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Abstract

This paper considers closed-form root estimators for spatial autoregressive models with spatial

autoregressive disturbances (SARAR model). We first derive a simple consistent closed-form estimator.

Then we construct feasible moment conditions that are quadratic in the spatial lag and spatial error

dependence parameters separately, which generate root estimators with closed forms. We consider

both the cases with homoskedastic and unknown heteroskedastic disturbances. In the homoskedastic

case, the root estimator can be asymptotically as efficient as the quasi-maximum likelihood estimator

(QMLE); in the heteroskedastic case, it can be asymptotically as efficient as a method of moments

estimator (MME) that sets adjusted quasi-maximum likelihood scores to zero, where the adjusted

scores have zero means at the true parameters. The root estimators and their associated standard

errors can avoid the computation of any matrix determinants or inverses, so they are computationally

simple without iterations, especially valuable for big data where the sample size is large.
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1 Introduction

The spatial autoregressive (SAR) model with spatial error (SE) is known as an SARAR model, which is

popular in empirical studies. This paper considers efficient root estimators for the SARAR model, which

generalizes those in Jin and Lee (2012) of the SAR or SE models. The root estimators have closed-form

expressions and are computationally and asymptotically efficient.

For the SARAR model, the quasi maximum likelihood (QML) estimator is consistent, but computa-

tionally intensive with large sample sizes. When disturbances are normal, it is the maximum likelihood

∗Corresponding author. E-mail addresses: jin.fei@live.com (F. Jin), lee.1777@osu.edu (L.-F. Lee).
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estimator (MLE) and thus asymptotically efficient.1 Kelejian and Prucha (1998) propose a generalized

spatial two-sage least squares estimator (GS2SLSE) for the spatial lag parameter and coefficients of regres-

sors, but quadratic moments that capture spatial correlation are not used. The GS2SLSE is less efficient

than the QMLE. Lee (2007a) and Liu et al. (2010) propose a generalized method of moments estimator

(GMME), which uses both linear and quadratic moments. Based on concentration, Lee (2007b) proposes

a GMME that reduces the estimation to only the spatial lag parameter. With properly chosen moments,

the GMMEs can be asymptotically as efficient as the MLE for normal disturbances, and asymptotically

more efficient than the QMLE for non-normal disturbances. Although relatively simpler in computation,

the above GMMEs have no closed forms and searching over a parameter space is needed. Jin and Lee

(2012) propose a root estimator for the SAR model, which is computationally simple since it has a closed

form.2

The approach in Jin and Lee (2012) cannot be applied to the SARAR model, since it generates two

nonlinear moment conditions with two unknown parameters, which do not have simple attractive closed-

form solutions. However, a sequential GMM approach in Jin and Lee (2020) can be applied and can

generate simple closed-form root estimators. We estimate the spatial lag and spatial error dependence

parameters separately by using properly estimated quadratic moments. We specify conditions on selecting

the consistent root from the two roots of quadratic moments. With homoskedastic disturbances, the

root estimator can be asymptotically as efficient as the QMLE; with heteroskedastic disturbances, it is

asymptotically efficient as a method of moments estimator (MME) that sets jointly the adjusted QML

scores to zero, where the adjusted scores have mean zero at the true parameter values (Liu and Yang,

2015). The root estimator and its standard error can avoid the computation of any matrix inverse. Our

computationally simple root estimator for the SARAR model can be useful, in particular with big data.

Section 2 considers a simple initial consistent estimator. Section 3 investigates root estimators. Monte

Carlo (MC) results are reported in Section 4. Section 5 concludes. Proofs are in an online supplementary

file.

2 Initial consistent estimator

Consider the SARAR model:

yn = λ0Wnyn +Xnβ0 + un, un = ρ0Mnun + εn, (2.1)

where yn is an n × 1 vector of observed dependent variables, Xn is an n × kx matrix of exogenous

variables, Wn and Mn are n × n zero-diagonal spatial weights matrices, which may or may not be the

same, λ0 and ρ0 are scalar parameters, β0 is a kx × 1 vector of coefficients, and εn = [εn1, . . . , εnn]′ is

an n× 1 vector of independent disturbances with zero means and finite variances. Let σ2
ni = E(ε2ni) and

1The MLE for the SAR model has been considered in Ord (1975). Lee (2004) and Jin and Lee (2013) provide asymptotic

properties of the QMLE for, respectively, the SAR and SARAR models.
2Ord (1975) introduced a root estimator for the SAR model, but no theoretical analysis was provided.
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Σn = diag(σ2
n1, · · · , σ2

nn) be a diagonal matrix of σ2
ni’s. When εni’s are homoskedastic, σ2

ni = σ2
0 and

Σn = σ2
0In.

A consistent estimator η̃ of η0 = [λ0, β
′
0]′ can be a 2SLSE, as in Kelejian and Prucha (1998).

Let the IV matrix for Zn = [Wnyn, Xn] be Qn, e.g., a matrix consisting of independent columns of

[Xn,WnXn,W
2
nXn]. The 2SLSE with Qn is η̃ = [Z ′nQn(Q′nQn)−1Q′nZn]−1Z ′nQn(Q′nQn)−1Q′nyn.

To derive an initial estimator of ρ0, we consider a root estimator as in Ord (1975) and Jin and Lee

(2012). With a zero-diagonal n × n matrix Pn, E(ε′nPnεn) = tr(PnΣn) = 0. A zero-diagonal Pn can be

Mn or M2
n − diag(M2

n), where diag(A) denotes a diagonal matrix formed by the diagonal elements of A.

The ũn = yn − Znη̃ is an estimate of un. Denote A(s) = A + A′ for any square matrix A. We consider

roots of the quadratic equation:

0 = ũ′n(In − ρMn)′Pn(In − ρMn)ũn = anρ
2 + bnρ+ cn, (2.2)

where an = ũ′nM
′
nPnMnũn, bn = −ũ′nP

(s)
n Mnũn, and cn = ũ′nPnũn. Under regularity conditions, 1

n2 b
2
n −

4
n2ancn = (dnn )2 + op(1), where dn = ũ′n(In − ρ0M

′
n)P

(s)
n Mnũn. The consistent root estimator ρ̃ of ρ0 is:

ρ̃ =
−bn −

√
b2n − 4ancn

2an
if plim

n→∞

1

n
dn ≥ 0; and ρ̃ =

−bn +
√
b2n − 4ancn

2an
if plim

n→∞

1

n
dn < 0. (2.3)

Since 1
n2 b

2
n− 4

n2ancn = (dnn )2+op(1), b2n−4ancn ≥ 0 with probability approaching one if plimn→∞
1
ndn 6= 0.

In finite samples, if b2n − 4ancn < 0, it is proper to set ρ̃ = − bn
2an

.

As 1
ndn involves ρ0, one may use a consistently estimated ρ0 to determine the consistent root. A

possible way is to compute the roots for two elected Pn, say P ∗n and P ∗∗n . Let the roots corresponding

to P ∗n be ρ̃∗1 and ρ̃∗2, and the coefficients of that quadratic equation be a∗n, b∗n and c∗n. Similarly, with

P ∗∗n , we have ρ̃∗∗1 , ρ̃∗∗2 , a∗∗n , b∗∗n and c∗∗n . Then we compute |ρ̃∗1 − ρ̃∗∗1 |, |ρ̃∗1 − ρ̃∗∗2 |, |ρ̃∗2 − ρ̃∗∗1 | and |ρ̃∗2 − ρ̃∗∗2 |.
A consistent root ρ̃ can be either one of the two roots corresponding to the difference with the smallest

absolute value. The limits of the four absolute values are 0, |−plimn→∞
b∗n
a∗n
−2ρ0|, |−plimn→∞

b∗∗n
a∗∗n
−2ρ0|,

and | plimn→∞
b∗n
a∗n
− plimn→∞

b∗∗n
a∗∗n
|, where the first one corresponds to two consistent roots. This method

can locate a consistent root as long as plimn→∞
b∗n
a∗n
6= plimn→∞

b∗∗n
a∗∗n

, i.e, limn→∞
tr(R′−1

n P
∗(s)
n MnR

−1
n Σn)

tr(R′−1
n M ′nP

∗
nMnR

−1
n Σn)

6=

limn→∞
tr(R′−1

n P
∗∗(s)
n MnR

−1
n Σn)

tr(R′−1
n M ′nP

∗∗
n MnR

−1
n Σn)

, which would hold generally. The P ∗n and P ∗∗n can be, e.g., Mn + κM2
n +

κ2M3
n − diag(Mn + κM2

n + κ2M3
n) for κ = 0.2 or 0.6 in our experience.

We maintain two assumptions for the
√
n-consistency of η̃ and ρ̃.

Assumption 1. (a) Either (i) εni’s are i.i.d. (0, σ2
0) and E(|εni|4+ι) < ∞ for some ι > 0, or (ii) εni’s

are independent with mean zero and variances σ2
ni’s, and supn sup1≤i≤n E(|εni|4+ι) < ∞ for some ι > 0.

(b) Wn and Mn have zero diagonals, Sn and Rn are invertible, and {Wn}, {Mn}, {S−1
n } and {R−1

n } are

bounded in both row and column sum norms. (c) Elements of Xn are uniformly bounded constants, and

limn→∞
1
nX
′
nXn is nonsingular.

Assumption 2. (a) Elements of Qn are uniformly bounded constants, limn→∞
1
nQ
′
nQn and limn→∞

1
nQ
′
nZn

have full column ranks. (b) {P ∗n} and {P ∗∗n } are bounded in both row and column sum norms. (c) For Pn =
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P ∗n or P ∗∗n , lim
n→∞

1
n tr(R′−1

n M ′nPnMnR
−1
n Σn) 6= 0. (d) lim

n→∞
tr(R′−1

n P
∗(s)
n MnR

−1
n Σn)

tr(R′−1
n M ′nP

∗
nMnR

−1
n Σn)

6= lim
n→∞

tr(R′−1
n P

∗∗(s)
n MnR

−1
n Σn)

tr(R′−1
n M ′nP

∗∗
n MnR

−1
n Σn)

.

(e) limn→∞
1
n tr(P

(s)
n MnR

−1
n Σn) 6= 0 for Pn = P ∗n or P ∗∗n .

Assumption 1 contains typical regularity conditions in spatial econometrics in Kelejian and Prucha

(1998, 1999, 2001, 2010), Lee (2004) and Lin and Lee (2010). Assumption 2(a) is a familiar condition on

2SLSEs. As P ∗n and P ∗∗n are constructed from Mn, it is reasonable to impose Assumption 2(b). Under

Assumption 2(c), the moment equations involving P ∗n and P ∗∗n are quadratic in ρ. Assumption 2(d)

guarantees that a consistent root estimator ρ̃ of ρ0 can be located. Assumption 2(e) is needed for the
√
n-rate of convergence of ρ̃.

Theorem 1. Under Assumptions 1–2, η̃ = η0 +Op(n
−1/2) and ρ̃ = ρ0 +Op(n

−1/2).

3 Root estimator

Our root estimator for φ0 = [λ0, ρ0, β
′
0]′ is based on the scores. The quasi log likelihood function of (2.1),

as if εni’s were i.i.d. normal, is

lnLn(θ) = −n
2

ln(2πσ2) + ln |Sn(λ)|+ ln |Rn(ρ)| − 1

2σ2
ε′n(φ)εn(φ),

where φ = [λ, ρ, β′]′, θ = [φ′, σ2]′, Rn(ρ) = In − ρMn, Sn(λ) = In − λWn, and εn(φ) = Rn(ρ)[Sn(λ)yn −
Xnβ]. The first order derivatives of lnLn(θ) are

∂ lnLn(θ)

∂λ
= − tr[WnS

−1
n (λ)] +

1

σ2
ε′n(φ)Rn(ρ)Wnyn, (3.1)

∂ lnLn(θ)

∂ρ
= − tr[MnR

−1
n (ρ)] +

1

σ2
ε′n(φ)Mn[Sn(λ)yn −Xnβ], (3.2)

∂ lnLn(θ)

∂β
=

1

σ2
X ′nR

′
n(ρ)εn(φ), (3.3)

∂ lnLn(θ)

∂σ2
= − n

2σ2
+

1

2σ4
ε′n(φ)εn(φ). (3.4)

By (3.3), for given γ = [λ, ρ]′, the QMLE of β is

β̂(γ) = [X ′nR
′
n(ρ)Rn(ρ)Xn]−1X ′nR

′
n(ρ)Rn(ρ)Sn(λ)yn; (3.5)

by (3.4), for given φ, the QMLE of σ2 is σ̂2(φ) = 1
nε
′
n(φ)εn(φ). We shall derive a root estimator γ̂ of

γ0 = [λ0, ρ0]′, then evaluate β̂(γ) at γ̂, and finally evaluate σ̂2(φ).

Substituting σ̂2(φ) into (3.1)–(3.2), we derive the nonlinear moment vector

mn(φ) = [m1n(φ),m2n(φ),m′3n(φ)]′, (3.6)

where m1n(φ) = ε′n(φ)Rn(ρ)Wnyn − 1
nε
′
n(φ)εn(φ) tr[WnS

−1
n (λ)], m2n(φ) = ε′n(φ)Mn[Sn(λ)yn − Xnβ] −

1
nε
′
n(φ)εn(φ) tr[MnR

−1
n (ρ)], and m3n(φ) = X ′nR

′
n(ρ)εn(φ). To derive a simple root estimator of ρ, we

investigate mn(φ) at φ0, which suggests a modified moment vector. Since yn = S−1
n Xnβ0 + S−1

n R−1
n εn,

mn(φ0) = [ε′nGnεn + ε′nRnWnS
−1
n Xnβ0, ε

′
nTnεn, ε

′
nRnXn]′, where Gn = RnWnS

−1
n R−1

n − 1
n tr(WnS

−1
n )In
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and Tn = MnR
−1
n − 1

n tr(MnR
−1
n )In. Let φ̃ = [λ̃, ρ̃, β̃′]′, R̃n = Rn(ρ̃) and S̃n = Sn(λ̃). Denote G̃nd =

R̃nWnS̃
−1
n R̃−1

n − 1
n tr(WnS̃

−1
n )In and T̃nd = MnR̃

−1
n − 1

n tr(MnR̃
−1
n )In if εni’s are homoskedastic; and

G̃nd = R̃nWnS̃
−1
n R̃−1

n −diag(R̃nWnS̃
−1
n R̃−1

n ) and T̃nd = MnR̃
−1
n −diag(MnR̃

−1
n ) if εni’s are heteroskedastic.

We consider the modified moment vector:

m̃n(φ) = [ε′n(φ)G̃ndεn(φ) + ε′n(φ)R̃nWnS̃
−1
n Xnβ̃, ε

′
n(φ)T̃ndεn(φ), ε′n(φ)R̃nXn]′. (3.7)

The plimn→∞
1
nm̃n(φ0) is zero, because G̃nd and T̃nd have zero traces for the homoskedastic case, and zero

diagonals for the heteroskedastic case. Since G̃nd and T̃nd play the role of quadratic matrices for moments

in εn(φ), the initial estimates λ̃ and ρ̃ in G̃nd and T̃nd will not affect the asymptotic distribution of an

MME derived from m̃n(φ). Neither will the estimated IVs R̃nWnS̃
−1
n Xnβ̃ and R̃nXn. For a very large n,

e.g., n = 106, computing S̃−1
n and T̃−1

n even once can be demanding. We suggest to use
∑k

i=0 λ̃W
i
n and∑k

i=0 ρ̃M
i
n for some natural number k to approximate, respectively, S̃−1

n and T̃−1
n . In general, we consider

root estimators based on the moment vector:

gn(φ) = [ε′n(φ)G̃nd,kεn(φ) + ε′n(φ)R̃nWnS̃
−1
n Xnβ̃, ε

′
n(φ)T̃nd,kεn(φ), ε′n(φ)R̃nXn]′, (3.8)

where G̃nd,k and T̃nd,k are derived by replacing the involved S̃−1
n and T̃−1

n in G̃nd and T̃nd with, respectively,∑k
i=0 λ̃W

i
n and

∑k
i=0 ρ̃M

i
n.3 When k =∞ or is sufficiently large, gn(φ) = m̃n(φ).

A root estimator of ρ0

Let g1n(ρ, η) = ε′n(φ)T̃nd,kεn(φ) and g2n(ρ, η) = [ε′n(φ)G̃nd,kεn(φ) + ε′n(φ)R̃nWnS̃
−1
n Xnβ̃, ε

′
n(φ)R̃nXn]′,

where η = [λ, β′]′. The moments g1n(ρ, η) and g2n(ρ, η) are subvectors composing gn(φ), which are the

derivatives of the quasi log likelihood function with respect to ρ and η. To focus on the estimation of ρ0,

we consider roots of the C(α)-type moment:

Gn(ρ, η̃) = g1n(ρ, η̃)− C̃nρg2n(ρ, η̃) = a1nρ
2 + b1nρ+ c1n = 0, (3.9)

where C̃nρ = ∂g1n(ρ̃,η̃)
∂η′ (∂g2n(ρ̃,η̃)

∂η′ )−1, a1n = ũ′nM
′
nT̃nd,kMnũn−C̃nρ

(
ũ′nM

′
nG̃nd,kMnũn

0

)
with ũn = S̃nyn−Xnβ̃,

b1n = −ũ′nM ′nT̃
(s)
nd,kũn + C̃nρ

(
ũ′nM

′
nG̃

(s)
nd,kũn+ũ′nM

′
nR̃nWnS̃

−1
n Xnβ̃

X′nR̃
′
nMnũn

)
,

and c1n = ũ′nT̃nd,kũn− C̃nρ
(
ũ′nG̃nd,kũn+ũ′nR̃nWnS̃

−1
n Xnβ̃

X′nR̃
′
nũn

)
. The moment Gn(ρ, η̃) eliminates possible asymp-

totic impact of η̃ on the GMM estimator of ρ0 from (3.9), since the derivative of Gn(ρ, η)/n with re-

spect to η at (ρ0, η0) converges to zero in probability. The consistent root estimator of ρ0 derived

from (3.9) will be asymptotically as efficient as the (joint) GMM estimator of ρ0 derived from solving

[g1n(ρ, η), g′2n(ρ, η)]′ = 0, since the number of moments in g2n(ρ, η) is equal to the number of parameters

in η (Jin and Lee, 2020). By an analysis similar to that in the last section, the consistent root estimator

3For S̃−1
n in R̃nWnS̃

−1
n Xnβ̃, we do not replace it with

∑k
i=0 λ̃W

k
n , since the vector S̃−1

n Xnβ̃ can be efficiently computed

using Gaussian elimination.
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ρ̂ of ρ0 is

ρ̂ =
−b1n −

√
b21n − 4a1nc1n

2a1n
if plim

n→∞

1

n
d1n ≥ 0; and ρ̂ =

−b1n +
√
b21n − 4a1nc1n

2a1n
if plim

n→∞

1

n
d1n < 0,

(3.10)

where d1n = ũ′nM
′
nT̃

(s)
nd,k ε̃n − C̃nρ

(
ũ′nM

′
nG̃

(s)
nd,k ε̃n

0

)
with ε̃n = R̃nũn.

A root estimator of λ0

Denote τ = [ρ, β′]′. Let g1n(λ, τ) = ε′n(φ)G̃nd,kεn(φ)+ε′n(φ)R̃nWnS̃
−1
n Xnβ̃ and g2n(λ, τ) = [ε′n(φ)T̃nd,kεn(φ),

ε′n(φ)R̃nXn]′ be components of gn(φ) in (3.8). We consider roots of the C(α)-type moment

g1n(λ, τ̃)− C̃nλg2n(λ, τ̃) = a2nλ
2 + b2nλ+ c2n = 0, (3.11)

where C̃nλ = ∂g1n(λ̃,τ̃)
∂τ ′ (∂g2n(λ̃,τ̃)

∂τ ′ )−1, a2n = (Wnyn)′R̃′nG̃nd,kR̃nWnyn − C̃nλ
(

(Wnyn)′R̃′nT̃nd,kR̃nWnyn
0

)
, b2n =

−(Wnyn)′R̃′nG̃
(s)
nd,kR̃n(yn−Xnβ̃)−(Wnyn)′R̃′nR̃nWnS̃

−1
n Xnβ̃+C̃nλ

(
(Wnyn)′R̃′nT̃

(s)
nd,kR̃n(yn−Xnβ̃)

X′nR̃
′
nR̃nWnyn

)
, and c2n =

(yn −Xnβ̃)′R̃′nG̃nd,kR̃n(yn −Xnβ̃) + (yn −Xnβ̃)′R̃′nR̃nWnS̃
−1
n Xnβ̃ − C̃nλ

(
(yn−Xnβ̃)′R̃′nT̃nd,kR̃n(yn−Xnβ̃)

X′nR̃
′
nR̃n(yn−Xnβ̃)

)
.

The consistent root estimator λ̂ of λ0 is

λ̂ =
−b2n −

√
b22n − 4a2nc2n

2a2n
if plim

n→∞

1

n
d2n ≥ 0; and λ̂ =

−b2n +
√
b22n − 4a2nc2n

2a2n
if plim

n→∞

1

n
d2n < 0,

(3.12)

where d2n = (Wnyn)′R̃′nG̃
(s)
nd,k ε̃n + (Wnyn)′R̃′nR̃nWnS̃

−1
n Xnβ̃ − C̃nλ

(
(Wnyn)′R̃′nT̃

(s)
nd,k ε̃n

X′nR̃
′
nR̃nWnyn

)
. With the root

estimator γ̂ = [λ̂, ρ̂]′, an estimator of β0 can be β̂ = β̂(γ̂) in (3.5).

We provide regularity conditions for the consistency and asymptotic normality of φ̂ = [λ̂, ρ̂, β̂′]′ below.

Replacing the estimated parameters in G̃nd,k and T̃nd,k by their true values yields the matrices Gnd,k and

Tnd,k. Denote Dn = RnWnS
−1
n R−1

n , Hn = In − RnXn(X ′nR
′
nRnXn)−1X ′nR

′
n, Ξn = tr(G

(s)
nd,kGndΣn) +

(RnWnS
−1
n Xnβ0)′Hn(RnWnS

−1
n Xnβ0), Ψn = Ξn −

tr(G
(s)
nd,kTndΣn) tr(T

(s)
nd,kGndΣn)

tr(T
(s)
nd,kTndΣn)

,

a∗1n = tr(R′−1
n M ′nTnd,kMnR

−1
n Σn)− tr(T

(s)
nd,kGndΣn) tr(R′−1

n M ′nGnd,kMnR
−1
n Σn)Ξ−1

n , (3.13)

a∗2n = (RnWnS
−1
n Xnβ0)′Gnd,k(RnWnS

−1
n Xnβ0) + tr(D′nGnd,kDnΣn)

− tr(G
(s)
nd,kTndΣn) tr−1(T

(s)
nd,kTndΣn)[(RnWnS

−1
n Xnβ0)′Tnd,k(RnWnS

−1
n Xnβ0) + tr(D′nTnd,kDnΣn)].

(3.14)

Assumption 3. (a) ‖λ0Wn‖ < 1 and ‖ρ0Mn‖ < 1. (b) limn→∞
1
nX
′
nR
′
nRnXn is nonsingular, limn→∞

1
nΞn 6=

0 and limn→∞
1
n tr(T

(s)
nd,kTndΣn) 6= 0. (c) limn→∞

1
na
∗
1n 6= 0 and limn→∞

1
na
∗
2n 6= 0. (d) limn→∞

1
nΨn 6= 0.

Under Assumption 3(a), Gnd,k = Gnd and Tnd,k = Tnd when k = ∞. Assumption 3(b) guar-

antees the existence of C̃nρ and C̃nλ for large enough n. When εni’s are homoskedastic and k =

∞, tr(T
(s)
nd,kTndΣn) =

σ2
0
2 tr(T

(s)
nd T

(s)
nd ) ≥ 0 and tr(G

(s)
nd,kGndΣn) ≥ 0. As Hn is a projection matrix,

(RnWnS
−1
n Xnβ0)′Hn(RnWnS

−1
n Xnβ0) ≥ 0. Under Assumption 3(c), the moment equations (3.9) and

(3.11) are quadratic in their unknown parameters. Assumption 3(d) guarantees the nonsingularity of the
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gradient of gn(φ) at φ0 for the asymptotic distribution of the root estimator. When k =∞ and εni’s are

homoskedastic, tr(G
(s)
nd,kGndΣn)− tr(G

(s)
nd,kTndΣn) tr(T

(s)
nd,kGndΣn)

tr(T
(s)
nd,kTndΣn)

in Ψn is non-negative by the Cauchy-Schwarz

inequality.

We compare our root estimator of φ0 with the QMLE in the homoskedastic case, and with the MME

derived by solving hn(φ) = 0 in the heteroskedastic case, where

hn(φ) = [ε′n(φ)Rn(ρ)Wnyn − ε′n(φ) diag(Rn(ρ)WnS
−1
n (λ)R−1

n (ρ))εn(φ),

ε′n(φ)Mn(Sn(λ)yn −Xnβ)− ε′n(φ) diag(MnR
−1
n (ρ))εn(φ), εn(φ)Rn(ρ)Xn]′,

with E[hn(φ0)] = 0. When εni’s are homoskedastic, let µ3 = E(ε3ni), µ4 = E(ε4ni), and φ∗ be the QMLE of

φ0; when εni’s are heteroskedastic, let φ∗ be the MME derived from solving hn(φ) = 0.

Theorem 2. Under Assumptions 1–3,
√
n(φ̂− φ0)

d−→ N
(
0, limn→∞ Γ−1

nd,k(Ωnd,k + ∆nd,k)Γ
′−1
nd,k

)
, where

Γnd,k =
1

n

tr(G
(s)
nd,kGndΣn) + (RnWnS

−1
n Xnβ0)′(RnWnS

−1
n Xnβ0) tr(G

(s)
nd,kTndΣn) (RnWnS

−1
n Xnβ0)′RnXn

tr(T
(s)
nd,kGndΣn) tr(T

(s)
nd,kTndΣn) 0

X ′nR
′
nRnWnS

−1
n Xnβ0 0 X ′nR

′
nRnXn

 ,

Ωnd,k =
1

n


Φn tr(G

(s)
nd,kΣnTnd,kΣn) (RnWnS

−1
n Xnβ0)′ΣnRnXn

tr(T
(s)
nd,kΣnGnd,kΣn) tr(T

(s)
nd,kΣnTnd,kΣn) 0

X ′nR
′
nΣnRnWnS

−1
n Xnβ0 0 X ′nR

′
nΣnRnXn

 ,

with Φn = tr(G
(s)
nd,kΣnGnd,kΣn) + (RnWnS

−1
n Xnβ0)′Σn(RnWnS

−1
n Xnβ0), ∆nd,k = 0 in the heteroskedastic

case, but in the homoskedastic case,

∆nd,k =
1

n


(µ4 − 3σ4

0)
∑n

i=1 g
2
ndk,ii + µ3(RnWnS

−1
n Xnβ0)′ vecD(Gnd,k) ∗ ∗

(µ4 − 3σ4
0)
∑n

i=1 gndk,iitndk,ii + µ3(RnWnS
−1
n Xnβ0)′ vecD(Tnd,k) (µ4 − 3σ4

0)
∑n

i=1 t
2
ndk,ii ∗

µ3X
′
nR
′
n vecD(Gnd,k) µ3X

′
nR
′
n vecD(Tnd,k) 0


where Gnd,k = [gndk,ij ], Tnd,k = [tndk,ij ], and vecD(A) is the column vector formed by the diagonal elements

of a square matrix A. When k =∞ and Assumption S.1 for the QMLE and MME in the supplementary

file also holds,
√
n(φ̂− φ0) =

√
n(φ∗ − φ0) + op(1).

This theorem shows that the root estimator φ̂ with k =∞ is asymptotically as efficient as the QMLE

of φ0 in the homoskedastic case, and as the MME φ∗ from solving hn(φ) = 0 in the heteroskedastic case.

As Γnd,k involves R−1
n and S−1

n , when the sample size is large, it is computationally demanding to use Γnd,k

for inference purposes. Since limn→∞ Γnd,k is the probability limit of − 1
n
∂gn(φ0)
∂φ′ , Γnd,k can be estimated

by − 1
n
∂gn(φ̂)
∂φ′ . In the homoskedastic case, if εni’s are normal, ∆nd,k = 0 as µ3 = 0 and µ4−3σ4

0 = 0. In the

heteroskedastic case, Γnd,k and Ωnd,k can be estimated by replacing Σn in them with diag(ε̂2n1, . . . , ε̂
2
nn) as

in White (1980), and replacing other true parameters with their root estimates.

4 Monte Carlo

We implement some MC experiments on our root estimators. The settings are described in the supple-

mentary file. Our root estimators have similar performance to the QMLE and MME in terms of biases
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Table 1: Computational time of estimates

Homoskedastic case Heteroskedastic case

λ0 = 0.2, ρ0 = 0.2 λ0 = 0.5, ρ0 = 0.5 λ0 = 0.2, ρ0 = 0.2 λ0 = 0.5, ρ0 = 0.5

MLE RE RE5 MLE RE RE5 MME RE RE5 MME RE RE5

n = 104 1.4(22.7) 20.1 0.2 2.3(37.9) 25.6 0.2 1558.3 20.7 0.2 4497.4 24.1 0.2

n = 105 41.2 - 2.7 64.6 - 2.4 - - 2.4 - - 2.4

n = 106 455.7 - 25.1 772.5 - 25.3 - - 25.0 - - 25.0

The table reports the average time in seconds for computing each estimate once. Each estimate has been

computed 5 times. For the QMLE with n = 104, numbers in parentheses are the time for computing both

the QMLE and its standard error. The results are from Matlab 2019b on a desktop computer with an Intel

Core (TM) I7-8700 CPU and 16 gigabyte memory.

and dispersions, as seen from the supplementary file. Here we report the computational time of estimates

in Table 1. RE denotes the root estimator with the quadratic matrices G̃nd and T̃nd, and RE5 denotes

the root estimator with G̃nd,5 and T̃nd,5. Although the inverses S̃−1
n and R̃−1

n only need to be computed

once for RE, it takes most time. As the moment function of MME involves matrix inverses with unknown

parameters, MME takes much longer to compute than MLE, RE and RE5. With n ≥ 105, matrix in-

verses would not be computable on a desktop computer with 16 gigabyte memory. By using algorithms

for sparse matrices in Matlab, the MLE can be computed relatively efficiently without using derivatives

that involve matrix inverses. But the standard error of the MLE involves matrix inverses, which need to

be computed. RE5 can be computed very fast. With n = 106, RE5 takes about 25 seconds to compute,

while the MLE takes more than 7 minutes and the standard error of MLE would not be computable on

a desktop computer.

5 Conclusion

This paper proposes simple closed-form root estimators for the SARAR model in both the homoskedastic

and unknown heteroskedastic cases. We derive a simple initial consistent closed-form estimator and

investigate closed-form root estimators. Our root estimator can be asymptotically as efficient as the

QMLE in the homoskedastic case. Our Monte Carlo results show that our root estimators perform well

in finite samples. They are computationally much faster than the QMLE and MME.

Acknowledgement. Fei Jin gratefully acknowledges the financial support from the National Natural Science

Foundation of China (No. 71973030).

References
Jin, F., Lee, L.F., 2012. Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models.

Regional Science and Urban Economics 42, 446–458.

Jin, F., Lee, L.F., 2013. Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances.
Regional Science and Urban Economics 43, 590–616.

8



Jin, F., Lee, L.F., 2020. Efficient two-step generalized empirical likelihood estimation and tests with martingale differences.
Forthcoming in the Econometric Theory.

Kelejian, H.H., Prucha, I.R., 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autore-
gressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics 17, 99–121.

Kelejian, H.H., Prucha, I.R., 1999. A generalized moments estimator for the autoregressive parameter in a spatial model.
International Economic Review 40, 509–533.

Kelejian, H.H., Prucha, I.R., 2001. On the asymptotic distribution of the Moran I test statistic with applications. Journal
of Econometrics 104, 219–257.

Kelejian, H.H., Prucha, I.R., 2010. Specification and estimation of spatial autoregressive models with autoregressive and
heteroskedastic disturbances. Journal of Econometrics 157, 53–67.

Lee, L.F., 2004. Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econo-
metrica 72, 1899–1925.

Lee, L.F., 2007a. GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. Journal of Econometrics
137, 489–514.

Lee, L.F., 2007b. The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autore-
gressive models. Journal of Econometrics 140, 155–189.

Lin, X., Lee, L.F., 2010. GMM estimation of spatial autoregressive models with unknown heteroskedasticity. Journal of
Econometrics 157, 34–52.

Liu, S.F., Yang, Z., 2015. Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and
nonnormality. Regional Science and Urban Economics 52, 50–70.

Liu, X., Lee, L.F., Bollinger, C.R., 2010. An efficient GMM estimator of spatial autoregressive models. Journal of Econo-
metrics 159, 303–319.

Ord, K., 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association 70,
120–126.

White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econo-
metrica 48, 817–838.

9


	1 Introduction
	2 Initial consistent estimator
	3 Root estimator
	4 Monte Carlo
	5 Conclusion

