,.8]. Denote Ty,(7) = J;2(p)Sn(N) Sy Ty = [tnii(T)] with 7 = [\, p]/

o niYn

and U,,;(0) = ool Tn(T) Vo —0ovitnii (7)€, T (p)[Sn(N) S, 1 X, B0 — X, 8]. Note that U,,;(6)
does not depend on v;. As Y, = S;YX, 80 + 00, Vi), v;i(0) = %\111(9) + %Uovitn’ii<7).
Case 1: M, is row-normalized and X, contains an intercept term. Since M,

is row-normalized, J,1, = (1 + po)1,. Then the nonsingularity of J,, implies that py # —1.

Denote ) ]
OoV; 2
1 . 1
Q(o, f1,n) = [Hf( (1 +p0)0(51 510)777>} 5 n(o”),
Oni = ﬁ, and By, = P10 — ”Po)qzm(e). Assume that (a) E[ln f(%,n)] — %ln(aQ) is

uniquely maximized at (0oo, Qoo, Moo ), and (b) In |7, (7)] < D0 In|t, . (7)| for 7 # 75. Note
that (a) is equivalent to that Q(o, £1,7) is uniquely maximized at (o, 51,7) = (Too, Bioos Noo)
for 6100 = 510 —+ (1 + p())aoo- Then,

Elln Ly, (y ZE{E [In f(wi(6), m)]} — gln(02) + I |Su (M) —In[Jn(p)]
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n

- ZE[Q(Uniaﬁl,nhlr] ZIH ‘tn i | + In |S ( )‘ —In |Jn(p)|

=1

<N (0o, Proos o) Zln ‘tn (7)) + I [S,(A)| = In[Ju(p)] (S17)

:nQ(Uooyﬁlooanoo Zlnltnu |—|—1H’T ( )‘+ln‘sn’_ln‘Jn|
< E[ln Ly (7)), (S18)

where 7. = [Ao, 0, Bioo, B0, 0%, 15)- The inequality in (S18) is strict if 7 # 7. With
T = 7o, we have T,,(7) = I, t,:(7) = 1, 0pi = 0, and B = Bro — (14 po)el; T, Xn(Bo —
B) = B — (1 + po)el; J 1 X0, (Bog — Bo). Assume that J;'X,, has full column rank, then
Bini # Pioo for some ¢ if By # Bag. Thus, with 7 = 79, the inequality in (S17) is strict if
(B2,0,m) # (20,000, M0)- Hence, E[ln L, ()] is uniquely maximized at ~,. Therefore, we
can obtain similar conditions for the convergence of the NGPMLE for model (S15) to ..

Case 2: v;’s are symmetrically distributed around zero with unimodal density.
By Lemma A in Newey and Steigerwald (1997), E[ln f(v;(0),n)] = E{E_;[In f(v;(0),n)]} <
E{E_;[In f(2v;tn(7),n)]} = E[In f(2vit, (1), n)], where the inequality is strict if ¥,,;(0) #
0. Denote Q(o,n) = E[ln f(%%,n)] — 3 1n(c?). Assume that Q(o,n) is uniquely maximized
at (0,1m) = (0oos Neo), and In |T,,(7)] < Z?:l In|t,:(7)| for 7 # 75. Then,

E[ln L,,( <ZQ0m,n Zlnltnu |+ 0[Sy (N)] = In[ 1 (p)]

< NQ (0, oo Zln|tn” )| +1n|S,(N)| — In|J,(p)| (S19)
< E[ln L (74)]; (520)

where 74 = [N, po, 86, 0%, 1) The inequality in (S20) is strict if 7 # 75. With 7 = 7,
the inequality in (S19) is strict if (0,7) # (0oo, o). With (7,0,1) = (70, Ocos Mo ), We have
T.(1) = I, and ¥,,;(0) = €/, J, ' X,,(Bo — 3). Assume that J, !X, has full column rank, with
(1,0,m) = (70,02 , M), then the inequality in (S19) is strict if 3 # By. Therefore, E[ln L,,(7)]
is uniquely maximized at 4.

Case 3: Non-row-normalized )M, and asymmetric innovations. Add a location

parameter « to the non-Gaussian pseudo log likelihood function (S16) so that we have a
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modified function
n 2
In L,( E lnf<vZ - —04 17) — 5111(0 )+ 1In|S,(\)| — In|J.(p)], (S21)

where 0 = [\, p, ', 0%, a,7']". Denote Q(c, v, ) = E[ln f(?%=%, )] — 3 In(0?), 00i = 7,
at_q]”(;()g ). Assume that J 1 X, has full column rank and does not contain an
intercept term, Q(o, v, n) is uniquely maximized at (o, @, 7)) = (Too, Ao, Noo), and In |T,,(7)| <

o Ity i (7)| for T # 7. Then,

and «o,; =

E[ln L, (5)] = iE{E [lnf(vi(G) = %n)} } - gln(02) +1n|S,(A)] = In | Ju(p)]

i=1

:ZE[Q(Um'aOém'an Zln|tnu )+ | S, (M) = In | J,(p)]
=1
< nQ(O’oo,Ozoomoo Zln |tn u | +In |S ( )| —In |Jn(p)| (822)

= 19Q(0o0, Uoos To) Zln]tnm )| +1n |7, ()| + In|S,| — In|J,|
E[ln L, (04)], (S23)

where 04 = [\o, po, B85, 0%, Qoos )~ The inequality in (S23) is strict if 7 # 7. With 7 = 79,
we have T,,(7) = I, tnu(7) = 1, 00 = 0, and o = a — €, 1, X,,(Bo — B). Since J ' X,
has full column rank and does not contain an intercept term, «,,; # . for some i if § # S,.
Thus, with 7 = 79, the inequality in (S22) is strict if (3, 0, a, 1) # (B0, Toos Moos Neo)- 1t follows
that E[ln L,,(0)] is uniquely maximized at 0 = 0.

9.2 The MESS model

Consider the following MESS model:

Y, = X80 + Uy, MU, = o4V, (S24)
where the matrix exponential e? is defined as e? = Yoo % for any square matrix A,

and other notations are the same as for the SARAR model in the main text. Since the
determinant |e?| = ™4 (LeSage and Pace, 2007) and W, and M,, have zero diagonals,
|e*Wn] =1 and || = 1. Then the pseudo log likelihood function of model (524), as if v;
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had the density function f(v;,n), is
n
InL,(y) = Zlnf(vi(ﬁ),n) -3 In(c?), (S25)

where 0 = [\, p, ,0%]', v = [¢,7] and v;(0) = Lel M (MY, — X,,8). Denote T,(7) =
ePMnePA=200Wne=poMn — [t ..(7)] with 7 = [\, p)’, and W,,;(0) = ooe!, T, (T) Vi — 0ovitni(T) +
el ePMn(eQ=2lWn X 31— X, B). Note that W,,;(#) does not depend on v;. AsY,, = e~ *Wn (X, By+
oo POMnY ) i(0) = (%‘111(9) + %O’ovitmii(T).

Case 1: M, is row-normalized and X, contains an intercept term. Denote

Q0,1 m) =B [lnf (JOU@' — epoa(ﬁl —fuo), 77)] — %ln(az),

Oni = 7oy and Pini = fro — %\Pm(@) Assume that (a) E[ln f(2%=2 n)] — £ 1n(c?) is
uniquely maximized at (0o, Qoo 7o), and (b) In|T,,(7)| < D0, In |t,,:(7)| for T # 70. Note
that (a) is equivalent to that Q(o, 81, 7) is uniquely maximized at (o, 81,1) = (0o, B1c0s Moo)

for B1oe = B10 + € P ay,. Then,
Efln L, (7)] = ;E{E—i[lnf(vi(@, n} - 5 n(o?)

= Z E[Q(0ni; Binis 1) — Z I [t,3i(7)
i=1 i=1

< nQ(0oc, Broos o) — D I [t5i(7))| (826)
=1

< 1Q(Toc, Broo: o) — In [T(7)] (S27)

= E[ln Ly, (7],

where 7, = [Ao, o, Bioo; Boo, 02, 15.] and the last equality uses In |7, (7)| = In [e?MreP—20)Wne=podn| —

In(ef FMn)eQ=2o) tr(Wn)o=potr(Mn)) — (). The inequality in (S27) is strict if 7 # 75. With
T = 79, we have T,,(7) = I,, tnui(7) = 1, 00 = 0, and By, = PBro — e el,er M X, (By —
B) = B — e e ePMn Xy (Bag — (B2). Assume that e”M» X, has full column rank, then
Bini 7 Pioo for some ¢ if By # Bag. Thus, with 7 = 79, the inequality in (S26) is strict if
(B2,0,1) # (B20, oo, Mo). Hence, E[In L, ()] is uniquely maximized at ~..

Case 2: v;’s are symmetrically distributed around zero with unimodal density.
By Lemma A in Newey and Steigerwald (1997), E[ln f(v;(0),n)] = E{E_;[In f(v;(0),n)]} <
E{E_i[In f(%2vitn::(7),n)]} = E[ln f(%vit,:(7),1)], where the inequality is strict if ¥,,;(0) #
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0. Denote Q(o,7) = E[ln (%%, n)] — 1 In(c?). Assume that Q(o,n) is uniquely maximized
at (0,1) = (0o, Noo), and In [T, (7)| < D7 In|t, ;i(7)| for 7 # 9. Then,

lIlL < Z Q Unza 77 i In ‘tn,”<7—>

< nQ(Foo, Noo) Zln i ( (S28)
< nQ(0uo, Noo) — I | T, (7)] (S29)
= E[ln L, (v4)],

where 74 = [N, po, 85, 0%, 1) The inequality in (S29) is strict if 7 # 75. With 7 = 7,
the inequality in (S28) is strict if (,7) # (0co, Noo). With (7,0,1) = (70, Ocos Moo ), We have
T,(1) = I, and ¥,,;(0) = ¢! ,e”M X, (By — B). Assume that e?*» X, has full column rank,
with (7,0,n) = (70,02%,7s), then the inequality in (S28) is strict if 8 # By. Therefore,
Elln L, ()] is uniquely maximized at 7.

Case 3: Non-row-normalized M, and asymmetric innovations. Add a location
parameter « to the non-Gaussian pseudo log likelihood function (S25) so that we have a

modified function

In L,( Z lnf<vZ - —a 17) n —In(c?), (S30)

where 0 = [\, p, 8,02, a,1]'. Denote Q(o, ar,n) = E[ln f(2%=2 n)] — $1n(0?), 04 = )
at—an_n(T()e) Assume that e?M» X, has full column rank and does not contain an
intercept term, Q(o, a, ) is uniquely maximized at (o, @, 1) = (0o, Moo, Moo ), and In | T, (7)| <

Z?:l In |tn,i¢(7')| for 7 # 19. Then,

and o,,; =

E[ln L, ( E:E{E_Z lnf v; (0 j,n)}} — gln(02)

n

= Z E[Q(0ni; cni, )] — Z I [t,44(T)

< NQ(To0, Uoos Too) — Zln (7)) (S31)
< NQ(Too, Moo, Noo) — In | T, (7)) (S32)
= E[ln Ln(é#)]a

where 04 = [Ao, po, B, 02, Ao, Mo)'- The inequality in (S32) is strict if 7 # 79. With 7 = 7,
we have T,,(7) = I, tnu(7) = 1, 0y = 0, and ay; = a — e),e”M X, (8y — ). Since e?Mr X,
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has full column rank and does not contain an intercept term, «,,; # ., for some i if 5 # 5.
Thus, with 7 = 79, the inequality in (S31) is strict if (3, 0, a, 1) # (B0, Toos Moos Neo)- 1t follows
that E[ln L,,(0)] is uniquely maximized at 0 = 0.

9.3 A high order SARAR model

Consider the following high order SARAR model:

_

p
Yn — Z )\jOVanYn + XnBO + Una UTL - pkOMann + O-OVTM (833)

j=1 k=1

where W;,,’s and My,,’s are n x n spatial weights matrices and other notations are similar
to those for the SARAR model in the main text. Denote A = [A1,..., \]', p = [p1,---,04),
0= [N, 0, 3,02y = [00Ys Su(A) = L= X0, AWy and Ra(p) = L — Y0, pu M. Let
0o = [Ny, pby, Bh, 03]’ be the true value of 0, R,, = R,(py) and S,, = S,,(\g). The pseudo log
likelihood function of model (S33), as if v; had the density function f(v;,n), is

In L,( Zlnf v; (0 — —ln( )+ In|S,(A)| + In | R, (p)], (S34)
where v;(6) = %e;iRn(p)[Sn(/\)Yn — X,,8]. Denote T,,(1) = Ru(p)Sn(N)S, 1R, = [tn.i(7)]

with 7 = [N, p/'; and W,,;(0) = ao€l, T0(T) Vi — 000itnii(T) + €l Rn(p) [Sn(N) S, 1 X B0 — X ).
Note that ¥,,;(0) does not depend on v;. As 'Y, = S; Y X, 50 + oo R, 'V,), vi(0) = 5\111(9) +
iaovitm,-(T).

Case 1: All M,,,’s are row-normalized and X,, contains an intercept term. Since
M,,,’s are row-normalized, R,1,, = ¢(po)1,, for ¢(py) = 1—> 7 _, pro- Then the nonsingularity
of R,, implies that ¢(pg) # 0. Denote

R T e N ) | R !

Oni = 205 and B = B0 — m\llm(ﬁ) Assume that (a) E[ln f(%2%=2 5)] — 1 In(0?)
is uniquely maximized at (0o, Qtoos oo ), and (b) In |75, (7)| < D7 In [t,,.4:(7)] for 7 # 79. Note
that (a) is equivalent to that Q(e, 81, 7n) is uniquely maximized at (o, 51,1) = (0o, B100s Moo)

for Bi100 = P10 + gy (oo .Then,

C(Po

Elln L, (v)] = Z E{E_i[In f(v:(0), n)]} — gln(ag) + I [Sp(A)] + In [Rn(p)]

35



n

- ZE[Q(UnhBl,m'un Zln |tn i | + In |S ( >| + In ’RTL(ION

i=1

< NQ(0oo, Proos Noo) Zln ’tn a(T)] + I [S(A)| + In R, (p)]| (S35)

:nQ(O_ooaﬁlooanoo Zln|tnu ‘—|—IH|T ( )’+1H’Sn|+1H’Rn‘
< E[ln Ly, (7,)], (S36)

where v, = [}, pb; Bioo, Bho, 0%, 15 |- The inequality in (S36) is strict if 7 # 19. With 7 = 7,
we have T,,(7) = I, t,u(7) = 1, 0 = o0, and Sy, = P10 — e R X (Bo — B) = P —

p e el R Xon (P20 — P2). Assume that R, X, has full column rank, then B, # Pioo for some
i if Py # Boo. Thus, with 7 = 79, the inequality in (S35) is strict if (82, 0,1) # (820, Toos Noo) -
Hence, E[ln L,, ()] is uniquely maximized at ~,.

Case 2: v;’s are symmetrically distributed around zero with unimodal density.
By Lemma A in Newey and Steigerwald (1997), E[ln f(v;(0),n)] = E{E_;[In f(v;(0),n)]} <
E{E_i[In f(2vitn:(7),n)]} = E[ln f(%2vit,:(7),1)], where the inequality is strict if W,,;(6) #
0. Denote Q(o,7) = E[ln f(%%,n)] — 1 In(c?). Assume that Q(c,n) is uniquely maximized
at (0,1) = (000 o), and In |T,,(7)| < Z?:lln |tnii(T)| for 7 # 79. Then,

hlL <ZQ O'm,'f] Zln|tnm ‘+IH|S ( )|+1n’Rn<p)‘

<nQ(0s, Noc) Zln‘tnm |+ In[S, ()] + In[ Ry (p)] (S37)
< Efln L (1), (538)

where v = [\, pb, 86, 0%, L) The inequality in (S38) is strict if 7 # 75. With 7 = 7,
the inequality in (S37) is strict if (0,7) # (oo, Neo). With (7,0,1) = (70, 0sos Mo ), We have
T.(r) = I, and V,;(0) = €/, R, X,,(Bo — ). Assume that R, X, has full column rank, with
(1,0,m) = (70,02, M), then the inequality in (S37) is strict if 3 # By. Therefore, E[ln L,,(7)]
is uniquely maximized at ~y4.

Case 3: Non-row-normalized M,’s and asymmetric innovations. Add a location
parameter « to the non-Gaussian pseudo log likelihood function (S34) so that we have a

modified function

InL,( Zhﬂf(@Z - —a 7]) — gln(JQ) +In|S,(A)| +1In|R,(p)], (S39)
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where 6 = [N, ', f', 0%, o, 7']". Denote Q(o, a,n) = E[ln f(22%=2 p)] —%111(02), Oni = #,
a;\p—"(T()e) Assume that R,X, has full column rank and does not contain an
intercept term, Q(o, a, ) is uniquely maximized at (o, @, 1) = (0o, Moo, Moo ), and In | T, (7)] <

o Int, i (7)| for T # 19. Then,

and o,,; =

n

Elln L, (5)] = ZE{E_Z- {mf@(e) - %n)} } - gln(ch) +1n[S,(A\)| + In | R, (p)]

i=1

— 3 E[Q(0s s )] = 3 It (7)] + In[S,(N)] + 1n | Ro ()
=1 =1
< 1Q(0s s o) — 3 1 [ts(7)] + In [ S (V)] +1n | B () (340)
=1

=nQ(0o0, Uoo, Noo) — Zln [tnii(T)| + In [T (7)] + In ]S, | + In | R, |
=1
< E[ln L, (d4)], (541)

where 04 = [}, pb, B, 02, Aoos h)'- The inequality in (S41) is strict if 7 # 79. With 7 = 7,
we have T),(7) = I, t,4(7) =1, 0y = 0, and o = o — €], R, X, (8o — B). Since R, X,, has
full column rank and does not contain an intercept term, «u,; # . for some i if g # S.
Thus, with 7 = 7, the inequality in (S40) is strict if (3, 0, a, 1) # (Bo; Toos Moos Neo)- 1t follows
that E[ln L,,(0)] is uniquely maximized at 0 = 0.
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