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Abstract

This paper considers the generalized method of moments (GMM) estimation of a spatial

autoregressive (SAR) model with SAR disturbances, where we allow for endogenous regressors

in addition to a spatial lag of the dependent variable. We do not assume any reduced form

of the endogenous regressors, thus we allow for spatial dependence and heterogeneity in

endogenous regressors, and allow for nonlinear relations between endogenous regressors and

their instruments. Innovations in the model can be homoskedastic or heteroskedastic with

unknown forms. We prove that GMM estimators with linear and quadratic moments are

consistent and asymptotically normal. In the homoskedastic case, we derive the best linear

and quadratic moments that can generate an optimal GMM estimator with the minimum

asymptotic variance.
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1 Introduction

Spatial autoregressive (SAR) models are popular spatial econometric models in empirical research.

Various estimation methods for SAR models have been considered, including, among others, the

∗Corresponding author. E-mail addresses: jin.fei@live.com (F. Jin); wang.yuqin@sufe.edu.cn (Y. Wang).

1

mailto:jin.fei@live.com
mailto:wang.yuqin@sufe.edu.cn


two stage least squares (2SLS) (Lee, 2003), the quasi maximum likelihood (QML) (Ord, 1975;

Lee, 2004), and the generalized method of moments (GMM) (Lee, 2007). QML is relatively com-

putationally intensive, since it involves the computation of the determinants of square matrices

with their dimensions equal to the sample size. GMM can employ both linear moments charac-

terizing instrumental variables (IV) and quadratic moments capturing spatial dependence, which

are motivated from the QML estimation. Thus, GMM estimators are generally more efficient

than 2SLS estimators. They are also computationally simpler than QML estimators, because they

avoid the computation of determinants. The generalized spatial two stage least squares (GS2SLS)

in Kelejian and Prucha (1998) is a multiple-step method specially designed for SAR models with

SAR disturbances (SARAR models). It is computationally simple, but parameters in the equation

for the dependent variable are estimated using only linear moments. When innovations in SAR

models are heteroskedastic with unknown forms, the GMM and GS2SLS estimators are studied in,

respectively, Lin and Lee (2010) and Kelejian and Prucha (2010). Liu and Yang (2015) propose

a modified QML method, where QML first order conditions are modified to be valid under un-

known heteroskedasticity and consistent estimators are derived by solving the modified first order

conditions.

SAR models that allow for endogenous regressors in addition to spatial lags of the dependent

variable have also been studied in the literature. Fingleton and Le Gallo (2008) and Drukker et al.

(2013) investigate the GS2SLS estimation, Liu (2012) considers the limited information maximum

likelihood (LIML) estimation, Liu and Lee (2013) study the 2SLS estimation, and Liu and Saraiva

(2015) propose the GMM estimation. As for SAR models without endogenous regressors, likelihood

based methods are relatively intensive in computation, and GMM can be computationally simple

and relatively efficient asymptotically. Gupta and Robinson (2015) and Gupta (2019) have also

considered the 2SLS estimation of SAR models with endogenous regressors, in the context of

increasingly many parameters or stochastic spatial weights matrices.

We note that Liu and Saraiva (2015) assume a linear reduced form for endogenous regressors

when considering GMM estimators.1 The reduced form excludes any spatial dependence and

heterogeneity in the endogenous regressors, which might arise for spatial variables. It also excludes

any nonlinear relation between the endogenous regressors and their IVs. As the reduced form is

used to form moment conditions, if it is misspecified, then the GMM estimators will no longer

be consistent in general. Fingleton and Le Gallo (2008) and Drukker et al. (2013) have not

assumed reduced forms for endogenous regressors when they consider the GS2SLS estimation, but

the GS2SLS estimator is asymptotically less efficient than the GMM estimator that employs both

linear and quadratic moments, as mentioned above.

1A reduced form is also assumed in Liu (2012) when the LIML estimator is considered. It is needed to form a

proper likelihood function.
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In this paper, we consider the GMM estimation of an SARAR model with endogenous regres-

sors, by employing both linear and quadratic moments. Firstly, we do not impose any reduced

form of endogenous regressors. Secondly, we study both the cases with homoskedastic and het-

eroskedastic model innovations. Thus, our paper extends the study on SAR models with unknown

heteroskedasticity to the case with both unknown heteroskedasticity and endogenous regressors.

We prove that GMM estimators are consistent and asymptotically normal under regularity con-

ditions. Lastly, in the homoskedastic case, among a class of GMM estimators with linear and

quadratic moments, we derive the best one with a minimum asymptotic variance. The best GMM

estimator can guide our selection of linear and quadratic moments.

This paper is organized as follows. Section 2 studies large sample properties of our proposed

GMM estimators, Section 3 reports some Monte Carlo results on the finite sample performance of

our GMM estimators, and Section 4 concludes. Proofs are collected in an Appendix.

2 GMM estimation

We consider the following SAR model with SAR disturbances and endogenous regressors:

Yn = λWnYn + Znγ +Xnβ + un, un = ρMnun + ϵn, (1)

where n is the sample size, Yn is an n × 1 vector of observations on the dependent variable,

Wn and Mn are n × n spatial weights matrices with zero diagonals, Zn is an n × kz matrix

of observations on endogenous regressors, Xn is an n × kx matrix of observations on exogenous

regressors, ϵn = [ϵn1, · · · , ϵnn]′ is an n × 1 vector of independent disturbances with zero means, λ

and ρ are scalar spatial dependence parameters, γ is a kz × 1 parameter vector, and β is a kx × 1

parameter vector. The exogenous variable matrix is assumed to be nonrandom for simplicity,

and Zn is stochastic. The spatial weights matrices Wn and Mn may or may not be the same in

practice. We shall consider both the case where ϵni’s are i.i.d. with mean zero and variance σ2
0, and

the case where ϵni’s are independent with mean zero but they may have different variances σ2
ni’s.

Let θ = [λ, ρ, γ′, β′]′ and θ0 = [λ0, ρ0, γ
′
0, β

′
0]

′ be the true value of θ. Denote Sn(λ) = In − λWn,

Rn(ρ) = In−ρMn, Sn = Sn(λ0) and Rn = Rn(ρ0), where In is the n×n identity matrix.2 Provided

that Sn and Rn are invertible, Yn = S−1
n (Znγ0 +Xnβ0 +R−1

n ϵn).

Fingleton and Le Gallo (2008) and Drukker et al. (2013) have considered the GS2SLS estimation

of model (1) with homoskedastic ϵni’s. The GS2SLS estimation has several steps, which makes

the computation easy, but the derivation of the joint asymptotic distribution of final estimators

is relatively complicated. For the estimation of the parameters λ, γ and β in the equation for Yn,

only linear moments are used, but quadratic moments are not.

2A list of notations is provided in Appendix A for convenient reference.
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Liu (2012) and Liu and Saraiva (2015) consider the estimation of model (1) with no SAR

process on un, where un = ϵn and Zn contains a single endogenous regressor. They assume that

Zn has a reduced form

Zn = Fnδ + vn, (2)

where Fn is an n × kf matrix of exogenous variables, δ is a kf × 1 vector of coefficients, and

vn is a vector of i.i.d. disturbances which may correlate with ϵn in (1). The reduced form (2)

specifies a fixed and restrictive linear relation between Zn and Fn. It does not allow for spatial

dependence in Zn, unless variables in Fn show spatial dependence. The i.i.d. disturbances also

exclude heterogeneity in Zn. With (2) imposed, Liu (2012) considers the LIML estimation, and

Liu and Saraiva (2015) consider the GMM estimation with moment conditions that are linear and

quadratic forms of [ϵ′n, v
′
n]

′ at the true parameter values. Thus, if (2) is misspecified, then their

estimators will be inconsistent in general.

We consider the estimation of model (1) without imposing a reduced form of Zn. As no reduced

form is imposed, a likelihood or quasi likelihood function might not be formulated. We investigate

a GMM estimator with the following moment vector:

gn(θ) =
1

n
[ϵ′n(θ)P1nϵn(θ), · · · , ϵ′n(θ)Pkpnϵn(θ), ϵ

′
n(θ)Qn]

′, (3)

where ϵn(θ) = Rn(ρ)[Sn(λ)Yn − Znγ − Xnβ], Pjn’s are n × n matrices, and Qn is an n × kq

IV matrix. The total number of moments kg = kp + kq is non-smaller than the total number

of parameters kθ = 2 + kz + kx. In the homoskedastic case, Pjn’s are required to have zero

traces, as E(ϵ′nPjnϵn) = σ2
0 tr(Pjn); in the heteroskedastic case, Pjn’s are required to have zero

diagonals, as E(ϵ′nPjnϵn) = tr(PjnΣn) is a weighted sum of the diagonal elements of Pjn, where Σn =

diag(σ2
n1, . . . , σ

2
nn) is a diagonal matrix of σ2

ni’s. The Pjn’s can be, e.g., Wn, Mn, W
2
n − In tr(W

2
n)/n

and M2
n − In tr(M

2
n)/n in the homoskedastic case, and they can be Wn, Mn, W 2

n − diag(W 2
n)

and M2
n − diag(M2

n) in the heteroskedastic case, where diag(A) for a square matrix A denotes a

diagonal matrix formed by the diagonal elements of A. The quadratic moments for SAR models

are motivated from the QML estimation, which may significantly improve the estimation efficiency

for SAR models (Lee, 2007; Lin and Lee, 2010). If Zn has an IV Fn, then the IV matrix Qn can

be the matrix formed by the independent columns of [Xn, Fn,WnXn,WnFn,W
2
nXn,W

2
nFn]. The

GMM estimator θ̂gmm with the moment vector gn(θ) and a weighting matrix a′nan has the objective

function

min
θ∈Θ

g′n(θ)a
′
nangn(θ), (4)

where Θ is the parameter space of θ, and an is a ka × kg matrix with a limit a0 by design. Here

the row dimension ka can be greater or non-greater than kg for generality.

Some basic regularity conditions are summarized in the following assumptions.
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Assumption 1. Either (a) ϵni’s in ϵn = [ϵn1, . . . , ϵnn]
′ are i.i.d. (0, σ2

0) and the moment E(|ϵni|4+ι)

exists for some ι > 0, or (b) ϵni’s are independent with mean zero and variances σ2
ni’s, and

supn sup1≤i≤n E(|ϵni|4+ι) < ∞ for some ι > 0.3

Assumption 2. The Wn and Mn have zero diagonals, and {Wn}, {Mn}, {S−1
n } and {R−1

n } are

bounded in both row and column sum matrix norms.

Assumption 3. Elements of Xn and E(Zn) are uniformly bounded constants, and limn→∞
1
n
X ′

nXn

exists and is positive definite.

Assumption 4. Elements of Qn are uniformly bounded constants, and {Pjn} for j = 1, . . . , kp are

bounded in both row and column sum matrix norms.

Assumption 5. The parameter space Θ of θ is a compact subset of Rkθ .

In Assumption 1, the existence of moments of disturbances with an order higher than four

is for the applicability of a central limit theorem for linear and quadratic forms in Kelejian and

Prucha (2001). In Assumption 2, the diagonal elements of Wn and Mn are required to be zero

to exclude self-influence. The boundedness condition on spatial weights matrices, originated in

Kelejian and Prucha (1998, 1999), is a standard condition in the spatial econometric literature

that limits the degree of spatial dependence to be manageable. Since the analysis involves the

matrix inverses S−1
n and R−1

n , they are also assumed to be bounded in both row and column sum

matrix norms. In Delgado and Robinson (2015) and Gupta and Robinson (2018), the consistency of

relevant estimators is proved under the assumption of boundedness in the spectral norm of related

matrices, although asymptotic distributions are still proved under the assumption of boundedness

in the row and column sum norms. Since the spectral norm is non-greater than the row and

column sum norms, their assumption is weaker. We also provide in Appendix D a proof of the

consistency of our GMM estimator under the weaker assumption. As in Lee (2004), elements of

Xn are assumed to be nonstochastic for simplicity in Assumption 3. In Assumption 4, elements

of Qn are also assumed to be constants, as Qn can be functions of Xn, Wn, Mn and other IVs;

and the boundedness condition on Pjn’s is similar to that on Wn and Mn, as Pjn’s relate to Wn

and Mn. The compactness of the parameter space in Assumption 5 is standard for an extremum

estimator.

We now discuss the identification condition for limn→∞ E[gn(θ)] to be uniquely zero at θ = θ0.

Denote Z̄n = E(Zn) and Žn = Zn − Z̄n. Due to the endogeneity of Zn, cov(Žn, ϵn) ̸= 0. Using

Yn = S−1
n (Znγ0 +Xnβ0 +R−1

n ϵn), we have

E[Q′
nϵn(θ)] = Q′

nϵ̄n(θ), (5)

3In the homoskedastic case, as pointed out by an anonymous referee, we may omit the subscript n of ϵni’s, e.g.,

denote ϵn = [ε1, · · · , εn]′. But in the heteroskedastic case, we need the subscript n for ϵni’s, in order to show that

ϵni can have different variances for different n.
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E[ϵ′n(θ)Pjnϵn(θ)] = ϵ̄′n(θ)Pjnϵ̄n(θ) + E[ϵ̌′n(θ)Pjnϵ̌n(θ)], (6)

where

ϵ̄n(θ) = Rn(ρ)[(λ0 − λ)Tn(Z̄nγ0 +Xnβ0) + Z̄n(γ0 − γ) +Xn(β0 − β)], (7)

ϵ̌n(θ) = Rn(ρ)[R
−1
n ϵn + (λ0 − λ)Tn(Žnγ0 +R−1

n ϵn) + Žn(γ0 − γ)], (8)

with Tn = WnS
−1
n . When (λ, γ, β) = (λ0, γ0, β0), as ϵ̄n(θ) = 0, E[Q′

nϵn(θ)] = 0 for any ρ, so the

linear moments alone are not enough to identify the parameter ρ0 in the disturbance process. But

it is possible to identify other parameters from the linear moments. If limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0+

Xnβ0), Z̄n, Xn] has full column rank for any ρ in its parameter space ρ, then the linear moment

part of limn→∞ E[gn(θ)] = 0, i.e. limn→∞
1
n
E[Q′

nϵn(θ)] = 0, implies that (λ, γ, β) = (λ0, γ0, β0).

It is possible that limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0 +Xnβ0), Z̄n, Xn] has reduced column rank for some

ρ ∈ ρ, then the identification of some parameters in (λ, γ, β) would reply on the quadratic moments.

Sufficient conditions for limn→∞ E[gn(θ)] to be uniquely zero at θ = θ0 is presented in the following

assumption.

Assumption 6. Either (i) limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0 +Xnβ0), Z̄n, Xn] has full column rank for

any ρ ∈ ρ, and (C.2) or (C.3) holds; or (ii) limn→∞
1
n
Q′

nRn(ρ)Xn has full column rank for any

ρ ∈ ρ, and (C.4) holds.

Lemma 1. Under Assumption 6, for θ ∈ Θ, limn→∞ E[gn(θ)] is uniquely zero at θ = θ0.

The identification conditions in Assumption 6 can be compared with the corresponding As-

sumptions 7–8 in Drukker et al. (2013). The estimation in Drukker et al. (2013) is carried out

in several steps, where the parameters (λ, γ, β) are estimated by 2SLS and the parameter ρ is

estimated with moments quadratic in residuals computed using the first step estimate, thus their

identification conditions are more similar to the conditions in Assumption 6(i), where (λ, γ, β) is

identified from the linear moments and ρ is identified from the quadratic moments. Since our GMM

approach estimates ρ jointly with (λ, γ, β), unlike that in Drukker et al. (2013), our rank condition

on limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0 + Xnβ0), Z̄n, Xn] involves ρ ∈ ρ. Assumption 8 in Drukker et al.

(2013) is in terms of the minimum eigenvalue of a relevant matrix, while our corresponding condi-

tion (C.3) requires some matrices to have full rank in the limit, which seems to be more explicit.

Furthermore, as (λ, γ, β) is estimated jointly with ρ in our approach, some of the parameters in

(λ, γ, β) can be identified from the quadratic moments, thus we have the identification condition

in Assumption 6(ii).

While Assumption 6 guarantees limn→∞ E[gn(θ)] to be uniquely zero at θ = θ0, it is necessary

but may not be sufficient for limn→∞ an E[gn(θ)] to be uniquely zero at θ = θ0. Note that the

dimension of an is ka × kg, where ka can be smaller than kg. For example, [κ − κ0, τ − τ0]
′ = 0
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implies that [κ, τ ] = [κ0, τ0], but (κ−κ0)+(τ−τ0) = 0 does not have the implication. If limn→∞ an

has full column rank, where ka ≥ kg, then Assumption 6 is sufficient for limn→∞ an E[gn(θ)] to be

uniquely zero at θ = θ0. As we would like to consider a general class of GMM estimators with

the weighting matrix a′nan and investigate the optimal choice of a′nan as in Hansen (1982), the

following assumption is imposed.

Assumption 7. limn→∞ an E[gn(θ)] is uniquely zero at θ = θ0.

The following assumption contains some technical conditions needed for the consistency of the

GMM estimator θ̂gmm.

Assumption 8. 1
n
Q′

nAnŽn = op(1), and for each j = 1, . . . ,m, 1
n
Υ′

nP
s
jnAnŽn = op(1),

1
n
Ž ′

nB
′
nP

s
jnAnŽn − 1

n
E(Ž ′

nB
′
nP

s
jnAnŽn) = op(1),

1
n
ϵ′nC

′
nP

s
jnAnŽn − 1

n
E(ϵ′nC

′
nP

s
jnAnŽn) = op(1),

1
n
E(Ž ′

nB
′
nP

s
jnAnŽn) = O(1) and 1

n
E(ϵ′nC

′
nP

s
jnAnŽn) = O(1), where Υn = [Υ1n,MnΥ1n] with

Υ1n = [TnZ̄n, TnXn, Z̄n, Xn]; An and Bn are either In, Mn, Tn or MnTn; and Cn = In, Hn,

TnR
−1
n or MnTnR

−1
n .

If the endogenous regressors Zn have the reduced form (2), it is straightforward to verify

Assumption 8. Since we do not assume a reduced form of Zn, we impose the convergence and

order conditions in Assumption 8. As mentioned above, we may allow for spatial dependence and

heterogeneity in Zn. In those situations, the conditions in the above assumption can be verified by

the law of large numbers for spatial near-epoch processes, which are processes with weak spatial

dependence developed by Jenish and Prucha (2012). Based on spatial near-epoch processes, the

supplementary file of Jin and Lee (2018) provides some primitive conditions for orders of terms

similar to those in the above assumption. Thus, we maintain the relatively high level assumption

above for simplicity. The consistency of θ̂gmm holds under the above assumptions.

Proposition 1. Under Assumptions 1–5 and 7–8, the GMM estimator θ̂gmm is consistent.

As usual, to derive the asymptotic distribution of θ̂gmm, we require θ0 to be in the interior

int(Θ) of the parameter space Θ.

Assumption 9. θ0 ∈ int(Θ).

The variance matrix Ωn of
√
ngn(θ0) can be derived by, e.g., Lemma 2 in Jin and Lee (2012) on

the covariances of linear and quadratic forms. For any square matrix A, let As = A + A′, vec(A)

be the vectorization of A, and dA be a column vector formed by the diagonal elements of A. When

ϵni’s are i.i.d., Ωn has the expression

Ωn =
1

n

(
(µ40 − 3σ4

0)ω
′
ndωnd +

σ4
0

2
ω′
nωn µ30ω

′
ndQn

µ30Q
′
nωnd σ2

0Q
′
nQn

)
, (9)
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where µ30 = E(ϵ3ni), µ40 = E(ϵ4ni), ωnd = [dP1n , · · · , dPkpn
], and ωn = [vec(P s

1n), · · · , vec(P s
kpn

)];

when ϵni’s are heteroskedastic, as Pjn’s have zero diagonals,

Ωn =
1

n

(
1
2
ω′
nhωnh

Q′
nΣnQn

)
, (10)

where ωnh = [vec(Σ
1/2
n P s

1nΣ
1/2
n ), · · · , vec(Σ1/2

n P s
kpn

Σ
1/2
n )] with Σ

1/2
n = diag(σn1, . . . , σnn). As tr(AB) =

vec′(A′) vec(B) for two conformable square matrices A and B, the (j, k)th element of ω′
nωn is

tr(P s
jnP

s
kn), and the (j, k)th element of ω′

nhωnh is tr(ΣnP
s
jnΣnP

s
kn).

The gradient matrix Gn = E(∂gn(θ0)
∂θ′

) has the following expression:

Gn = − 1

n


E(ϵ′nP

s
1nRnζn) E(ϵ′nP

s
1nHnϵn) E(ϵ′nP

s
1nRnŽn) 0

...
...

...
...

E(ϵ′nP
s
kpn

Rnζn) E(ϵ′nP
s
kpn

Hnϵn) E(ϵ′nP
s
kpn

RnŽn) 0

Q′
nRnTn(Z̄nγ0 +Xnβ0) 0 Q′

nRnZ̄n Q′
nRnXn

 , (11)

where ζn = Tn(Žnγ0 + R−1
n ϵn). For θ̂gmm to be

√
n-consistent, limn→∞ anGn needs to have full

column rank, for which a necessary condition is that limn→∞ Gn has full column rank. The following

Assumption 10 guarantees that limn→∞Gn has full column rank. Let

G1n = − 1

n


E(ϵ′nP

s
1nRnζn) E(ϵ′nP

s
1nHnϵn) E(ϵ′nP

s
1nRnŽn)

...
...

...

E(ϵ′nP
s
kpn

Rnζn) E(ϵ′nP
s
kpn

Hnϵn) E(ϵ′nP
s
kpn

RnŽn)

 . (12)

Assumption 10. In the case of Assumption 6(i), limn→∞
1
n
E(ϵ′nP

s
jnHnϵn) ̸= 0 for some 1 ≤ j ≤

kp; in the case of Assumption 6(ii), limn→∞G1n has full column rank.

In the case that limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0+Xnβ0), Z̄n, Xn] has full column rank for any ρ ∈ ρ,

which is a condition in Assumption 6(i), the above assumption excludes the second situation in

(C.3), where each limn→∞
1
n
E(ϵ′nP

s
jnHnϵn) is zero.

Proposition 2. Under Assumptions 1–5 and 7–9, if limn→∞ anGn has full column rank, the GMM

estimator θ̂gmm has the asymptotic distribution

√
n(θ̂gmm − θ0)

d−→ N
(
0, lim

n→∞
(G′

na
′
nanGn)

−1G′
na

′
nanΩna

′
nanGn(G

′
na

′
nanGn)

−1
)
.

The gradient matrix Gn in (11) involves the correlation between Žn and ϵn with an unknown

form, thus the explicit expression of Gn cannot be used to estimate Gn using a plug-in approach.

However, Gn can be estimated by ∂gn(θ̂gmm)
∂θ′

. Since each element of gn(θ) is a polynomial function

of θ, by the proof of Proposition 2, ∂gn(θ̂gmm)
∂θ′

is a consistent estimator of limn→∞Gn.
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As in Hansen (1982), the optimal weighting matrix a′nan is the matrix inverse Ω−1
n of the

variance matrix. To formulate an optimal GMM (OGMM) estimator, limn→∞Ωn needs to be

invertible, which implies that Ωn is also invertible for a large enough n. Let ξ =
√
2
2
(µ40

σ4
0
−1− µ2

30

σ6
0
)1/2,

P s
jn,ξ = ξ diag(P s

jn)+[P s
jn−diag(P s

jn)] and ωnξ = [vec(P s
1n,ξ), · · · , vec(P s

kpn,ξ
)].4 By Jin et al. (2020),

Ωn in (9) in the homoskedastic case can be rewritten as

Ωn =
1

n

(
µ2
30

σ2
0
ω′
ndωnd +

σ4
0

2
ω′
nξωnξ µ30ω

′
ndQn

µ30Q
′
nωnd σ2

0Q
′
nQn

)
. (13)

Then the following assumption guarantees that limn→∞Ωn is positive definite.

Assumption 11. In the case of Assumption 1(a) with homoskedastic disturbances, limn→∞
1
n
Q′

nQn

and limn→∞
1
n
{2µ2

30

σ6
0
ω′
nd[In−Qn(Q

′
nQn)

−1Q′
n]ωnd+ω′

nξωnξ} are nonsingular; in the case of Assump-

tion 1(b) with heteroskedastic disturbances, limn→∞
1
n
Q′

nΣnQn and limn→∞
1
n
ω′
nhωnh are nonsingu-

lar.

For a block matrix E = ( A B
C D ), where A and D are square matrices, if D is invertible, then(

I −BD−1

0 I

)(
A B

C D

)(
I 0

−D−1C I

)
=

(
A−BD−1C 0

0 D

)
. (14)

Thus, if D is invertible, then E is invertible if and only if A−BD−1C is invertible. In Assumption

11, for the homoskedastic case, as the condition that limn→∞ Ωn is positive definite implies that

limn→∞
1
n
Q′

nQn is nonsingular, we can see by (14) that the nonsingularity of limn→∞
1
n
{2µ2

30

σ6
0
ω′
nd[In−

Qn(Q
′
nQn)

−1Q′
n]ωnd+ω′

nξωnξ} implies that of limn→∞ Ωn. Furthermore, (14) implies that the non-

singularity of limn→∞
1
n
ω′
nd[In−Qn(Q

′
nQn)

−1Q′
n]ωnd is guaranteed by that of limn→∞

1
n
[Qn, ωnd]

′[Qn, ωnd].

Thus, in the homoskedastic case of Assumption 11, when µ30 ̸= 0, either (i) the nonsingularity of

limn→∞
1
n
[Qn, ωnd]

′[Qn, ωnd] or (ii) the nonsingularity of both limn→∞
1
n
Q′

nQn and limn→∞
1
n
ω′
nξωnξ

guarantees the nonsingularity of limn→∞ Ωn; when µ30 = 0, (ii) is required. In the heteroskedastic

case, as Ωn is block diagonal, the conditions in Assumption 11 are straightforward. By the defini-

tions of ωnd, ωnξ and ωnh, if Pjn’s are linearly dependent, then ωnd, ωnξ and ωnh do not have full

column rank and Assumption 11 is not satisfied. Thus Pjn’s should be linearly independent under

Assumption 11.

Let Ω̂n be a consistent estimator of limn→∞Ωn. In the homoskedastic case, Ω̂n can be obtained

by plugging consistent estimators of involved unknown parameters into Ωn; in the heteroskedastic

case, as in the approach of White (1980), Ω̂n can be obtained by replacing each Σn in Ωn with the di-

agonal matrix Σ̂n = diag(ϵ2n1(θ̂gmm), . . . , ϵ
2
nn(θ̂gmm)), where ϵnj(θ) is the jth element of ϵn(θ). Lin and

Lee (2010) prove the consistency of a White-type variance estimator in the heteroskedastic case for

4As (µ40 − σ4
0)σ

2
0 = E[(ϵ2ni − σ2

0)
2] · E(ϵ2ni) ≥ µ2

30 by the Cauchy-Schwarz inequality, µ40

σ4
0
− 1− µ2

30

σ6
0
≥ 0.
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SAR models with no endogenous regressors. For SAR models with endogenous regressors, the proof

is similar. With Ω̂n, the feasible OGMM estimator θ̂ogmm is θ̂ogmm = argminθ∈Θ g′n(θ)Ω̂
−1
n gn(θ). Un-

der regularity conditions, θ̂ogmm is consistent and asymptotically normal, and its objective function

can be used to test for over-identification.

Proposition 3. Under Assumptions 1–6 and 8–11, if Ω̂n = Ωn + op(1), the feasible OGMM

estimator θ̂ogmm is consistent and follows the asymptotic distribution

√
n(θ̂ogmm − θ0)

d−→ N(0, lim
n→∞

(G′
nΩ

−1
n Gn)

−1).

Besides, ng′n(θ̂ogmm)Ω̂
−1
n gn(θ̂ogmm)

d−→ χ2(kg − kθ).

Our results above are based on a given set of linear and quadratic moments. When disturbances

are homoskedastic, there is an issue on the best selection of linear and quadratic moments (Liu

et al., 2010).5 We use the analytical method in Jin et al. (2020) to derive the best linear and

quadratic moments. In their method, the variance matrix Ωn is rewritten in a form 1
n
∆′

n∆n and

the gradient matrix is rewritten in a form − 1
n
∆′

nΓn, where Γn is properly reformulated, so that

the Cauchy-Schwarz inequality can be applied to derive a lower bound for the asymptotic variance

(G′
nΩ

−1
n Gn)

−1 in Proposition 3 and the lower bound can be attained by using some IV matrix

Qn and quadratic matrices Pjn’s. Let Ψn = RnTn(Z̄nγ0 + Xnβ0), ln be an n × 1 vector of ones,

ãn = an − 1
n
lnl

′
nan for any n × 1 vector an, Bn,·j be the jth column of an n × kb matrix Bn,

C1n = Rn E(ζnϵ
′
n) − In tr[Rn E(ζnϵ

′
n)]/n, C2n = Hn − In tr(Hn)/n, and C2+j,n = Rn E(Žn,·jϵ

′
n) −

In tr[Rn E(Žn,·jϵ
′
n)]/n for j = 1, . . . , kz. Note that the sum of all elements in ãn is zero, and Cjn’s

have zero traces.

Proposition 4. Suppose that Assumptions 1(a), 2–6 and 8–11 are satisfied.

(a) The best Qn and Pjn’s that can generate an OGMM estimator with the minimum asymptotic

variance are

Q∗
n =

[
Ψn −

µ30

ξ2σ4
0

dC1n +
µ2
30

2ξ2σ6
0

Ψ̃n, dC2n ,

RnZ̄n,·1 −
µ30

ξ2σ4
0

dC3n +
µ2
30

2ξ2σ6
0

R̃nZ̄n,·1, · · · , RnZ̄n,·kz −
µ30

ξ2σ4
0

dCkz+2,n
+

µ2
30

2ξ2σ6
0

R̃nZ̄n,·kz ,

RnXn,·1 +
µ2
30

2ξ2σ6
0

R̃nXn,·1, · · · , RnXn,·kx +
µ2
30

2ξ2σ6
0

˜RnXn,·kx

]
,

5When disturbances are heteroskedastic, the best selection of linear and quadratic moments might exist (see

Debarsy et al., 2015, for the theoretically best moments of the matrix exponential spatial specification and SAR

models with no endogenous regressors), but a best GMM estimator would not be feasible due to the unknown Σn

(Lin and Lee, 2010).
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P ∗
1n = [C1n−diag(C1n)]+

1
ξ2
diag(C1n)− µ30

2ξ2σ2
0
diag

(
Ψ̃n

)
, P ∗

2n = [C2n−diag(C2n)]+
1
ξ2
diag(C2n),

P ∗
2+j,n = [C2+j,n − diag(C2+j,n)] +

1
ξ2
diag(C2+j,n) − µ30

2ξ2σ2
0
diag

(
R̃nZ̄n,·j

)
for j = 1, ..., kz, and

P ∗
2+kz+j,n = diag

(
R̃nXn,·j

)
for j = 1, . . . , kx.

(b) The OGMM estimator with the above Q∗
n and P ∗

jn’s,
6 denoted by θ̂bgmm, has the asymptotic

distribution
√
n(θ̂bgmm − θ0)

d−→ N(0, limn→∞( 1
n
Γ′
nΓn)

−1), where

Γn =

(
Γn,11 − µ30√

2ξσ4
0

[
vec
(
diag(R̃nXn,·1)

)
, · · · , vec

(
diag( ˜RnXn,·kx)

)]
1
σ0
[Ψn, 0n×1, RnZ̄n]

1
σ0
RnXn

)

with

Γn,11 =
1√
2σ2

0

[
vec
(
Cs

1n,1/ξ −
µ30

ξσ2
0

diag(Ψ̃n)
)
, vec(Cs

2n,1/ξ),

vec
(
Cs

3n,1/ξ −
µ30

ξσ2
0

diag
(
R̃nZ̄n,·1

))
, · · · , vec

(
Cs

kz+2,n,1/ξ −
µ30

ξσ2
0

diag
(
R̃nZ̄n,·kz

))]
.

(c) When µ30 = 0, the IV dC2n is redundant and the quadratic matrices diag
(
R̃nXn,·j

)
for j =

1, . . . , kx are redundant, so Q∗
n reduces to Q∗

n = [Ψn, RnZ̄n, RnXn] and P ∗
jn’s are P ∗

jn =

[Cjn − diag(Cjn)] +
1
ξ2
diag(Cjn) for j = 1, . . . , kz + 2.

(d) For Q∗
n and P ∗

jn’s in (a), if we use the IVs in each column of Q∗
n and the quadratic matrices

in each P ∗
jn separately, then Q∗

n = [Ψn, RnZ̄n, RnXn, dC1n , · · · , dCkz+2,n
, ln],

7 and P ∗
jn’s are

Cjn−diag(Cjn) for j = 1, . . . , kz+2, diag(Cjn) for j = 1, . . . , kz+2, diag(Ψ̃n), diag(R̃nZ̄n,·j)

for j = 1, . . . , kz, and diag(R̃nXn,·j) for j = 1, . . . , kx.

When µ30 = 0, Q∗
n = [Ψn, RnZ̄n, RnXn], and P ∗

jn’s are P ∗
jn = Cjn − diag(Cjn) for j =

1, . . . , kz + 2, and P ∗
kz+2+j,n = diag(Cjn) for j = 1, . . . , kz + 2.

Proposition 4(a) gives the best combined IVs and quadratic matrices, and Proposition 4(b)

provides the corresponding asymptotic distribution. Note that the asymptotic variance is given

by ( 1
n
Γ′
nΓn)

−1 and we do not need to compute it with the sandwich form (G′
nΩ

−1
n Gn)

−1 as in

Proposition 3. The combined IVs and quadratic matrices in Proposition 4(a) are more complicated

than those separate IVs and quadratic matrices in Proposition 4(d), but they avoid the use of more

moments. Generally, the presence of endogenous regressors Zn affects both the best IV matrix

6For this estimator, in Assumptions 4, 6, 8, 10 and 11, Qn and Pjn become, respectively, Q∗
n and P ∗

jn. Some

of the assumptions can be directly verified, e.g., some elements of Q∗
n can be shown to be uniformly bounded, but

some are not, e.g., the orders of terms involving Žn.
7When Xn contains ln as a column, which corresponds to the intercept term, and Mn is normalized to have row

sums equal to one, RnXn generates a column of constants. In this situation, ln should be removed from Q∗
n to

avoid multicolinearity.
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Q∗
n and the best quadratic matrices P ∗

jn’s. But when µ30 = 0, the endogeneity of Zn, i.e., the

correlation between Žn and ϵn, does not affect the best IV matrix Q∗
n, although it affects the best

quadratic matrices. While Z̄n and the correlation between Žn and ϵn are unknown, we can choose

IVs and quadratic moments according to the implications of the above proposition. If we have an

IV matrix Fn for Zn, the 2SLS estimate of Zn is Ẑn = Fn(F
′
nFn)

−1F ′
nZn, which is an estimate of

Z̄n. By Proposition 4(a), as ζn = Tn(Žnγ0 + R−1
n ϵn) and Ψn = RnTn(Z̄nγ0 +Xnβ0), Pjn’s can be

taken as

σ2
0[RnTnR

−1
n − diag(RnTnR

−1
n )] +

σ2
0

ξ2
diag

(
RnTnR

−1
n − tr(Tn)

n
In
)
− µ30

2ξ2σ2
0

diag(Π̃n),

Hn − diag(Hn) +
1

ξ2
diag

(
Hn −

tr(Hn)

n
In
)
, diag(R̃nẐn,·1), · · · , diag(R̃nẐn,·kz),

diag(R̃nXn,·1), · · · , diag( ˜RnXn,·kx),

(15)

where Πn = RnTn(Ẑnγ0 +Xnβ0), and the IV matrix Qn can be taken as[
Πn −

µ30

ξ2σ2
0

dRnTnR
−1
n −In tr(Tn)/n

+
µ2
30

2ξ2σ6
0

Π̃n, dHn−In tr(Hn)/n,

RnẐn,·1 +
µ2
30

2ξ2σ6
0

R̃nẐn,·1, · · · , RnẐn,·kz +
µ2
30

2ξ2σ6
0

R̃nẐn,·kz ,

RnXn,·1 +
µ2
30

2ξ2σ6
0

R̃nXn,·1, · · · , RnXn,·kx +
µ2
30

2ξ2σ6
0

˜RnXn,·kx

]
.

(16)

When µ30 = 0, the quadratic matrices diag(R̃nẐn,·1), ..., diag(R̃nẐn,·kz), diag(R̃nXn,·1), ..., diag( ˜RnXn,·kx)

in (15) are redundant, and the IV dHn−In tr(Hn)/n in (16) is redundant. The unknown parameters in

Pjn’s and Qn can be replaced by their consistent estimators, which will not affect the asymptotic

distribution of the corresponding OGMM estimator, as in Liu et al. (2010) for SAR models without

endogenous regressors.

Model (1) nests the special case of an SARAR model with no endogenous regressors, for which

the best IV matrix Qn and the best Pjn’s can be deduced from Proposition 4. We can see that the

results are the same as those in Lee and Liu (2010) for the SARAR model. Another special model

of interest nested in model (1) is the SAR model with endogenous regressors and without SAR

disturbances. We present the best linear and quadratic moments for such a model in Appendix B.

Note that ξ = 1 when µ30 = 0 and µ40 = 3σ4
0, e.g., when ϵni’s are normally distributed.

In such a situation, by Proposition 4(c), Q∗
n = [Ψn, RnZ̄n, RnXn] and P ∗

jn’s are P ∗
jn = Cjn for

j = 1, . . . , kz + 2.

3 Monte Carlo

In this section, we conduct some Monte Carlo experiments to study the finite sample performance

of the proposed GMM estimators.
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We first generate data from model (1) with no SAR process on disturbances and with one

endogenous regressor in Zn, i.e.,

Yn = λWnYn + Znγ +Xnβ + ϵn, (17)

where elements ϵni’s of ϵn are independent, Wn is a block diagonal matrix with each block being

a row-normalized matrix for the study in Anselin (1988) on crime activities in 49 districts of

Columbus, OH, Xn contains a variable randomly drawn from the standard normal distribution,

λ0 = 0.5, γ0 = 1, and β0 = 1. The endogenous regressor Zn in (17) is generated from the following

model:

Zn = κWnZn + Fnδ + vn, (18)

where Fn and vn = [vn1, . . . , vnn]
′ are independent, elements of Fn and vn are random draws from

the standard normal distribution, δ = 1, and κ is either 0 or 0.5. Each element ϵni of ϵn in (17) is

equal to 1
2
vni +

√
3
2
τni, where τni’s in the homoskedastic case are randomly drawn from either the

standard normal distribution or the gamma(1, 1) distribution with its mean adjusted to be zero,

which has unit variance, skewness 2 and excess kurtosis 6; and τni’s in the heteroskedastic case are

further multiplied by
√
cni, where cni is proportional to the number of nonzero elements in the ith

row of Wn and the mean of cni’s is 1. Thus, the mean of ϵni’s variances is 1.

We consider three OGMM estimators in the homoskedastic case: the first estimator BGMM

is the theoretically best GMM estimator with linear and quadratic moments, with moments given in

Corollary 1(a); for the second estimator GMM2, the IV matrix is [Xn, Fn,WnXn,WnFn,W
2
nXn,W

2
nFn],

and the quadratic moments have square matrices Wn and W 2
n − In tr(W

2
n)/n; and for the third es-

timator GMM3, the square matrices for quadratic moments and the IV matrix are in, respectively,

(B.2) and (B.3), which are implied from the theoretically best Pjn’s and Qn. In the first steps of

BGMM, GMM2 and GMM3, identity matrices are used as weighting matrices in the GMM ob-

jective functions. BGMM provides a basis for comparisons. For GMM3, the unknown parameters

in Qn and Pjn’s are replaced by their first step estimates for GMM2, and the redundant IVs and

quadratic matrices in the case of normally distributed τni’s are excluded. In the heteroskedastic

case, the quadratic moments with diagonal quadratic matrices are removed, and the quadratic ma-

trices for other quadratic moments are modified to have zero diagonals. Corresponding to GMM2,

the GMM estimator in Liu and Saraiva (2015) with the same IV matrix and quadratic matrices

is computed for comparison purposes, which is denoted by GMM2-LS. The moment conditions in

Liu and Saraiva (2015) at true parameters are linear and quadratic in ϵn and vn, so there are 2 lin-

ear moments corresponding to each IV and 4 quadratic moments corresponding to each quadratic

matrix. We also report results on the 2SLS estimator, for which the IV matrix is the same as that

for GMM2. The sample size is either 196 or 392, and the number of Monte Carlo repetitions is

5, 000.
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Table 1 reports the estimation results for the case with homoskedastic disturbances ϵni’s. Note

that GMM2-LS is consistent when κ = 0, but it is not when κ = 0.5. We observe that all estimators

have relatively small biases when κ = 0, but GMM2-LS has relatively large biases when κ = 0.5

and the biases do not decrease as the sample size doubles from 196 to 392, while other estimators

still have small biases for the case with κ = 0.5. When τni’s are normally distributed, BGMM,

GMM2 and GMM3 have similar standard deviations (SD); when τni’s are gamma-distributed,

BGMM and GMM3 have similar SDs, which are smaller than those of GMM2. In particular, with

gamma-distributed τni’s, BGMM and GMM3 show very significant efficiency improvement upon

GMM2 for the parameters γ and β. For all estimators, as the SDs dominate biases, the root mean

squared errors (RMSE) are similar to the SDs. For the case with κ = 0, GMM2-LS does not always

have smaller SDs and RMSEs than GMM2. This is the case since GMM2-LS also estimates the

parameter κ in the reduced form of Zn, although GMM2-LS employs more moment conditions.

2SLS has significantly larger SDs for the spatial dependence parameter than other estimators. It

also has the largest SD for β, and the second largest SDs for γ, which are only smaller than those

of GMM2-LS. As the sample size increases from n = 196 to n = 392, the SDs and RMSEs of

BGMM, GMM2 and GMM3 decrease.

Table 2 reports the estimation results for the case with heteroskedastic disturbances. GMM2-

LS still has relatively small biases when κ = 0 and relatively large biases when κ = 0.5, while

other estimators have smaller biases for both κ = 0 and κ = 0.5. BGMM, GMM2 and GMM3

have similar SDs and RMSEs.8 The patterns for the performance of 2SLS are similar to those in

the homoskedastic case.

We also generate data from model (1), where the spatial weights matrix Mn is based on the

queen criterion and normalized to have row sums equal to one, the true ρ0 is 0.2, and other settings

are the same as those for model (17). For the theoretically best GMM estimator BGMM with

linear and quadratic moments in the homoskedastic case, the moments are given in Proposition

4. For the second estimator GMM2, the IV matrix is [Xn, Fn,WnXn,WnFn,W
2
nXn,W

2
nFn], and

the quadratic moments have square matrices Wn, W
2
n − In tr(W

2
n)/n, Mn and M2

n − In tr(M
2
n)/n.

For the third estimator GMM3, the square matrices for quadratic moments and the IV matrix

are in, respectively, (15) and (16), and the involved unknown parameters in the square matrices

and IV matrix are replaced by their first step estimates for GMM2. GMM2-LS is not considered

since it has not taken into account the SAR process in disturbances and thus it is not expected

to perform well. The GS2SLS estimator in Drukker et al. (2013) is also considered, which uses

8Note that BGMM in the heteroskedastic case is no longer the theoretically best GMM estimator with linear

and quadratic moments. In the heteroskedastic case, BGMM uses moment conditions modified from the best linear

and quadratic moments for the homoskedastic case, where the IV matrix is the same and the quadratic matrices

are modified to have zero diagonals.
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Table 1: Estimation results of model (17) with homoskedastic disturbances

λ γ β

n = 196

Normally distributed τni’s, κ = 0 BGMM -0.002[0.042]0.042 -0.002[0.072]0.072 -0.003[0.071]0.071

GMM2 0.003[0.042]0.042 0.010[0.070]0.071 -0.004[0.071]0.071

GMM2-LS 0.004[0.038]0.039 -0.006[0.075]0.075 -0.002[0.062]0.062

GMM3 -0.002[0.042]0.042 -0.002[0.072]0.072 -0.003[0.071]0.071

2SLS 0.003[0.072]0.073 0.002[0.072]0.072 -0.004[0.072]0.072

Normally distributed τni’s, κ = 0.5 BGMM 0.001[0.037]0.037 -0.000[0.071]0.071 -0.002[0.073]0.073

GMM2 0.000[0.038]0.038 0.006[0.070]0.070 -0.002[0.072]0.072

GMM2-LS -0.065[0.038]0.075 0.048[0.079]0.092 0.011[0.065]0.066

GMM3 -0.000[0.038]0.038 -0.003[0.073]0.073 -0.003[0.072]0.072

2SLS 0.000[0.062]0.062 -0.000[0.074]0.074 -0.002[0.073]0.073

Gamma-distributed τni’s, κ = 0 BGMM -0.001[0.039]0.039 -0.003[0.062]0.062 -0.002[0.060]0.060

GMM2 0.002[0.042]0.042 0.009[0.072]0.073 -0.003[0.073]0.073

GMM2-LS 0.003[0.039]0.039 -0.007[0.077]0.077 -0.002[0.063]0.063

GMM3 -0.001[0.040]0.040 -0.003[0.062]0.062 -0.002[0.060]0.060

2SLS 0.002[0.075]0.075 0.002[0.074]0.074 -0.003[0.074]0.074

Gamma-distributed τni’s, κ = 0.5 BGMM -0.002[0.035]0.035 -0.001[0.060]0.060 -0.003[0.061]0.061

GMM2 -0.000[0.038]0.038 0.008[0.071]0.071 -0.003[0.073]0.073

GMM2-LS -0.066[0.039]0.077 0.051[0.080]0.094 0.011[0.066]0.067

GMM3 -0.001[0.036]0.036 -0.001[0.061]0.061 -0.003[0.061]0.061

2SLS 0.000[0.061]0.061 0.002[0.074]0.074 -0.003[0.074]0.074

n = 392

Normally distributed τni’s, κ = 0 BGMM -0.001[0.029]0.029 -0.001[0.050]0.050 -0.002[0.051]0.051

GMM2 0.002[0.029]0.029 0.005[0.050]0.050 -0.002[0.051]0.051

GMM2-LS 0.002[0.026]0.026 -0.003[0.051]0.051 -0.001[0.044]0.044

GMM3 -0.001[0.028]0.028 -0.001[0.050]0.050 -0.002[0.051]0.051

2SLS 0.002[0.051]0.051 0.001[0.051]0.051 -0.002[0.052]0.052

Normally distributed τni’s, κ = 0.5 BGMM -0.000[0.026]0.026 0.000[0.050]0.050 -0.002[0.051]0.051

GMM2 -0.001[0.026]0.026 0.003[0.050]0.050 -0.002[0.051]0.051

GMM2-LS -0.066[0.027]0.071 0.052[0.056]0.076 0.011[0.046]0.047

GMM3 -0.001[0.026]0.026 -0.002[0.051]0.051 -0.002[0.051]0.051

2SLS -0.001[0.043]0.043 0.000[0.053]0.053 -0.002[0.051]0.051

Gamma-distributed τni’s, κ = 0 BGMM -0.001[0.027]0.027 -0.001[0.043]0.043 -0.001[0.043]0.043

GMM2 0.001[0.029]0.029 0.004[0.051]0.051 -0.001[0.052]0.052

GMM2-LS 0.001[0.026]0.026 -0.004[0.052]0.053 -0.001[0.045]0.045

GMM3 -0.001[0.027]0.027 -0.001[0.043]0.043 -0.001[0.043]0.043

2SLS 0.001[0.050]0.050 0.001[0.052]0.052 -0.001[0.052]0.052

Gamma-distributed τni’s, κ = 0.5 BGMM -0.001[0.024]0.024 -0.002[0.042]0.042 -0.000[0.043]0.043

GMM2 -0.001[0.027]0.027 0.004[0.050]0.050 -0.002[0.051]0.051

GMM2-LS -0.067[0.027]0.072 0.052[0.056]0.077 0.012[0.046]0.048

GMM3 -0.001[0.024]0.024 -0.002[0.042]0.042 -0.001[0.043]0.043

2SLS -0.001[0.044]0.044 0.001[0.052]0.052 -0.001[0.051]0.051

The three numbers in each cell are bias[SD]RMSE. [λ0, γ0, β0] = [0.5, 1, 1].
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Table 2: Estimation results of model (17) with heteroskedastic disturbances

λ γ β

n = 196

Normally distributed τni’s, κ = 0 BGMM -0.002[0.041]0.041 -0.002[0.072]0.072 -0.003[0.073]0.074

GMM2 0.003[0.041]0.041 0.010[0.071]0.072 -0.003[0.074]0.074

GMM2-LS 0.004[0.036]0.036 -0.006[0.074]0.074 -0.003[0.064]0.064

GMM3 -0.002[0.040]0.040 -0.002[0.072]0.072 -0.003[0.073]0.073

2SLS 0.003[0.070]0.070 0.002[0.072]0.072 -0.003[0.073]0.074

Normally distributed τni’s, κ = 0.5 BGMM 0.000[0.036]0.036 0.001[0.071]0.071 -0.002[0.072]0.072

GMM2 -0.000[0.036]0.036 0.008[0.071]0.071 -0.002[0.073]0.073

GMM2-LS -0.064[0.036]0.074 0.046[0.080]0.093 0.012[0.065]0.067

GMM3 -0.001[0.036]0.036 -0.002[0.072]0.072 -0.002[0.072]0.072

2SLS -0.000[0.058]0.058 0.001[0.074]0.074 -0.001[0.073]0.073

Gamma-distributed τni’s, κ = 0 BGMM -0.002[0.039]0.039 -0.002[0.073]0.073 -0.004[0.072]0.072

GMM2 0.002[0.040]0.040 0.010[0.071]0.072 -0.004[0.071]0.071

GMM2-LS 0.003[0.035]0.035 -0.007[0.076]0.076 -0.003[0.063]0.063

GMM3 -0.002[0.039]0.039 -0.002[0.073]0.073 -0.004[0.072]0.072

2SLS 0.004[0.069]0.069 0.002[0.073]0.073 -0.005[0.072]0.073

Gamma-distributed τni’s, κ = 0.5 BGMM -0.000[0.036]0.036 0.001[0.070]0.070 -0.004[0.073]0.073

GMM2 -0.001[0.036]0.036 0.008[0.070]0.070 -0.004[0.072]0.072

GMM2-LS -0.064[0.037]0.074 0.046[0.080]0.092 0.009[0.066]0.067

GMM3 -0.001[0.036]0.036 -0.002[0.072]0.072 -0.004[0.072]0.072

2SLS -0.000[0.059]0.059 0.001[0.074]0.074 -0.004[0.073]0.073

n = 392

Normally distributed τni’s, κ = 0 BGMM -0.001[0.028]0.028 -0.001[0.051]0.051 -0.002[0.050]0.050

GMM2 0.002[0.028]0.028 0.005[0.051]0.051 -0.002[0.050]0.050

GMM2-LS 0.002[0.025]0.025 -0.004[0.052]0.052 -0.001[0.044]0.044

GMM3 -0.001[0.028]0.028 -0.001[0.051]0.051 -0.002[0.050]0.050

2SLS 0.002[0.048]0.048 0.001[0.051]0.051 -0.002[0.051]0.051

Normally distributed τni’s, κ = 0.5 BGMM 0.000[0.025]0.025 0.001[0.050]0.050 -0.001[0.051]0.051

GMM2 -0.000[0.025]0.025 0.004[0.050]0.050 -0.001[0.052]0.052

GMM2-LS -0.065[0.026]0.070 0.050[0.057]0.076 0.013[0.046]0.048

GMM3 -0.000[0.025]0.025 -0.001[0.051]0.051 -0.001[0.051]0.051

2SLS -0.000[0.041]0.041 0.001[0.052]0.052 -0.001[0.051]0.051

Gamma-distributed τni’s, κ = 0 BGMM -0.001[0.028]0.028 0.001[0.051]0.051 -0.002[0.052]0.052

GMM2 0.001[0.028]0.028 0.007[0.050]0.051 -0.002[0.051]0.051

GMM2-LS 0.002[0.025]0.025 -0.002[0.052]0.052 -0.001[0.045]0.045

GMM3 -0.001[0.028]0.028 0.001[0.051]0.051 -0.002[0.051]0.051

2SLS 0.001[0.048]0.048 0.003[0.051]0.051 -0.002[0.052]0.052

Gamma-distributed τni’s, κ = 0.5 BGMM -0.000[0.025]0.025 -0.001[0.050]0.050 -0.002[0.050]0.050

GMM2 -0.001[0.026]0.026 0.003[0.049]0.049 -0.002[0.050]0.050

GMM2-LS -0.065[0.026]0.070 0.047[0.057]0.075 0.012[0.045]0.047

GMM3 -0.001[0.025]0.025 -0.002[0.051]0.051 -0.002[0.050]0.050

2SLS 0.000[0.040]0.040 -0.001[0.052]0.052 -0.002[0.050]0.050

The three numbers in each cell are bias[SD]RMSE. [λ0, γ0, β0] = [0.5, 1, 1].
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the same quadratic moments as those of GMM2 in estimating the spatial dependence parameter

in disturbances. It corresponds to the 2SLS estimator for model (17). Tables 3–4 report the

estimation results in the homoskedastic and heteroskedastic cases respectively. We observe similar

patterns for BGMM, GMM2 and GMM3 as those in Tables 1–2 for model (17). GS2SLS is observed

to have the largest SDs and RMSEs.

In sum, our proposed GMM estimators perform well in finite samples for both homoskedastic

and heteroskedastic cases, while the 2SLS or GS2SLS estimator has larger SDs and RMSEs, and

the GMM estimator in Liu and Saraiva (2015) can have a bad performance if the endogenous

regressors have a reduced form different from the assumed one. In the homoskedastic case, the

feasible moments implied by the theoretically best linear and quadratic moments can generate a

GMM estimator that has similar performance to that of the theoretically best GMM estimator.

When the disturbances follow a distribution with nonzero skew and nonzero excess kurtosis, this

feasible best GMM estimator can have significant efficiency improvement upon the GMM estimator

with some linear and quadratic moments that are commonly used in the literature. We thus suggest

the use of this feasible best GMM estimator in practice.

4 Conclusion

This paper considers the GMM estimation of SAR models with SAR disturbances and endogenous

regressors. We do not assume any reduced form of the endogenous regressors, thus we allow

for spatial dependence and heterogeneity in endogenous regressors, and also allow for nonlinear

relations among endogenous regressors and their instruments. Both linear and quadratic moments

are employed for estimation. We prove that GMM estimators are consistent and asymptotically

normal in both the homoskedastic and heteroskedastic cases. In the homoskedastic case, we derive

the best linear and quadratic moments that can generate an OGMM estimator with the minimum

asymptotic variance.
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Appendix A List of notations

In is the n× n identity matrix, Sn(λ) = In − λWn, Rn(ρ) = In − ρMn, Sn = Sn(λ0), Rn = Rn(ρ0),

Z̄n = E(Zn), Žn = Zn − Z̄n, Tn = WnS
−1
n , Hn = MnR

−1
n , Ωn = var[

√
ngn(θ0)] and Gn = E(∂gn(θ0)

∂θ′
).
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Table 3: Estimation results of model (1) with homoskedastic disturbances

λ ρ γ β

n = 196

Normally distributed τni’s, κ = 0 BGMM -0.002[0.044]0.044 -0.001[0.127]0.127 0.003[0.072]0.072 -0.003[0.072]0.072

GMM2 0.003[0.045]0.045 0.001[0.131]0.131 0.014[0.070]0.072 -0.003[0.071]0.071

GMM3 -0.003[0.044]0.044 -0.008[0.127]0.127 -0.001[0.072]0.072 -0.003[0.072]0.072

GS2SLS 0.003[0.076]0.076 -0.002[0.141]0.141 0.002[0.073]0.073 -0.004[0.072]0.072

Normally distributed τni’s, κ = 0.5 BGMM -0.000[0.039]0.039 -0.004[0.133]0.133 0.000[0.071]0.071 -0.002[0.072]0.072

GMM2 0.000[0.040]0.040 -0.002[0.133]0.134 0.010[0.071]0.071 -0.003[0.072]0.072

GMM3 -0.001[0.040]0.040 -0.010[0.130]0.130 -0.003[0.073]0.073 -0.003[0.072]0.072

GS2SLS 0.001[0.065]0.065 -0.002[0.145]0.145 -0.001[0.075]0.075 -0.002[0.073]0.073

Gamma-distributed τni’s, κ = 0 BGMM -0.000[0.042]0.042 0.004[0.131]0.132 -0.000[0.061]0.061 -0.003[0.061]0.061

GMM2 0.004[0.045]0.045 -0.002[0.130]0.130 0.013[0.072]0.073 -0.004[0.073]0.073

GMM3 -0.000[0.042]0.042 0.004[0.130]0.130 -0.000[0.062]0.062 -0.003[0.061]0.061

GS2SLS 0.005[0.077]0.077 -0.003[0.145]0.145 0.001[0.074]0.074 -0.004[0.074]0.074

Gamma-distributed τni’s, κ = 0.5 BGMM -0.002[0.038]0.038 0.000[0.133]0.133 0.000[0.060]0.060 -0.002[0.061]0.061

GMM2 -0.000[0.040]0.040 -0.004[0.132]0.132 0.013[0.070]0.072 -0.002[0.073]0.073

GMM3 -0.001[0.039]0.039 0.000[0.132]0.132 0.000[0.062]0.062 -0.002[0.062]0.062

GS2SLS -0.000[0.065]0.065 -0.004[0.143]0.143 0.002[0.075]0.075 -0.002[0.073]0.073

n = 392

Normally distributed τni’s, κ = 0 BGMM -0.000[0.030]0.030 0.001[0.091]0.091 0.001[0.051]0.051 -0.001[0.051]0.051

GMM2 0.002[0.031]0.031 0.001[0.092]0.092 0.007[0.050]0.051 -0.001[0.051]0.051

GMM3 -0.001[0.030]0.030 -0.003[0.091]0.091 -0.001[0.051]0.051 -0.001[0.051]0.051

GS2SLS 0.001[0.054]0.054 0.000[0.100]0.100 0.001[0.051]0.051 -0.001[0.052]0.052

Normally distributed τni’s, κ = 0.5 BGMM -0.000[0.027]0.027 -0.003[0.092]0.092 0.001[0.051]0.051 -0.002[0.050]0.051

GMM2 -0.000[0.027]0.027 -0.001[0.092]0.092 0.006[0.051]0.051 -0.002[0.051]0.051

GMM3 -0.001[0.027]0.027 -0.005[0.090]0.091 -0.001[0.052]0.052 -0.002[0.050]0.051

GS2SLS -0.002[0.044]0.044 0.000[0.098]0.098 0.001[0.053]0.053 -0.002[0.051]0.051

Gamma-distributed τni’s, κ = 0 BGMM -0.000[0.028]0.028 0.004[0.092]0.092 0.001[0.042]0.042 -0.001[0.042]0.042

GMM2 0.002[0.031]0.031 0.001[0.092]0.092 0.008[0.051]0.052 -0.001[0.050]0.050

GMM3 -0.000[0.029]0.029 0.004[0.091]0.091 0.001[0.042]0.042 -0.001[0.042]0.042

GS2SLS -0.000[0.054]0.054 0.001[0.099]0.099 0.002[0.052]0.052 -0.001[0.051]0.051

Gamma-distributed τni’s, κ = 0.5 BGMM -0.001[0.025]0.025 0.002[0.091]0.091 0.000[0.042]0.042 -0.001[0.042]0.042

GMM2 -0.001[0.027]0.027 -0.001[0.091]0.091 0.007[0.050]0.051 -0.001[0.051]0.051

GMM3 -0.000[0.025]0.025 0.002[0.090]0.090 0.000[0.042]0.042 -0.001[0.042]0.042

GS2SLS -0.001[0.044]0.044 -0.000[0.097]0.097 0.002[0.053]0.053 -0.001[0.052]0.052

The three numbers in each cell are bias[SD]RMSE. [λ0, ρ0, γ0, β0] = [0.5, 0.2, 1, 1].
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Table 4: Estimation results of model (1) with heteroskedastic disturbances

λ ρ γ β

n = 196

Normally distributed τni’s, κ = 0 BGMM -0.001[0.042]0.042 -0.002[0.128]0.128 0.005[0.074]0.074 -0.003[0.073]0.073

GMM2 0.003[0.043]0.043 0.000[0.131]0.131 0.017[0.073]0.075 -0.003[0.073]0.073

GMM3 -0.002[0.043]0.043 -0.009[0.127]0.128 0.001[0.074]0.074 -0.003[0.073]0.073

GS2SLS 0.002[0.073]0.073 -0.003[0.143]0.143 0.005[0.074]0.074 -0.003[0.074]0.074

Normally distributed τni’s, κ = 0.5 BGMM -0.001[0.038]0.038 -0.003[0.134]0.134 0.003[0.071]0.071 -0.001[0.072]0.072

GMM2 -0.001[0.039]0.039 0.000[0.133]0.133 0.013[0.071]0.072 -0.001[0.073]0.073

GMM3 -0.002[0.038]0.038 -0.009[0.130]0.130 -0.001[0.073]0.073 -0.001[0.072]0.072

GS2SLS 0.001[0.060]0.060 -0.001[0.143]0.143 0.002[0.074]0.074 -0.001[0.073]0.073

Gamma-distributed τni’s, κ = 0 BGMM -0.000[0.043]0.043 0.011[0.130]0.131 0.006[0.072]0.072 -0.004[0.072]0.072

GMM2 0.003[0.043]0.043 0.003[0.132]0.132 0.015[0.071]0.072 -0.005[0.072]0.072

GMM3 -0.001[0.044]0.044 0.005[0.130]0.130 0.001[0.072]0.072 -0.004[0.072]0.072

GS2SLS 0.005[0.071]0.071 -0.003[0.143]0.143 0.003[0.073]0.073 -0.004[0.073]0.073

Gamma-distributed τni’s, κ = 0.5 BGMM -0.000[0.038]0.038 0.008[0.132]0.132 0.002[0.070]0.070 -0.003[0.073]0.073

GMM2 -0.001[0.038]0.038 -0.001[0.131]0.131 0.011[0.070]0.070 -0.002[0.072]0.072

GMM3 -0.001[0.038]0.038 0.003[0.128]0.128 -0.001[0.072]0.072 -0.003[0.073]0.073

GS2SLS 0.001[0.060]0.060 -0.004[0.141]0.141 -0.001[0.074]0.074 -0.003[0.073]0.073

n = 392

Normally distributed τni’s, κ = 0 BGMM -0.000[0.029]0.029 -0.000[0.092]0.092 0.001[0.050]0.050 -0.003[0.051]0.051

GMM2 0.002[0.030]0.030 0.001[0.093]0.093 0.007[0.050]0.051 -0.003[0.052]0.052

GMM3 -0.001[0.029]0.029 -0.004[0.092]0.092 -0.001[0.050]0.050 -0.003[0.051]0.051

GS2SLS 0.001[0.051]0.051 -0.001[0.100]0.100 0.000[0.051]0.051 -0.003[0.052]0.052

Normally distributed τni’s, κ = 0.5 BGMM -0.000[0.026]0.026 -0.002[0.094]0.094 0.002[0.049]0.049 -0.002[0.050]0.050

GMM2 -0.000[0.027]0.027 0.000[0.094]0.094 0.007[0.049]0.050 -0.002[0.050]0.050

GMM3 -0.001[0.026]0.026 -0.005[0.092]0.093 0.000[0.050]0.050 -0.002[0.050]0.050

GS2SLS -0.001[0.042]0.042 0.000[0.100]0.100 0.002[0.051]0.052 -0.002[0.050]0.050

Gamma-distributed τni’s, κ = 0 BGMM 0.001[0.029]0.029 0.003[0.092]0.092 0.004[0.050]0.050 -0.003[0.052]0.052

GMM2 0.002[0.029]0.029 -0.002[0.092]0.092 0.009[0.050]0.051 -0.003[0.052]0.052

GMM3 0.000[0.029]0.029 0.000[0.092]0.092 0.001[0.050]0.050 -0.003[0.052]0.052

GS2SLS 0.002[0.050]0.050 -0.004[0.099]0.099 0.002[0.051]0.051 -0.003[0.053]0.053

Gamma-distributed τni’s, κ = 0.5 BGMM -0.001[0.026]0.026 0.003[0.092]0.092 0.001[0.050]0.050 -0.001[0.050]0.050

GMM2 -0.001[0.026]0.026 -0.002[0.092]0.092 0.006[0.050]0.050 -0.001[0.050]0.050

GMM3 -0.001[0.026]0.026 0.000[0.091]0.091 -0.001[0.051]0.051 -0.002[0.050]0.050

GS2SLS -0.001[0.042]0.042 -0.003[0.098]0.098 -0.000[0.052]0.052 -0.001[0.051]0.051

The three numbers in each cell are bias[SD]RMSE. [λ0, ρ0, γ0, β0] = [0.5, 0.2, 1, 1].
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For a square matrix A, diag(A) is a diagonal matrix formed by the diagonal elements of A;

for a vector a, diag(a) is a diagonal matrix formed by the elements of a. σ2
ni = E(ϵ2ni) and

Σn = diag(σ2
n1, · · · , σ2

nn).

For any square matrix A, As = A+A′, dA is a column vector formed by the diagonal elements

of A, and vec(A) is the vectorization of A.

ωn = [vec(P s
1n), · · · , vec(P s

kpn
)], ωnd = [dP1n , · · · , dPkpn

], Σ
1/2
n = diag(σn1, · · · , σnn), and ωnh =

[vec(Σ
1/2
n P s

1nΣ
1/2
n ), · · · , vec(Σ1/2

n P s
kpn

Σ
1/2
n )].

In the case that ϵni’s are i.i.d., σ
2
0 = E(ϵ2ni), µ30 = E(ϵ3ni), µ40 = E(ϵ4ni), ξ =

√
2
2
(µ40

σ4
0
−1− µ2

30

σ6
0
)1/2,

P s
jn,ξ = ξ diag(P s

jn) + [P s
jn − diag(P s

jn)], ωnξ = [vec(P s
1n,ξ), · · · , vec(P s

kpn,ξ
)].

ζn = Tn(Žnγ0 + R−1
n ϵn), Ψn = RnTn(Z̄nγ0 + Xnβ0), ln is an n × 1 vector of ones, and ãn =

an − 1
n
lnl

′
nan for any n× 1 vector an.

Appendix B Best linear and quadratic moments for a spe-

cial model with no SAR disturbances

In this section, we consider the best linear and quadratic moments for the following model:

Yn = λWnYn + Znγ +Xnβ + ϵn, (B.1)

where elements of ϵn are i.i.d. with mean zero and variance σ2
0, and the notations are the same as

those in the main text. Model (B.1) is a special model nested in model (1). The GMM estimation

of (B.1) still has the objective function (4), where the moment vector gn(θ) has the form (3),

but θ reduces to [λ, γ, β′]′ and ϵn(θ) = Sn(λ)Yn − Znγ − Xnβ. The best linear and quadratic

moments for model (B.1) are presented in the following Corollary 1. Let Φn = Tn(Z̄nγ0 +Xnβ0),

ςn = Tn(Žnγ0 + ϵn), C1n = E(ςnϵ
′
n)− In tr[E(ςnϵ

′
n)]/n, and C1+j,n = E(Žn,·jϵ

′
n)− In tr[E(Žn,·jϵ

′
n)]/n

for j = 1, . . . , kz.

Corollary 1. The following results hold for the GMM estimation of model (B.1) with i.i.d. dis-

turbances.

(a) The best Qn and Pjn’s that can generate an OGMM estimator with the minimum asymptotic

variance are

Q∗
n =

[
Φn −

µ30

ξ2σ4
0

dC1n +
µ2
30

2ξ2σ6
0

Φ̃n,

Z̄n,·1 −
µ30

ξ2σ4
0

dC2n +
µ2
30

2ξ2σ6
0

˜̄Zn,·1, · · · , Z̄n,·kz −
µ30

ξ2σ4
0

dCkz+1,n
+

µ2
30

2ξ2σ6
0

˜̄Zn,·kz ,

Xn,·1 +
µ2
30

2ξ2σ6
0

X̃n,·1, · · · , Xn,·kx +
µ2
30

2ξ2σ6
0

X̃n,·kx

]
,
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P ∗
1n = [C1n − diag(C1n)] +

1
ξ2
diag(C1n) − µ30

2ξ2σ2
0
diag

(
Φ̃n

)
, P ∗

1+j,n = [C1+j,n − diag(C1+j,n)] +

1
ξ2
diag(C1+j,n) − µ30

2ξ2σ2
0
diag

( ˜̄Zn,·j
)
for j = 1, ..., kz, and P ∗

1+kz+j,n = diag
(
X̃n,·j

)
for j =

1, . . . , kx.

(b) The OGMM estimator with the above Q∗
n and P ∗

jn’s, denoted by θ̂bgmm, has the asymptotic

distribution
√
n(θ̂bgmm − θ0)

d−→ N(0, limn→∞( 1
n
Γ′
nΓn)

−1), where

Γn =

(
Γn,11 − µ30√

2ξσ4
0

[
vec
(
diag(X̃n,·1)

)
, · · · , vec

(
diag(X̃n,·kx)

)]
1
σ0
[Φn, 0n×1, Z̄n]

1
σ0
Xn

)
with

Γn,11 =
1√
2σ2

0

[
vec
(
Cs

1n,1/ξ −
µ30

ξσ2
0

diag(Φ̃n)
)
,

vec
(
Cs

2n,1/ξ −
µ30

ξσ2
0

diag
( ˜̄Zn,·1

))
, · · · , vec

(
Cs

kz+1,n,1/ξ −
µ30

ξσ2
0

diag
(˜̄Zn,·kz

))]
.

(c) When µ30 = 0, the quadratic matrices diag
(
X̃n,·j

)
for j = 1, . . . , kx are redundant, so Q∗

n

reduces to Q∗
n = [Φn, Z̄n, Xn] and P ∗

jn’s are P ∗
jn = [Cjn − diag(Cjn)] +

1
ξ2
diag(Cjn) for j =

1, . . . , kz + 1.

(d) For Q∗
n and P ∗

jn’s in (a), if we use the IVs in each column of Q∗
n and the quadratic matrices

in each P ∗
jn separately, then Q∗

n = [Φn, Z̄n, Xn, dC1n , · · · , dCkz+1,n
, ln], and P ∗

jn’s are Cjn −
diag(Cjn) for j = 1, . . . , kz + 1, diag(Cjn) for j = 1, . . . , kz + 1, diag(Φ̃n), diag(

˜̄Zn,·j) for

j = 1, . . . , kz, and diag(X̃n,·j) for j = 1, . . . , kx.

When µ30 = 0, Q∗
n = [Φn, Z̄n, Xn], and P ∗

jn’s are P ∗
jn = Cjn−diag(Cjn) for j = 1, . . . , kz +1,

and P ∗
1+kz+j,n = diag(Cjn) for j = 1, . . . , kz + 1.

If we have an IV matrix Fn for Zn, the 2SLS estimate of Zn is Ẑn = Fn(F
′
nFn)

−1F ′
nZn, which

is an estimate of Z̄n. By Corollary 1(a), as ςn = Tn(Žnγ0 + ϵn) and Φn = Tn(Z̄nγ0 +Xnβ0), Pjn’s

can be taken as

σ2
0[Tn − diag(Tn)] +

σ2
0

ξ2
diag

(
Tn −

tr(Tn)

n
In
)
− µ30

2ξ2σ2
0

diag(Π̃n),

diag(
˜̂
Zn,·1), · · · , diag(˜̂Zn,·kz), diag(X̃n,·1), · · · , diag(X̃n,·kx);

(B.2)

where Πn = Tn(Ẑnγ0 +Xnβ0), and the IV matrix Qn can be taken as[
Πn −

µ30

ξ2σ2
0

dTn−In tr(Tn)/n +
µ2
30

2ξ2σ6
0

Π̃n, Ẑn,·1 +
µ2
30

2ξ2σ6
0

˜̂
Zn,·1, · · · , Ẑn,·kz +

µ2
30

2ξ2σ6
0

˜̂Zn,·kz

Xn,·1 +
µ2
30

2ξ2σ6
0

X̃n,·1, · · · , Xn,·kx +
µ2
30

2ξ2σ6
0

X̃n,·kx

]
.

(B.3)

When µ30 = 0, the quadratic matrices diag(
˜̂
Zn,·1), ..., diag(

˜̂Zn,·kz), diag(X̃n,·1), ..., diag(X̃n,·kx) in

(B.2) are redundant.
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Appendix C Proofs

Proof of Lemma 1. The discussion in the main text shows that, if limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0 +

Xnβ0), Z̄n, Xn] has full column rank for any ρ in its parameter space ρ, the linear moment part

of limn→∞ E[gn(θ)] = 0 implies that (λ, γ, β) = (λ0, γ0, β0). With (λ, γ, β) = (λ0, γ0, β0), by

(6), E[ϵ′n(θ)Pjnϵn(θ)] reduces to E[ϵ′nR
′−1
n R′

n(ρ)PjnRn(ρ)R
−1
n ϵn]. Then a sufficient identification

condition for ρ0 is that9

lim
n→∞

1

n
E[ϵ′nR

′−1
n R′

n(ρ)PjnRn(ρ)R
−1
n ϵn] = 0 for j = 1, . . . , kp have a unique solution at

ρ = ρ0 for ρ ∈ ρ.
(C.1)

This identification condition corresponds to that of a pure SAR process un = ρMnun + ϵn as if un

were observable, which is the same as that in Liu et al. (2010). Let Hn = MnR
−1
n , and Ξ = [Ξjk]

be a kp × 2 matrix with Ξj1 = limn→∞
1
n
E(ϵ′nP

s
jnHnϵn) and Ξj2 = limn→∞

1
n
E(ϵ′nH

′
nP

s
jnHnϵn)

for j = 1, . . . , kp, where As = A + A′ for any square matrix A. Since E(ϵ′nPjnϵn) = 0 and

Rn(ρ) = Rn+(ρ0−ρ)Mn is linear in ρ, limn→∞ E[ϵ′nR
′−1
n R′

n(ρ)PjnRn(ρ)R
−1
n ϵn] = 0 for j = 1, . . . , kp

can be written as (ρ0 − ρ)Ξ
(

1
(ρ0−ρ)/2

)
= 0. Let Ξ1 and Ξ2 be, respectively, the first column and the

second column of Ξ. Then (C.1) is equivalent to the condition that

Ξ1 +
ρ0 − ρ

2
Ξ2 ̸= 0 when ρ ∈ ρ and ρ ̸= ρ0. (C.2)

If Ξ has full column rank, then (C.2) holds. Even if Ξ has reduced column rank, the linear

combination Ξ1 +
ρ0−ρ
2

Ξ2 may still be nonzero for any ρ ∈ ρ and ρ ̸= ρ0, since the combination

Ξ1+
ρ0−ρ
2

Ξ2 may be only zero for some ρ ̸∈ ρ.10 We may derive some sufficient conditions for (C.2)

to hold in the case that Ξ has reduced column rank. If Ξ1 = 0, then Ξ2 ̸= 0 is sufficient; if Ξ2 = 0,

then Ξ1 ̸= 0 is sufficient. Thus, the following condition is sufficient for (C.2):

Either (i) Ξ has full column rank; or (ii) Ξ1 = 0, and Ξk2 ̸= 0 for some k;

or (iii) Ξj1 ̸= 0 for some j, and Ξ2 = 0.
(C.3)

If limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0+Xnβ0), Z̄n, Xn] has reduced column rank for some ρ ∈ ρ, as Qn

usually includes Xn, we maintain in Assumption 6(ii) that limn→∞
1
n
Q′

nRn(ρ)Xn has full column

rank for any ρ ∈ ρ. Assume that limn→∞
1
n
Q′

nRn(ρ)[Tn(Z̄nγ0 + Xnβ0), Z̄n, Xn] has column rank

(kx+k0) for some 0 ≤ k0 < kz+1. Let Z̄n = [Z̄1n, Z̄2n], where Z̄1n is n×(kz−k0) and Z̄2n is n×k0.

Without loss of generality, assume that limn→∞
1
n
Q′

nRn(ρ)[Z̄2n, Xn] has full column rank for any

9For an n×nmatrix An, note that E(ϵ
′
nAnϵn) = σ2

0 tr(An) if ϵni’s are homoskedastic, and E(ϵ′nAnϵn) = tr(AnΣn)

if ϵni’s are heteroskedastic. We keep the expectation in (C.1) for simplicity.
10We thank an anonymous referee for pointing out this.
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ρ ∈ ρ.11 Then, for a large enough n, there is some (kx+k0)×1 vector c1 and some (kx+k0)×(kz−k0)

matrix c2 such that Tn(Z̄nγ0 + Xnβ0) = [Z̄2n, Xn]c1 and Z̄1n = [Z̄2n, Xn]c2. Denote γ = [γ′
1, γ

′
2]

′,

where γ1 is (kz − k0)× 1 and γ2 is k0 × 1. Correspondingly, denote γ0 = [γ′
10, γ

′
20]

′. Thus,

E[Q′
nϵn(θ)] = Q′

nRn(ρ)[Z̄2n, Xn]
[
(λ0 − λ)c1 + c2(γ10 − γ1) +

( γ20−γ2
β0−β

)]
.

Hence, limn→∞
1
n
E[Q′

nϵn(θ)] = 0 implies that (λ0 − λ)c1 + c2(γ10 − γ1) +
( γ20−γ2

β0−β

)
= 0, and thus

ϵ̄n(θ) = 0. Then, as long as λ0 and γ10 are identified, γ20 and β0 are identified. The identi-

fication of λ0 and γ10 can be from the quadratic moments. As ϵ̄n(θ) = 0 for a large enough

n, E[ϵ′n(θ)Pjnϵn(θ)] = E[ϵ̌′n(θ)Pjnϵ̌n(θ)]. Therefore, we have the following sufficient identification

condition:

lim
n→∞

1

n
E[ϵ̌′n(θ)Pjnϵ̌n(θ)] = 0 for j = 1, . . . , kp, have a unique solution at

(λ, ρ, γ) = (λ0, ρ0, γ0) for θ ∈ Θ.
(C.4)

Since ϵ̌n(θ) is linear in each element of θ, we can expand each E[ϵ̌′n(θ)Pjnϵ̌n(θ)] as a polynomial

function of θ− θ0. Correspondingly, (C.4) can be written in an equivalent way where each element

is a polynomial of θ − θ0.

Proof of Proposition 1. We first prove that gn(θ)−E[gn(θ)] = op(1). With ϵ̌n(θ) in (8), 1
n
Q′

nϵn(θ)−
1
n
E[Q′

nϵn(θ)] =
1
n
Q′

nϵ̌n(θ) =
1
n
Q′

nRn(ρ)[R
−1
n ϵn + (λ0 − λ)TnR

−1
n ϵn] +

1
n
Q′

nRn(ρ)[(λ0 − λ)TnŽnγ0 +

Žn(γ0 − γ)]. For simplicity, we abbreviate “bounded in both row and column sum matrix norms”

as UB. By Lemma A.4 in Lin and Lee (2010), under Assumptions 1 and 4, 1
n
Q′

nKnϵn = op(1),

where Kn is an n × n UB matrix. Thus, with Rn(ρ) = In − ρMn, we have 1
n
Q′

nRn(ρ)[R
−1
n ϵn +

(λ0 − λ)TnR
−1
n ϵn] = op(1) under Assumptions 1, 2 and 4. By Assumption 8, 1

n
Q′

nAnŽn = op(1)

for An = In, Mn, Tn and MnTn. Thus, 1
n
Q′

nRn(ρ)[(λ0 − λ)TnŽnγ0 + Žn(γ0 − γ)] = op(1). Hence,
1
n
Q′

nϵn(θ)− 1
n
E[Q′

nϵn(θ)] = op(1), where
1
n
E[Q′

nϵn(θ)] =
1
n
Q′

nϵ̄n(θ) = O(1) under Assumptions 2–4.

With ϵ̄n(θ) in (7) and ϵ̌n(θ) in (8),

1

n
E[ϵ′n(θ)Pjnϵn(θ)] =

1

n
ϵ̄′n(θ)Pjnϵ̄n(θ) +

1

2n
E[ϵ̌′n(θ)P

s
jnϵ̌n(θ)], (C.5)

1

n
ϵ′n(θ)Pjnϵn(θ)−

1

n
E[ϵ′n(θ)Pjnϵn(θ)] =

1

n
ϵ̄′n(θ)P

s
jnϵ̌n(θ)

+
1

2n
{ϵ̌′n(θ)P s

jnϵ̌n(θ)− E[ϵ̌′n(θ)P
s
jnϵ̌n(θ)]},

(C.6)

where 1
n
ϵ̄′n(θ)Pjnϵ̄n(θ) = O(1), and

1

n
ϵ̄′n(θ)P

s
jnϵ̌n(θ) =

1

n
[(λ0 − λ)γ′

0, (λ0 − λ)β′
0, (γ0 − γ)′, (β0 − β)′]Υ′

1nP
s
jnϵ̌n(θ)

11We may permute the columns of [Tn(Z̄nγ0 + Xnβ0), Z̄n] to derive a new matrix An, and assume that the

submatrix formed by the last (kx+ k0) columns of limn→∞
1
nQ

′
nRn(ρ)[An, Xn] has full column rank for any ρ in its

parameter space. Then the argument below is similar.
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− 1

n
ρ[(λ0 − λ)γ′

0, (λ0 − λ)β′
0, (γ0 − γ)′, (β0 − β)′]Υ′

1nM
′
nP

s
jnϵ̌n(θ)

with Υ1n = [TnZ̄n, TnXn, Z̄n, Xn]. By an argument similar to that for 1
n
Q′

nϵn(θ)− 1
n
E[Q′

nϵn(θ)] =

op(1),
1
n
ϵ̄′n(θ)P

s
jnϵ̌n(θ) = op(1). By (8),

ϵ̌n(θ) = [Rn + (ρ0 − ρ)Mn][R
−1
n ϵn + (λ0 − λ)ζn + Žn(γ0 − γ)]

= ϵn + (ρ0 − ρ)Hnϵn + (λ0 − λ)Rnζn + (ρ0 − ρ)(λ0 − λ)Mnζn

+RnŽn(γ0 − γ) +MnŽn(γ0 − γ)(ρ0 − ρ).

(C.7)

where ζn = Tn(Žnγ0 + R−1
n ϵn) and Hn = MnR

−1
n . Then we may expand 1

n
ϵ̌′n(θ)P

s
jnϵ̌n(θ) as a

multivariate polynomial of θ. Under Assumption 1, for an n×n UBmatrixKn,
1
n
E(ϵ′nKnϵn) = O(1)

and 1
n
ϵ′nKnϵn− 1

n
E(ϵ′nKnϵn) = op(1) by Lemma A.3 in Lin and Lee (2010). Let An and Bn be either

In, Mn, Tn or MnTn; and Cn be either In, Hn, TnR
−1
n or MnTnR

−1
n . Under Assumption 8, terms

with the forms 1
n
Ž ′

nB
′
nP

s
jnAnŽn and 1

n
ϵ′nC

′
nP

s
jnAnŽn in the expression of 1

n
ϵ̌′n(θ)P

s
jnϵ̌n(θ) satisfy

1
n
E(Ž ′

nB
′
nP

s
jnAnŽn) = O(1), 1

n
E(ϵ′nC

′
nP

s
jnAnŽn) = O(1), 1

n
Ž ′

nB
′
nP

s
jnAnŽn − 1

n
E(Ž ′

nB
′
nP

s
jnAnŽn) =

op(1) and 1
n
ϵ′nC

′
nP

s
jnAnŽn − 1

n
E(ϵ′nC

′
nP

s
jnAnŽn) = op(1). Hence, as ζn = Tn(Žnγ0 + R−1

n ϵn), by

(C.7), 1
n
E[ϵ̌′n(θ)P

s
jnϵ̌n(θ)] = O(1) and 1

n
ϵ̌′n(θ)P

s
jnϵ̌n(θ) − 1

n
E[ϵ̌′n(θ)P

s
jnϵ̌n(θ)] = op(1). Therefore, by

(C.5)–(C.6), 1
n
E[ϵ′n(θ)Pjnϵn(θ)] = O(1) and 1

n
ϵ′n(θ)Pjnϵn(θ)− 1

n
E[ϵ′n(θ)Pjnϵn(θ)] = op(1). It follows

that E[gn(θ)] = O(1) and gn(θ) − E[gn(θ)] = op(1). Note that ϵn(θ) is linear in each element of

θ and gn(θ) is quadratic in ϵn(θ). Then, as the parameter space Θ of θ is compact, we have the

uniform convergence supθ∈Θ ∥gn(θ) − E[gn(θ)]∥ = op(1). It follows that supθ∈Θ ∥g′n(θ)a′nangn(θ) −
E[g′n(θ)]a

′
nan E[gn(θ)]∥ = op(1).

The identification condition for limn→∞ an E[gn(θ)] to be uniquely zero at θ = θ0 is maintained

in Assumption 7. As each element of gn(θ) is a polynomial function of θ, under Assumption

8, E[gn(θ)] is uniformly equicontinuous. So is E[g′n(θ)]a
′
nan E[gn(θ)]. Hence, the identification

uniqueness condition holds. With a compact parameter space Θ, the consistency of θ̂ follows from

the uniform convergence that supθ∈Θ ∥g′n(θ)a′nangn(θ) − E[g′n(θ)]a
′
nan E[gn(θ)]∥ = op(1) and the

identification uniqueness condition (White, 1994).

Proof of Proposition 2. The first order condition of θ̂gmm is D′
n(θ̂gmm)a

′
nangn(θ̂gmm) = 0, where

Dn(θ) =
∂gn(θ)
∂θ′

. By the mean value theorem, 0 = D′
n(θ̂gmm)a

′
nan[gn(θ0) +Dn(θ̄)(θ̂gmm − θ0)], where

θ̄ lies between θ̂gmm and θ0. Thus,

√
n(θ̂gmm − θ0) = −[D′

n(θ̂gmm)a
′
nanDn(θ̄)]

−1D′
n(θ̂gmm)a

′
nan

√
ngn(θ0). (C.8)

As each element of gn(θ) is a polynomial function of θ, so is each element of Dn(θ). In addition,

every coefficient for the polynomial functions of Dn(θ) is Op(1), and is op(1) if its mean is deducted

from it, by the proof of Proposition 1. Since θ̂gmm = θ0 + op(1) by Proposition 1, Dn(θ̄) =
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Dn(θ0) + op(1) = Gn + op(1), where Gn = E[Dn(θ0)]. Since
∂ϵn(θ)
∂θ′

= −[Rn(ρ)WnYn,Mn(Sn(λ)Yn −
Znγ −Xnβ), Rn(ρ)Zn, Rn(ρ)Xn] and Yn = S−1

n (Znγ0 +Xnβ0 +R−1
n ϵn), we have

E
(∂ϵ′n(θ0)Pjnϵn(θ0)

∂θ′

)
= −E[ϵ′nP

s
jnRnζn, ϵ

′
nP

s
jnHnϵn, ϵ

′
nP

s
jnRnŽn, 01×kx ], (C.9)

where ζn = Tn(Žnγ0 + R−1
n ϵn), and E(Q′

n
∂ϵn(θ0)

∂θ′
) = −Q′

n[RnTn(Z̄nγ0 + Xnβ0), 0n×1, RnZ̄n, RnXn].

Thus, Gn has the expression in (11). We next prove that limn→∞ Gn has full column rank un-

der Assumption 10. Let α1 and α2 be scalars, α3 be a kz × 1 vector, and α4 be a kx × 1

vector. In the case of Assumption 6(i), the last kq elements of limn→∞Gn[α1, α2, α
′
3, α

′
4]

′ = 0

are − limn→∞
1
n
Q′

nRn[Tn(Z̄nγ0 + Xnβ0), Z̄n, Xn][α1, α
′
3, α

′
4]

′ = 0, which implies that (α1, α3, α4) =

(0, 0, 0), under the assumption that limn→∞
1
n
Q′

nRn[Tn(Z̄nγ0+Xnβ0), Z̄n, Xn] has full column rank

in Assumption 6(i). Then the first kp elements of limn→∞ Gn[α1, α2, α
′
3, α

′
4]

′ = 0 become

− lim
n→∞

1

n
[E(ϵ′nP

s
1nHnϵn), . . . ,E(ϵ

′
nP

s
kpnHnϵn)]

′α2 = 0,

which implies that α2 = 0 if, for some j, limn→∞
1
n
E(ϵ′nP

s
jnHnϵn) ̸= 0. In the case of Assumption

6(ii), the first kp elements of limn→∞Gn[α1, α2, α
′
3, α

′
4]

′ = 0 are limn→∞G1n[α1, α2, α
′
3]

′ = 0, where

G1n is in (12). As limn→∞ G1n has full column rank by Assumption 10, (α1, α2, α3) = (0, 0, 0).

Then the last kq elements of limn→∞Gn[α1, α2, α
′
3, α

′
4]

′ = 0 become − limn→∞
1
n
Q′

nRnXnα4 =

0, which implies that α4 = 0 as limn→∞
1
n
Q′

nRnXn has full column rank under Assumption

6(ii). Hence, limn→∞Gn has full column rank under Assumption 10. As limn→∞ anGn has

full column rank, limn→∞G′
na

′
nanGn is invertible. It follows by (C.8) that

√
n(θ̂gmm − θ0) =

−(G′
na

′
nanGn)

−1G′
na

′
nan

√
ngn(θ0) + op(1). By the central limit theorem for linear and quadratic

forms in Kelejian and Prucha (2001),
√
ngn(θ0)

d−→ N(0,Ωn), where Ωn = nE[gn(θ0)g
′
n(θ0)]. There-

fore, the asymptotic distribution in the proposition follows.

Proof of Proposition 3. With Ω̂n = Ωn+op(1), the proof is similar to that for the OGMM estimator

of SAR models with no endogenous regressors in Proposition 2 of Lee (2007), thus we omit the

proof.

Proof of Proposition 4. This proof follows the analytical approach in Jin et al. (2020) for the

derivation of best linear and quadratic moments for spatial econometric models. The Ωn in (13)

can be written as

Ωn =
1

n
∆′

n∆n, (C.10)

where

∆n =

(
σ2
0√
2
ωnξ 0

µ30

σ0
ωnd σ0Qn

)
. (C.11)
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From (C.9),

E
(∂ϵ′n(θ0)Pjnϵn(θ0)

∂θ′

)
= −[tr(P s

jnRn E(ζnϵ
′
n)), σ

2
0 tr(P

s
jnHn), tr(P

s
jnRn E(Žn,·1ϵ

′
n)), . . . , tr(P

s
jnRn E(Žn,·kzϵ

′
n)), 01×kx ]

= −1

2
[tr(P s

jnC
s
1n), · · · , tr(P s

jnC
s
kz+2,n), 01×kx ],

(C.12)

where C1n = Rn E(ζnϵ
′
n)−In tr[Rn E(ζnϵ

′
n)]/n, C2n = σ2

0[Hn−In tr(Hn)/n],
12 Cj+2,n = Rn E(Žn,·jϵ

′
n)−

In tr[Rn E(Žn,·jϵ
′
n)]/n for j = 1, . . . , kz, and the second equality in (C.12) holds because P s

jn has

zero trace so that tr(P s
jnCn) =

1
2
tr(P s

jnC
s
n) =

1
2
tr[P s

jn(C
s
n − In tr(C

s
n)/n)] for any n× n matrix Cn.

For any two n× n matrices An and Bn, and constants a and b,

tr
{[

a diag(An) +
(
An − diag(An)

)][
b diag(Bn) +

(
Bn − diag(Bn)

)]}
= tr

{
ab diag(An) diag(Bn) +

(
An − diag(An)

)(
Bn − diag(Bn)

)}
.

Thus,

tr(P s
jnC

s
kn) = tr

{[
diag(P s

jn) +
(
P s
jn − diag(P s

jn)
)][

diag(Cs
kn) +

(
Bs

kn − diag(Cs
kn)
)]}

= tr{diag(P s
jn) diag(C

s
kn) + [P s

jn − diag(P s
jn)][C

s
kn − diag(Cs

kn)]}

= tr(P s
jn,ξC

s
kn,1/ξ)

= vec′(P s
jn,ξ) vec(C

s
kn,1/ξ),

(C.13)

where P s
jn,ξ = ξ diag(P s

jn) + [P s
jn − diag(P s

jn)]. By (11), (C.12) and (C.13),

Gn = − 1

n

(
1
2
ω′
nξ[vec(C

s
1n,1/ξ), · · · , vec(Cs

kz+2,n,1/ξ), 0n2×kx ]

Q′
nRn[Tn(Z̄nγ0 +Xnβ0), 0n×1, Z̄n, Xn]

)
. (C.14)

For simplicity, let the jth column of Rn[Tn(Z̄nγ0 + Xnβ0), 0n×1, Z̄n, Xn] be Kjn. Denote K̃jn =

Kjn − 1
n
lnl

′
nKjn, which is a vector with the sum of its elements equal to zero. Note that, as Pjn’s

have zero traces so that d′P s
jn
ln = 0, we have vec′(P s

jn,ξ) vec(diag(K̃jn)) = tr(P s
jn,ξ diag(K̃jn)) =

ξ tr(diag(P s
jn) diag(K̃jn)) = ξd′P s

jn
K̃jn = ξd′P s

jn
Kjn = 2ξd′Pjn

Kjn. Thus, by (C.11) and (C.14),

Gn = − 1

n
∆′

nΓn, (C.15)

where

Γn =

(
Γn,11 − µ30√

2ξσ4
0

[vec(diag(K̃kz+3,n)), · · · , vec(diag(K̃kz+kx+2,n))]

1
σ0
Rn[Tn(Z̄nγ0 +Xnβ0), 0n×1, Z̄n]

1
σ0
RnXn

)
(C.16)

12When defining the best moments later, the constant σ2
0 can be removed. The C2n in this proof has an extra σ2

0

compared with that in Proposition 4.
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with Γn,11 = [vec( 1√
2σ2

0

Cs
1n,1/ξ −

µ30√
2ξσ4

0

diag(K̃1n)), · · · , vec( 1√
2σ2

0

Cs
kz+2,n,1/ξ −

µ30√
2ξσ4

0

diag(K̃kz+2,n))].

Hence, by (C.10) and (C.15), G′
nΩ

−1
n Gn = 1

n
Γ′
n∆n(∆

′
n∆n)

−1∆′
nΓn ≤ 1

n
Γ′
nΓn by the Cauchy-Schwarz

inequality, and G′
nΩ

−1
n Gn = 1

n
Γ′
nΓn if each column of Γn lies in the column space of ∆n. As Γn does

not depend on Qn and Pjn’s, limn→∞( 1
n
Γ′
nΓn)

−1 is the lower bound for the asymptotic variances

of OGMM estimators in Proposition 3.

We next investigate the selection of Qn and Pjn’s so that the lower bound limn→∞( 1
n
Γ′
nΓn)

−1

can be attained. Let α1, ..., αkp be constants and α be a kq × 1 vector. By (C.11),

∆n[α1, · · · , αkp , α
′]′ =

(
σ2
0√
2
vec(P s

n,ξ)
µ30

σ0
dPn + σ0Qnα

)
, (C.17)

where Pn =
∑kp

j=1 αjPjn. For 1 ≤ j ≤ kz + 2, letting (C.17) be equal to the jth column of Γn in

(C.16) yields (
σ2
0√
2
vec(P s

n,ξ)
µ30

σ0
dPn + σ0Qnα

)
=

(
vec( 1√

2σ2
0

Cs
jn,1/ξ −

µ30√
2ξσ4

0

diag(K̃jn))

1
σ0
Kjn

)
. (C.18)

This is possible when

ξσ2
0√
2
diag(P s

n) =
1√
2ξσ2

0

diag(Cs
jn)−

µ30√
2ξσ4

0

diag(K̃jn),

σ2
0√
2
[P s

n − diag(P s
n)] =

1√
2σ2

0

[Cs
jn − diag(Cs

jn)],

µ30

σ0

dPn + σ0Qnα =
1

σ0

Kjn.

We may let α1 = · · · = αj−1 = 0, αj =
1
σ4
0
, αj+1 = · · · = αkp = 0, and take P s

jn to be

P ∗s
jn = [Cs

jn − diag(Cs
jn)] +

1

ξ2
diag(Cs

jn)−
µ30

ξ2σ2
0

diag(K̃jn).

The jth column of Qn can be taken as Q∗
jn = Kjn − µ30

ξ2σ4
0
dCjn

+
µ2
30

2ξ2σ6
0
K̃jn. Alternatively, we can

use the square matrices in P ∗s
jn separately, so that we have the square matrices Cs

jn − diag(Cs
jn),

diag(Cs
jn) and diag(K̃jn), because P ∗s

jn is a linear combination of these matrices. If we use the IVs

in Q∗
jn separately, then we have the IVs Kjn, dCjn

and K̃jn. As K̃jn = Kjn − 1
n
lnl

′
nKjn, we can use

the IVs Kjn, dCjn
and ln equivalently.

For kz + 3 ≤ j ≤ kz + kx + 2, letting (C.17) be equal to the jth column of Γn in (C.16) yields(
σ2
0√
2
vec(P s

n,ξ)
µ30

σ0
dPn + σ0Qnα

)
=

(
− µ30√

2ξσ4
0

vec(diag(K̃jn))

1
σ0
Kjn

)
. (C.19)

This is possible when

ξσ2
0√
2
diag(P s

n) = − µ30√
2ξσ4

0

diag(K̃jn),
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µ30

σ0

dPn + σ0Qnα =
1

σ0

Kjn.

We may let α1 = · · · = αj−1 = 0, αj = − µ30

2ξ2σ6
0
, αj+1 = · · · = αkp = 0, and take P s

jn to be P ∗s
jn =

2diag(K̃jn). The jth column of Qn can be taken as Q∗
jn = Kjn+

µ2
30

2ξ2σ6
0
K̃jn. Alternatively, if we use

the IVs in Q∗
jn separately, then we have the IVs Kjn and ln.

As Kjn is the jth column of Rn[Tn(Z̄nγ0 +Xnβ0), 0n×1, Z̄n, Xn], we have, in particular, Q∗
2n =

− µ30

ξ2σ4
0
dC2n , which can be taken as dC2n equivalently, and is redundant when µ30 = 0. In addition,

when µ30 = 0, the square matrices diag(K̃jn) for quadratic moments, where kz+3 ≤ j ≤ kz+kx+2,

are redundant, since they are from (C.19). Therefore, the results in the proposition follow.

Appendix D Proof of Proposition 1 under weaker assump-

tions

Let ∥A∥ be the spectral norm of a square matrix A, i.e., the square root of the largest eigenvalue

of A′A. We replace Assumptions 2 and 5 with the following two weaker assumptions respectively,

and show that Proposition 1 still holds under the weaker assumptions.

Assumption D.1. The Wn and Mn have zero diagonals, and {Wn}, {Mn}, {S−1
n } and {R−1

n } are

bounded in the spectral norm.

Assumption D.2. Elements of Qn are uniformly bounded constants, and {Pjn} for j = 1, . . . , kp

are bounded in the spectral norm.

We first prove the following lemma.

Lemma D.1. Let {An} be a sequence of n×n nonstochastic matrices such that supn ∥An∥ < ∞, bn

be an n×1 vector of constants that are uniformly bounded, and ϵn = [ϵn1, · · · , ϵnn]′, where ϵni’s are

independent with mean zero. Then (i) 1
n
b′nA

′
nϵn = op(1) and 1

n
b′nAnϵn = op(1), if supi,n E(ϵ

2
ni) <

∞; (ii) 1
n
E(ϵ′nAnϵn) = O(1) if supi,n E(ϵ

2
ni) < ∞; and (iii) 1

n
ϵ′nAnϵn − 1

n
E(ϵ′nAnϵn) = op(1) if

supi,n E(ϵ
4
ni) < ∞.

Proof. (i) Denote Σn = diag(σ2
n1, · · · , σ2

nn), where σ2
ni = E(ϵ2ni). Let A

′
nAn = ΓnΛnΓ

′
n be the spec-

tral decomposition of A′
nAn, where ΓnΓ

′
n = In and Λn is an n× n diagonal matrix of the eigenval-

ues of A′
nAn. The variance of 1

n
b′nA

′
nϵn satisfies var( 1

n
b′nA

′
nϵn) =

1
n2 b

′
nA

′
nΣnAnbn ≤ c

n2 b
′
nA

′
nAnbn =

c
n2 b

′
nΓnΛnΓ

′
nbn ≤ c

n2 b
′
nbnλmax(A

′
nAn) = O( 1

n
), where c is a constant and λmax(A

′
nAn) denotes the

largest eigenvalue of A′
nAn. Thus, 1

n
b′nA

′
nϵn = op(1). Similarly, the variance of 1

n
b′nAnϵn satisfies

var( 1
n
b′nAnϵn) ≤ c

n2 b
′
nbnλmax(AnA

′
n) =

c
n2 b

′
nbnλmax(A

′
nAn) = O( 1

n
). Thus, 1

n
b′nAnϵn = op(1).

(ii) LetAn = [an,ij]. We have | 1
n
E(ϵ′nAnϵn)| = | 1

n
tr(AnΣn)| = | 1

n

∑n
i=1 an,iiσ

2
ni| ≤ c

n

∑n
i=1 |an,ii| ≤

c
√

1
n

∑n
i=1 a

2
n,ii, where c is a constant and the last inequality follows by the Cauchy-Schwarz
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inequality. Then, | 1
n
E(ϵ′nAnϵn)| ≤ c

√
1
n

∑n
i=1

∑n
j=1 a

2
n,ij = c

√
1
n
tr(A′

nAn) ≤ c∥An∥. Thus,
1
n
E(ϵ′nAnϵn) = O(1).

(iii) By Lemma 2(3) in Jin and Lee (2012), the variance of ϵ′nAnϵn is var(ϵ
′
nAnϵn) =

∑n
i=1 a

2
n,ii[E(ϵ

4
ni)−

3σ4
ni] + tr[ΣnAnΣn(An + A′

n)]. Thus,

var(ϵ′nAnϵn) ≤ c1

n∑
i=1

a2n,ii +
1

2
tr[Σ1/2

n (An + A′
n)Σn(An + A′

n)Σ
1/2
n ]

≤ nc2 + c3 tr[Σ
1/2
n (An + A′

n)(An + A′
n)Σ

1/2
n ]

= nc2 + c3 tr[(An + A′
n)Σn(An + A′

n)]

≤ nc2 + c4 tr[(An + A′
n)(An + A′

n)]

≤ nc2 + nc4∥An + A′
n∥2

≤ nc2 + nc4(∥An∥+ ∥A′
n∥)2 ≤ nc5,

where cj’s are constants, and the last inequality uses ∥An∥ = ∥A′
n∥. Hence, var(ϵ′nAnϵn) = O(n)

and 1
n
ϵ′nAnϵn − 1

n
E(ϵ′nAnϵn) = op(1).

As can be seen from the proof of Proposition 1 in Appendix C, replacing Assumptions 2 and

5 by Assumptions D.1–D.2 only affects the terms with the forms in the above lemma. Since the

above lemma shows that the orders of those terms do not change, Proposition 1 still holds.
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