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Abstract
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models with fixed effects using quasi-maximum likelihood (QML) approach, where both n and T are
large. We show that the QML estimation for the SDPD with FD can be reduced to the direct estimation
of individual effects, except for the estimation of variance parameter. After bias correction, these two
approaches would yield asymptotically equivalent estimates for all parameters including the variance
parameter. Our results extend the equivalence of LSDV estimate and GLS estimate of FD equation in
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1 Introduction

For panel data, spatial dynamic panel data (SDPD) models take into account both dynamic and spatial

interaction. A spatial panel model considers not only individual effects that allows for time invariant het-

erogeneity, but also spatial and time dependences. For spatial panel models, we specify spatial correlations

by either spatially correlated disturbances or spatial lagged terms in a regression equation. For spatially

correlated random components with individual heterogeneity, see Kapoor et al. (2007), Baltagi et al. (2007),

Su and Yang (2015) etc. For the spatial lag model, see Korniotis (2010), Yu et al. (2008, 2012) and Yu and

Lee (2010) among others.

The current paper aims to investigate asymptotic properties of the quasi-maximum likelihood estimate

(QMLE) for SDPD models with first difference (FD) when both n and T are large.1 With first differencing,

individual effects are eliminated before estimation. Thus, one might expect the incidental parameter problem

would disappear in estimation, for large T (and n) cases. However, we show that the QMLE for the SDPD

model under time differencing by conditioning on initial dependent variable observations as if they were

exogenously given, have the same spatial lag, time lag, spatial-time lag, and regressor coeffi cient estimates

as those from direct estimation including individual effects; however, the variance parameter estimate is

relatively more accurate. Thus, due to the presence of initial observations, which are conditional upon in

estimation as given, asymptotic biases of the QMLEs of parameters of interest would appear in the same

way as those from a direct estimation. We show that, it is possible to do bias correction on those estimates;

and after bias correction, these two approaches can yield asymptotically equivalent estimates.

In the following, Section 2 introduces the model. Section 3 investigates asymptotic properties of the

QMLE for the SDPD with FD, where initial period observations of the dependent variable are assumed

exogenously given. It is shown that all the coeffi cient estimates are the same as those from direct estimation

of individual effects. Hence, QMLEs of parameters of interest would exhibit asymptotic biases as those of

the direct estimation. In that sense, the incidental parameter problem remains for the time differencing

approach. However, their variance parameter estimates are different. We suggest bias correction procedures.

After bias correction, both approaches can yield the same or essentially the same bias adjusted estimates

including the variance parameter. Section 4 concludes this note and summarizes the contributions.

1For SDPD models with FD under the short T case, Kripganz (2017) extends Hsiao et al. (2002) by specifying initial
observations, and Yang (2018) develops a unified M-estimation based on bias-corrected score vectors which does not need to
specify the initial observations.
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2 The Model

The SDPD model under consideration has the specification:

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 +Xntβ0 + cn0 + αt0ln + Vnt, t = 1, 2, ..., T , (1)

where Ynt = (y1t, y2t, ..., ynt)
′ and Vnt = (v1t, v2t, ..., vnt)

′ are n× 1 (column) vectors, vit’s are i.i.d. (0, σ2v0)

across i and t, and Wn is an n × n spatial weights matrix, which is predetermined and generates spatial

dependence among cross-sectional units. Here, Xnt is an n × kx matrix of time varying regressors, cn0 is

n× 1 column vector of fixed effects and αt0’s are time effects with ln being an n-dimensional column vector

consisting of ones. We assume that the initial observation Yn0 is observable.

Depending on the eigenvalues structure of Wn and values of (λ, γ0, ρ0)
′, we might have different stable or

unstable cases (see Lee and Yu, 2015), which would have impact on the asymptotic distribution of QMLE.

However, the likelihood functions to be maximized are the same for all models. Thus, we will work on one

likelihood function for different SDPD models. We will compare properties of two estimation approaches:

one is to make first difference (FD) to eliminate the individual effects, and the other is to directly estimate

the individual effects as in Yu et al. (2008).

It is helpful to investigate the reduced form of (1) to understand dynamics of this general model. Define

Sn(λ) = In − λWn and Sn ≡ Sn(λ0) = In − λ0Wn. Then, presuming that Sn is invertible and denoting

An = S−1n (γ0In + ρ0Wn), (1) can be rewritten as

Ynt = AnYn,t−1 + S−1n Xntβ0 + S−1n cn0 + αt0S
−1
n ln + S−1n Vnt. (2)

Under the stable case, by continuous substitution,

Ynt =
∑∞

h=0
AhnS

−1
n (cn0 +Xn,t−hβ0 + Vn,t−h) = µn + Xntβ0 + Unt, (3)

where µn ≡
∑∞
h=0A

h
nS
−1
n cn0, Xnt ≡

∑∞
h=0A

h
nS
−1
n Xn,t−h, and Unt ≡

∑∞
h=0A

h
nS
−1
n Vn,t−h.

To eliminate the time effects in the SDPD model in (1), we can make a data transformation as in Lee and

Yu (2010). The transformed equation leads to a partial likelihood. This data transformation to eliminate the

time effects requires a row-normalizedWn to have an SAR representation after the data transformation. This

is not a strong additional requirement because the row-normalization of Wn is the preferred specification in

empirical applications and it is tractable for a convenient analysis of stable or unstable conditions.

We denote Jn = In − 1
n lnl

′
n and let Fn,n−1 be the eigenvector matrix of Jn corresponding to the (n− 1)

eigenvalues of one. By denoting Y ∗nt = F ′n,n−1Ynt, we have

Y ∗nt = λ0W
∗
nY
∗
nt + γ0Y

∗
n,t−1 + ρ0W

∗
nY
∗
n,t−1 +X∗ntβ0 + c∗n0 + V ∗nt, (4)
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where W ∗n = F ′n,n−1WnFn,n−1 holds because Wn is row-normalized. The resulting disturbance vector V ∗nt is

an (n− 1) dimensional vector with zero mean and variance matrix σ20In−1. Thus, (4) is in the format of an

SDPD model, where the number of observations is T (n− 1), reduced from the original sample observations

by one for each period. The likelihood function can be constructed based on Y ∗nt, which can be treated as a

partial likelihood. If Vnt is normally distributed N(0, σ20In), the transformed V ∗nt will be normally distributed

as N(0, σ20In−1). Therefore, all the variables hereafter are transformed by F
′
n,n−1. For notational simplicity,

we omit the superscript ∗ in Y ∗nt, X∗nt, c∗n0, V ∗nt and W ∗n , and the effective cross sectional sample size n

becomes n∗ = n− 1.2

3 Conditional QMLE of SDPD with FD

3.1 Likelihood Function of SDPD under Time Differencing

By first differencing of (4) to eliminate the individual effects, we have

∆Ynt = λ0Wn∆Ynt + γ0∆Yn,t−1 + ρ0Wn∆Yn,t−1 + ∆Xntβ0 + ∆Vnt, t = 2, ..., T .

As T is large, we treat (condition on) the first period ∆Yn1 as if it were exogenously given. By denoting

θ = (λ, γ, ρ, β′, σ2)′, δ = (γ, ρ, β′)′ and Znt = [Yn,t−1,WnYn,t−1, Xnt], the log likelihood function is

lnLnT (θ) = −n(T − 1)

2
ln(2πσ2)+(T−1) ln |Sn(λ)|− n

2
ln |HT−1|−

1

2σ2
∆V′nT (θ)(H−1T−1⊗In)∆VnT (θ), (5)

where ∆VnT (θ) = (∆V ′n2(θ), ...,∆V
′
nT (θ))′ with ∆Vnt(θ) = Sn(λ)∆Ynt −∆Zntδ and

HT−1 =



2 −1
−1 2 −1

−1
. . .

. . .
. . . 2 −1

−1 2

 .

By denoting VnT = (V ′n1, ..., V
′
nT ) and the (T − 1)× T difference operator

LT−1,T =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . . 0
0 0 0 −1 1

 ,
2W ∗n might not have similar structures as the original spatial weights matrix Wn with zero diagonal and row-normalization.
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we have ∆VnT = (LT−1,T⊗In)VnT so that ∆V′nT (H−1T−1⊗In)∆VnT = V′nT (L′T−1,TH
−1
T−1LT−1,T⊗In)VnT .

As the inverse of HT−1 is

H−1T−1 =
1

T



T − 1 T − 2 T − 3 · · · 2 1
T − 2 (T − 2)2 (T − 3)2 · · · 2 · 2 2
T − 3 (T − 3)2 (T − 3)3 · · · 3 · 2 3
...

...
...

. . .
...

...
2 2 · 2 3 · 2 · · · 2((T − 3)2− (T − 4)) (T − 3)2− (T − 4)
1 2 3 · · · (T − 3)2− (T − 4) (T − 2)2− (T − 3)


,

by using the the first difference nature of LT−1,T , we can verify that

L′T−1,TH
−1
T−1LT−1,T is equal to JT = IT −

1

T
lT l
′
T .

Thus, the log likelihood function can then be written as

lnLnT (θ) = −n(T − 1)

2
ln(2πσ2) + (T − 1) ln |Sn(λ)| − n

2
ln |HT−1| −

1

2σ2
V′nT (θ)(JT ⊗ In)VnT (θ). (6)

By denoting YnT = (Y ′n1, ..., Y
′
nT )′, ZnT = (Z ′n1, ..., Z

′
nT )′, and JnT = (JT ⊗ In), the QMLE of δ in terms of

λ is

δ̂nT (λ) = (Z′nTJnTZnT )−1Z′nTJnTSnT (λ)YnT .

After further concentrating out σ2, the concentrated log likelihood function from (6) is

lnLnT (λ) = −n(T − 1)

2
ln(2πσ̂2nT (λ)) + (T − 1) ln |Sn(λ)| − n

2
ln |HT−1| −

n(T − 1)

2
(7)

with σ̂2nT (λ) = 1
n(T−1)V

′
nT (λ)JnTVnT (λ) andVnT (λ) = SnT (λ)YnT−ZnT δ̂(λ), where SnT (λ) = IT⊗Sn(λ).

We can compare the QMLE obtained from (5) to the QMLE from the direct estimation. Regarding that

the initial Yn1 were exogenously given, the likelihood function of the SDPD model (4) (after time effects are

eliminated) under the direct estimation approach is

lnLdnT (θ, cn) = −nT
2

ln 2π − nT

2
lnσ2 + T ln |Sn(λ)| − 1

2σ2
∑T
t=1V

′
nT (θ, cn)VnT (θ, cn), (8)

where VnT (θ, cn) = (V ′n1(θ, cn), ..., V ′nT (θ, cn))′ with Vnt(θ, cn) = Sn(λ)Ynt−Zntδ−cn. Using the first order

condition for cn in terms of λ and δ, the individual effects can be estimated by ĉn = 1
T

∑T
t=1(Sn(λ)Ynt−Zntδ).

After concentrating out those individual effects, the corresponding concentrated log likelihood function is

lnLdnT (θ) = −nT
2

ln(2πσ2) + T ln |Sn(λ)| − 1

2σ2
V′nT (θ)JnTVnT (θ), (9)

where VnT (θ) = (V ′n1(θ), ..., V
′
nT (θ))′ with Vnt(θ) = Sn(λ)Ynt − Zntδ.
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Using the first order condition of (9) w.r.t. δ, the QMLE δ̂
d

nT (λ) given λ from the maximization of (9) is

δ̂
d

nT (λ) = (Z′nTJnTZnT )−1Z′nTJnTSnT (λ)YnT ,

which is the same as δ̂nT (λ). After further concentration out σ2, we have

lnLdnT (λ) = −nT
2

ln(2πσ̂2dnT (λ)) + T ln |Sn(λ)| − nT

2
(10)

with σ̂2dnT (λ) = 1
nTV

′
nT (λ)JnTVnT (λ). Thus, up to an additive constant and a scalar factor, 1

n(T−1) lnLnT (λ)

in (7) and 1
nT lnLdnT (λ) in (10) would be the same, so that the QMLEs of λ from (7) and (10) are numerically

identical. As δ̂nT (λ) and δ̂
d

nT (λ) are the same, estimates of (λ, δ) are also numerically the same as those

from (6) and (9). The only difference is on the estimation of σ2 in that σ̂2dnT = T−1
T σ̂2nT .

The above analysis implies that the asymptotic properties of QMLEs for SDPD models in Yu et al.

(2008, 2012) and Yu and Lee (2010) will carry over for the approach under time differencing, except for the

estimation for σ2. To sum up,

θ̂nT = θ̂
d

nT +

 0
0

1
T−1 σ̂

2d
nT

 , (11)

where θ̂
d

nT is obtained from the direct QML estimation of model (4) including individual effects, while θ̂nT

is obtained from time differencing with the log likelihood (5).

3.2 Asymptotic Properties of QMLEs under FD and Direct Estimation

For the direct estimation for the SDPD model (4), when both n and T tend to infinity, rates of convergence

of QMLEs are
√
nT for the stable case, as shown in Yu et al. (2008). But the QMLE has asymptotic bias

due to initial condition in the SDPD model with individual effects. Such biases can be eliminated by a bias

correction procedure for the dynamic panel without spatial interactions in Hahn and Kuersteiner (2002).

Here we shall consider bias correction procedures for the QMLE of the SDPD by restricting our attention

to the stable case.3 For the SDPD model in (4) under the direct approach, we can use

θ̂
d

1,nT = θ̂
d

nT −
b̂dnT
T

with b̂dnT =

[(
E

(
1

nT

∂2 lnLdnT (θ)

∂θ∂θ′

))−1
ad(θ)

]∣∣∣∣∣
θ=θ̂

d
nT

(12)

where ad(θ) is the dominant component of the expected value of the score vector, and b̂dnT is the corresponding

estimated bias. When T grows faster than n1/3, the correction will eliminate the bias of order O(T−1) and

yield a properly centered asymptotic confidence interval.

3We may consider other unstable cases. The difference occurs at the information matrix, which would be singular for an
unstable case. We shall leave those due to space limitation.
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In the following, we investigate QML under time differencing and its corresponding bias corrected esti-

mates. We compare them with those of the direct estimation as there are some differences on the estimates

of σ2v. For notational purposes, we define Ỹ
(−1)
n,t−1 = Yn,t−1 − ȲnT,−1 and Ỹnt = Ynt − ȲnT for t = 1, 2, · · · , T

where ȲnT,−1 = 1
T

∑T
t=1 Yn,t−1 and ȲnT = 1

T

∑T
t=1 Ynt. Furthermore, Ṽnt(θ) = Sn(λ)Ỹnt − Z̃ntδ where

Z̃nt = [Ỹ
(−1)
n,t−1,WnỸ

(−1)
n,t−1, X̃nt]. From (3),

Z̃nt = Z̃∗nt − (ŪnT,−1, WnŪnT,−1, 0n×kx), (13)

where Z̃∗nt = (( ˜̃Xn,t−1 + Un,t−1), (Wn
˜̃Xn,t−1 +WnUn,t−1), X̃nt) with

˜̃Xn,t−1 = Xn,t−1 − X̄nT,−1. Hence, Z̃nt
has two components: one is Z̃∗nt, which is uncorrelated with Vnt; the other is −(ŪnT,−1, WnŪnT,−1, 0n×kx),

which is correlated with Vnt when t ≤ T − 1.

The conditional likelihood for the equation in (4) with FD is that in (6), which can be rewritten as

lnLnT (θ) = −n(T − 1)

2
ln 2π − n(T − 1)

2
lnσ2 − n

2
ln |HT−1|+ (T − 1) ln |Sn(λ)| − 1

2σ2
∑T
t=1 Ṽ

′
nt(θ)Ṽnt(θ).

(14)

From the first order condition and the decomposition of Z̃nt, by denoting Gn = WnS
−1
n so that WnỸnt =

GnZ̃ntδ0 +GnṼnt, the score vector can be decomposed as 1√
n(T−1)

∂ lnLnT (θ0)
∂θ = 1√

n(T−1)
∂ lnL∗nT (θ0)

∂θ −∆nT

where

∂ lnL∗nT (θ0)

∂θ
=


1
σ20

∑T
t=1 Z̃

∗′
ntVnt

1
σ20

∑T
t=1(GnZ̃

∗
ntδ0)

′Vnt + 1
σ20

∑T
t=1(Ṽ

′
ntG

′
nṼnt − T−1

T σ20trGn)
1
2σ40

∑T
t=1(Ṽ

′
ntṼnt − nT−1T σ20)

 , (15)

and

∆nT =


1
σ20

√
T
n (ŪnT,−1, WnŪnT,−1, 0n×kx)′V̄nT

1
σ20

√
T
n (Gn(ŪnT,−1, WnŪnT,−1, 0n×kx)δ0)

′V̄nT

0

 . (16)

We have ∆nT =
√

n
T an +O(

√
n
T 3 ) +Op(

1√
T

) where an = an(θ0) = O(1) is the dominant component of the

expected value of the score vector, which can be considered as the source of bias of MLE. Here,

an(θ) =


1
n tr

((∑∞
h=0A

h
n(θ)

)
S−1n (λ)

)
1
n tr

(
Wn

(∑∞
h=0A

h
n(θ)

)
S−1n (λ)

)
0kx×1

1
nγtr(Gn(λ)

(∑∞
h=0A

h
n(θ)

)
S−1n (λ)) + 1

nρtr(Gn(λ)Wn

(∑∞
h=0A

h
n(θ)

)
S−1n (λ))

0

 .
The asymptotic distribution of QMLE θ̂nT is√

n(T − 1)
(
θ̂nT − θ0

)
+

√
n

T − 1
(Σθ0,nT )

−1
ϕθ0,nT+Op

(
max

(√
n

T 3
,

√
1

T

))
d→ N(0, lim

T→∞
Σ−1θ0,nT (Σθ0,nT + Ωθ0,nT )Σ−1θ0,nT ),
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where Ωθ0,nT captures the non-normality of the disturbances and

Σθ0,nT =
1

σ20

(
EHnT ∗
01×(k+3) 0

)
+

 0(k+2)×(k+2) ∗ ∗
01×(k+2)

1
n

[
tr(G′nGn) + tr(G2n)

]
∗

01×(k+2)
1
σ20n

tr(Gn) 1
2σ40

 ,

with HnT = 1
n(T−1)

∑T
t=1(Z̃nt, GnZ̃ntδ0)

′(Z̃nt, GnZ̃ntδ0). The corresponding bias corrected estimate is

θ̂1,nT = θ̂nT −
b̂nT
T − 1

, where b̂nT =

[(
E

(
1

n(T − 1)

∂2 lnLnT (θ)

∂θ∂θ′

))−1
an(θ)

]∣∣∣∣∣
θ=θ̂nT

.

For comparison, in the direct approach (see (20) in Appendix A), its score component corresponding to

λ does not have the term 1
n trGn. The information matrix −E

1
n(T−1)

∂2 lnLn,T (θ0)
∂θ∂θ′ is the same as that of the

direct approach. The bias adjusted estimate of the direct estimate is

θ̂
d

1,nT = θ̂
d

nT −
1

T

[
1

nT
E
∂2 lnLdnT (θ0)

∂θ∂θ′

]−1
adn(θ).

Because θ̂nT = θ̂
d

nT + (0, 0, 1
T−1 σ̂

2d
nT )′ and adn(θ) = an(θ) + (0, 1n tr(Gn), 1

2σ̂2d
)′, it follows that the two bias

adjusted estimates have the relation:

θ̂
d

1,nT − θ̂1,nT = −

 0
0

1
T−1 σ̂

2d
nT

+
1

T − 1
(Σdθ,nT )−1

 0
1
n tr(Gn)

1
2σ̂2d

+Op

(
1

T 2

)
,

where the remainder term of order Op
(
1
T 2

)
is due to the difference of (T −1) in the degrees of freedom under

the FD approach and T in the degrees of freedom under the direct estimation approach on formulating the

two bias-adjusted estimates. Thus, we may adopt a slightly altered bias corrected estimate for the approach

with time differencing as

θ̃1,nT = θ̂
d

1,nT +

 0
0

1
T−1 σ̂

2d
nT

− 1

T − 1
(Σdθ,nT )−1

 0
1
n tr(Gn)

1
2σ̂2dnT

 .
Here, the second term on the right hand side comes from the degrees of freedom adjustment before bias

correction, and the third term is its impact from the bias correction procedure. However, the later impact

will cancel out the degrees of freedom adjustment, i.e., (0, 0, σ̂2dnT )′ = (Σdθ,nT )−1(0, 1n tr(Gn), 1
2σ̂2dnT

)′.4 As a

result, θ̂
d

1,nT = θ̃1,nT , i.e., those bias corrected estimates for the approach under time differencing and the

4This equivalence can be obtained by the score expansion such that θ̂
d
nT

.
= (Σdθ,nT )−1

∂ lnLdnT (θ0)

∂θ
and θ̂nT

.
=

(Σθ,nT )−1 ∂ lnLnT (θ0)
∂θ

by ignoring higher order remainder terms of Taylor expansions. As θ̂nT − θ̂
d
nT = (0, 0, 1

T−1 σ̂
2d
nT )′

from (11) and
∂ lnLdnT (θ0)

∂θ
− ∂ lnLnT (θ0)

∂θ

.
= (0, tr(Gn), n

2σ̂2d
nT

)′ from comparing score vectors of two approaches in (15) and (18),

we have the asymptotic equivalence of (0, 0, σ̂2dnT )′ and (Σdθ,nT )−1(0, 1
n
tr(Gn), 1

2σ̂2d
nT

)′.
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direct approach are numerically the same. On the other hand, for the previous bias corrected estimate θ̂1,nT ,

it differs from θ̃1,nT only by the possible smaller term Op
(
1
T 2

)
. So, while θ̂

d

1,nT might not be exactly equal

to θ̂1,nT , they are essentially the same.

4 Conclusion

This paper investigates estimation of SDPD models by using time differencing to eliminate the individual

effects. We show that when T is large so that the sample observations of the dependent variable in the

initial period can be regarded as exogenously given, except for the estimation of the variance parameter, the

QMLEs for the SDPD under time differencing can be numerically the same as those of direct estimation which

includes the estimation of individual effects. After bias correction, we illustrate that one may derive bias

adjusted procedures which can yield the same bias corrected estimates for the two approaches. Our results

extend the equivalence of LSDV estimate and GLS estimate of FD equation for the regression parameters in

the panel linear regression models to the spatial dynamic panel setting.

Appendices

A QMLE under Direct Estimation of cn0

The concentrated likelihood in (9) can be written as

lnLdnT (θ) = −nT
2

ln 2π − nT

2
lnσ2 + T ln |Sn(λ)| − 1

2σ2
∑T
t=1 Ṽ

′
nt(θ)Ṽnt(θ), (17)

where Ṽnt(θ) = Sn(λ)Ỹnt − Z̃ntδ with Z̃nt = (Ỹ
(−1)
n,t−1, WnỸ

(−1)
n,t−1, X̃nt). From the first order condition and

the decomposition of Z̃nt in (13), we have 1√
nT

∂ lnLdnT (θ0)
∂θ = 1√

nT

∂ lnLd∗nT (θ0)
∂θ −∆d

nT where

1√
nT

∂ lnLd∗nT (θ0)

∂θ
=


1
σ20

1√
nT

∑T
t=1 Z̃

∗′
ntVnt

1
σ20

1√
nT

∑T
t=1(GnZ̃

∗
ntδ0)

′Vnt + 1
σ20

1√
nT

∑T
t=1(V

′
ntG

′
nVnt − σ20trGn)

1
2σ40

1√
nT

∑T
t=1(V

′
ntVnt − nσ20)

 , (18)

and

∆d
nT =


1
σ20

√
T
n (ŪnT,−1, WnŪnT,−1, 0n×kx)′V̄nT

1
σ20

√
T
n (Gn(ŪnT,−1, WnŪnT,−1, 0n×kx)δ0)

′V̄nT + 1
σ20

√
T
n V̄
′
nTG

′
nV̄nT

1
2σ40

√
T
n V̄
′
nT V̄nT

 , (19)
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where ∆d
nT =

√
n
T a

d
n +O(

√
n
T 3 ) +Op(

1√
T

) with adn = adn(θ0) = O(1) and

adn(θ) =


1
n tr

((∑∞
h=0A

h
n(θ)

)
S−1n (λ)

)
1
n tr

(
Wn

(∑∞
h=0A

h
n(θ)

)
S−1n (λ)

)
0kx×1

1
nγtr(Gn(λ)

(∑∞
h=0A

h
n(θ)

)
S−1n (λ)) + 1

nρtr(Gn(λ)Wn

(∑∞
h=0A

h
n(θ)

)
S−1n (λ)) + 1

n trGn(λ)
1
2σ2

 .
(20)

Also, Σdθ0,nT = 1
σ20

(
EHdnT ∗
01×(k+3) 0

)
+

 0(k+2)×(k+2) ∗ ∗
01×(k+2)

1
n

[
tr(G′nGn) + tr(G2n)

]
∗

01×(k+2)
1
σ20n

tr(Gn) 1
2σ40

 is the informa-

tion matrix −E 1
nT

∂2 lnLdnT (θ0)
∂θ∂θ′ with HdnT = 1

nT

∑T
t=1(Z̃nt, GnZ̃ntδ0)

′(Z̃nt, GnZ̃ntδ0).
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