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Abstract

This paper considers asymptotic properties of a spatial autoregressive stochastic frontier

model. Relying on the asymptotic theory for nonlinear spatial NED processes, we prove

the consistency and asymptotic distribution of the maximum likelihood estimator under reg-

ularity conditions. When inefficiency exists, all parameter estimators have the
√
n-rate of

convergence and are asymptotically normal. However, when there is no inefficiency, only

some parameter estimators have the
√
n-rate of convergence, and the rest have slower con-

vergence rates. We also investigate a corrected two stage least squares estimator that is

computationally simple, and derive the asymptotic distributions of the score and likelihood

ratio test statistics that test for the existence of inefficiency.
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1 Introduction

In spatial econometrics, there are several popular modeling strategies to take into account cross

sectional dependence: in a spatial autoregressive (SAR) or spatial lag model (Cliff and Ord, 1973,

1981), the outcome of a spatial unit is specified as a weighted sum of neighbors’ outcomes, i.e., a

spatial lag of the dependent variable; in a spatial error model, the SAR process is specified on the

error terms; in a spatial Durbin model, weighted sums of neighbors’ characteristics are included

∗Corresponding author. E-mail addresses: jin.fei@live.com (F. Jin), lee.1777@osu.edu (L.-F. Lee).
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as explanatory variables. We may also consider spatial dependence in the dependent variable,

exogenous variables and/or error terms simultaneously, e.g., a SAR model with SAR disturbances.

The SAR model captures global spillovers which can have a structural economic interpretation,

the spatial Durbin model captures in addition local spillovers, and the spatial error model reflects

spillovers in unobserved variables. Ignoring spatial dependence can lead to inconsistent estimation

and/or incorrect inference. This is also the case for stochastic frontier (SF) models. This paper

considers large sample properties of a SAR SF (SARSF) model which contains a spatial lag of the

dependent variable and a half normal inefficiency term.

Our research in this paper is motivated by some existing papers in the literature on SF models

with spatial dependence. Druska and Horrace (2004) consider an SF model for panel data with

fixed effects and spatial error dependence, and calculate efficiency using fixed effects. Glass et al.

(2013, 2014) use a similar strategy for a SARSF panel data model with fixed effects. Papers on

SF models with spatial dependence in error terms include, among others, Schmidt et al. (2009),

Pavlyuk (2011), Areal et al. (2012), Fusco and Vidoli (2013), Tsionas and Michaelides (2016),

Vidolia et al. (2016) and Carvalho (2018).1 Brehm (2013) and Adetutu et al. (2015) consider

SF models with local spatial dependence. Pavlyuk (2013) and Glass et al. (2016) study SARSF

models.

We notice that the above papers have not considered large sample properties of SF models with

spatial dependence. The asymptotic theory for such models is of interest as they are nonlinear

SAR models, which cannot be analyzed by laws of large numbers (LLN) and central limit theorems

(CLT) designed for linear processes. But they might be studied by recently developed asymptotic

theories on nonlinear spatial models. For the consistency of the maximum likelihood estimator

(MLE) of our SARSF model with a half normal inefficiency term, due to the composite error term

in the model, the usual LLN for linear-quadratic forms of disturbances (Kelejian and Prucha, 2001)

for a linear SAR model would not be applicable.

We provide a first rigorous analysis on asymptotic properties of this SARSF model in this

paper. For nonlinear spatial econometrics, Jenish and Prucha (2012) introduce the near-epoch

dependence (NED) concept of spatial processes and develop a useful LLN. We use their LLN to

prove the consistency of the MLE under regularity conditions. For the general case with technical

inefficiency, the asymptotic distribution of the MLE can be derived as usual by expanding the first

order condition and applying an NED CLT. However, there might be a specific case that there is

no inefficiency (but unknown). For such an irregular case, the asymptotic distribution might be

different. For the half-normal SF model with no spatial dependence, there is an irregular feature

that the information matrix is singular when there is no inefficiency (Lee, 1993). This is also the

case for the SARSF model. We shall show that the presence of spatial dependence will generally

not create extra irregularity. We derive the asymptotic distribution of the MLE in both the cases

1Some papers consider SF models with cross sectional dependence in error terms using a factor-based approach,
e.g., Mastromarco et al. (2013, 2016).
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with and without inefficiency. If inefficiency exists, the information matrix is nonsingular and all

parameter estimators have the
√
n-rate of convergence and asymptotic normal distribution. But

if there is no inefficiency, only some parameter estimators have the
√
n-rate of convergence, and

the rest of parameters can have slower rates of convergence. The asymptotic distribution of the

MLE in the irregular case with no inefficiency is derived by reparameterizing the model into one

with a nonsingular information matrix, and the analysis essentially relies on higher order Taylor

expansions of the original log likelihood function (Lee, 1993; Rotnitzky et al., 2000).

We also investigate the score and likelihood ratio (LR) tests that test for the existence of

inefficiency. All the analysis takes into account spatial correlation of observed dependent variables.

These tests are useful since the asymptotic distribution of the MLE depends on whether inefficiency

exists or not. Because the inefficiency parameter is nonnegative, the score test is left sided and its

test statistic is asymptotically normal, similar to the SF model with no spatial dependence (Lee

and Chesher, 1986). But the asymptotic distribution of the LR test statistic is a mixture of a

chi-square distribution with one degree of freedom and a degenerate distribution with a unit mass

at 0, in accordance with the result in Lee (1993).

It is possible to consider other distributions of the inefficiency term, e.g., the exponential

distribution (Meeusen and van Den Broeck, 1977), the truncated normal distribution (Stevenson,

1980) or the Gamma distribution (Greene, 1990), but the half-normal distribution in Aigner et al.

(1977) is arguably most popular in empirical applications. We may also consider spatial Durbin

terms and/or spatial error dependence. Spatial Durbin terms and spatial lags or spatial moving

averages of disturbances are linear spatial dependence processes, so the analysis would be similar.

Kumbhakar et al. (2013) consider a subgroup approach that can allow for a mixture of both fully

efficient and inefficient firms, which is useful for empirical research. Large sample properties of

models with alternative specifications are of interest in future research.

The rest of this paper is organized as follows. Section 2 studies large sample properties of the

MLE. A computationally simple corrected two stage least squares estimator is also investigated.

The score and likelihood ratio tests for frontier functions to be possibly efficient are proposed.

Section 3 reports Monte Carlo results for the estimators and test statistics. Section 4 concludes.

Proofs of propositions are collected in an appendix.

2 MLE

Consider the following SARSF model:

yni = λ0wn,i·Yn + x′niβ0 + εni, εni = vni − uni, i = 1, . . . , n, (2.1)

where yni is the logged value of a dependent variable for the ith unit, wn,i· is the ith row of an

n × n spatial weights matrix Wn = [wn,ij], Yn = [yn1, . . . , ynn]′, xni = [xni,1, . . . , xni,kx ]
′ is a kx × 1
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vector of exogenous variables in logarithm, λ0 is a scalar spatial dependence parameter, β0 is a

kx× 1 parameter vector, vni follows the normal distribution N(0, σ2
v0), uni follows the nonnegative

half normal distribution |N(0, σ2
u0)|, uni and vni are independent, and [uni, vni]’s are i.i.d. for all i.

The xni typically includes an intercept term, so we let xni = [1, x′2ni]
′ and β0 = [β10, β

′
20]′.

With a nonnegative inefficiency term uni, model (2.1) can be for production, revenue, profit

frontiers and so on. For cost distance frontiers, vni − uni can be replaced by vni + uni to capture

cost inefficiency, but the analysis is similar. Such a model has been introduced in the empirical

literature of frontier functions, e.g., Glass et al. (2016), where the maximum likelihood estimation

is described and various efficiency measures such as direct, indirect and total relative efficiencies

are proposed. Model (2.1) can be extended for a panel data set by introducing a subscript t, as

in Glass et al. (2016). Without loss of generality, we consider model (2.1) for cross sectional data.

This model is similar to the SAR model except for the composite error term εni with a nonzero

mean. However, due to the half normal distribution of uni, estimates of the model parameters

would in general not depend on linear and quadratic moments of independent disturbances. So

asymptotic analysis and results for the linear SAR model would not be applicable. One has to

sort for nonlinear spatial asymptotic theories for estimation and testing.2

Let [λ, β′, σ2
u, σ

2
v ] be an arbitrary parameter vector and the corresponding true parameter vector

be [λ0, β
′
0, σ

2
u0, σ

2
v0]. Denote σ2 = σ2

u + σ2
v , δ = σu/σv, and θ = [λ, β′, σ2, δ]′. The log likelihood

function of θ for model (2.1) is

lnLn(θ) = n ln 2− n

2
ln(2πσ2) + ln |In − λWn| −

1

2σ2

n∑
i=1

(yni − λwn,i·Yn − x′niβ)2

+
n∑
i=1

ln Φ
(
− δ
σ

(yni − λwn,i·Yn − x′niβ)
)
,

(2.2)

where Φ(·) is the distribution function of a standard normal random variable, whose presence is

due to the stochastic frontier disturbance uni. The log likelihood function lnLn(θ) involves the

log determinant |In − λWn|, which can be computed once eigenvalues of Wn are computed (Ord,

1975), or by a Taylor series approximation of the log determinant as suggested in LeSage and

Pace (2009), even when the sample size is large. Note that Φ
(
− δ
σ
(yni − λwn,i·Yn − x′niβ)

)
is a

nonlinear function of yn1, . . . , ynn, so the LLN for linear-quadratic forms of disturbances in spatial

econometrics, originated in Kelejian and Prucha (2001), is not applicable. However, we investigate

the asymptotic theory in Jenish and Prucha (2012) for near-epoch dependent (NED) random fields,

which are generalized from the time series literature.3 The spatial NED property is preserved under

certain transformations such as summation, multiplication, and Lipschitz transformation and some

of its generalizations. We note that some terms in (2.2) are similar to those in the log likelihood

2In the existing frontier function literature with interactions, there are several papers on model specification and
empirical estimation but there are no rigorous asymptotic studies.

3The definition of an NED random field is given in Appendix B.
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function of a SAR Tobit model in Xu and Lee (2015), so some of their analysis on NED properties

of relevant terms can be adapted to investigate large sample properties of model (2.1).

The following assumptions are maintained for model (2.1).

Assumption 1. Individual units in the economy are located or living in a region Dn ⊂ D ⊂ Rd,

where D is a (possibly) unevenly spaced lattice, the cardinality |Dn| of a finite set Dn satisfies

limn→∞ |Dn| =∞. The distance d(i, j) between any two different individuals i and j is larger than

or equal to a positive constant, which will be assumed to be 1 for convenience.

Assumption 2. c1 ≡ λm supn ‖Wn‖∞ < 1, and [−λm, λm] is the compact parameter space of λ on

the real line.

Assumption 3. In addition to the diagonal elements of Wn, wn,ii = 0 for all i, the elements of

Wn satisfy at least one of the following two conditions:

(a) Only individuals whose distances are less than or equal to some positive constant d0 may

affect each other directly, i.e., wn,ij 6= 0 only if d(i, j) ≤ d0.

(b) (i) For every n, the number of columns wn,·j of Wn with |λ0|
∑n

i=1 |wn,ij| > c1 is less than or

equal to some fixed nonnegative integer that does not depend on n;4 (ii) there exists an α > d

and a constant c2 such that |wn,ij| ≤ c2/d(i, j)α.

Assumption 4. (a) vni ∼ N(0, σ2
v0) and uni ∼ |N(0, σ2

u0)| a half normal random variable; (b) xni,

vni and uni are mutually independent; (c) [vni, uni]’s are i.i.d.

Assumption 5. (a) sup1≤k≤kx,i,n E[|xni,k|4+ι] < ∞ for some ι > 0; (b) {xni}ni=1 is an α-mixing

random field with α-mixing coefficient α(u, v, s) ≤ (u + v)c3α̂(s) for some c3 ≥ 0, where α̂(s)

satisfies
∑∞

s=1 s
d−1α̂(s) <∞.

Assumption 6. lim supn→∞
1
n
[E lnLn(θ)− E lnLn(θ0)] < 0 for any θ 6= θ0.

Assumption 7. The parameter space of [β′, σ2, δ]′ is a compact subset of Rkx+2 and δ ≥ 0.

Assumption 1 is introduced by Jenish and Prucha (2009, 2012) for spatial mixing and NED

processes. As the distance between two units can be a geometrical distance or an economic distance

or a mixture of both, the space D is allowed to be high dimensional as a subset of Rd and the

distance can be induced from any norm in Rd. The increasing domain asymptotics imposed in

Assumption 1 are natural for a regional study, and are usually needed for regular asymptotic

properties of estimators. Since the distance between any two different individuals is larger than

or equal to some positive constant, the sample region must expand as the sample size increases.

Another asymptotic method is the so-called infill asymptotics, where the growth of the sample

4The same c1 as in Assumption 2 is used for simplicity. It can be any positive number smaller than 1.
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size can be achieved by sampling points arbitrarily dense in a fixed sample region. Under infill

asymptotics, even some popular estimators, such as the least squares and the method of moments

estimators, may not be consistent (see, e.g., Lahiri, 1996). Assumptions 2–3 are from Xu and

Lee (2015). Assumption 2 is used in Xu and Lee (2015) to establish the NED property of a term

similar to Φ
(
− δ
σ
(yni − λwn,i·Yn − x′niβ)

)
in (2.2), so we also impose it, although it is stronger

than the condition that λ is in a compact subset of (1/µmin, 1/µmax), where µmin and µmax are,

respectively, the smallest and largest real eigenvalues of the spatial weights matrix for a linear SAR

model, as discussed in, e.g., LeSage and Pace (2009) and Kelejian and Prucha (2010). Assumption

2 also implies the existence of the reduced form of Yn in (2.1) and the Neuman series expansion

(In−λWn)−1 = In+λWn+λ2W 2
n + . . . for any λ in that parameter space. The compactness of the

parameter space for λ in Assumption 2 and that for the rest of parameters in Assumption 7 are

typically maintained for extremum estimators. Assumption 3 avoids self-influence, i.e., wn,ii = 0

for all i, and also requires the interaction of units i and j in terms of wn,ij to decline fast enough.

While Assumption 3(a) requires no direct interaction for any two units when they are far enough

from each other, Assumption 3(b)(ii) possibly allows all non-diagonal elements of Wn to be nonzero

but their interactions decline geometrically fast. Assumption 3(b)(i) is a condition on the column

sums of Wn in absolute value, i.e., the total effects of each spatial unit on those who are connected

to (or nominate) him/her. Only a fixed number of spatial units are allowed to have large aggregated

effects on other units. In a network setting, the units with large aggregated effects on other units

are referred to as stars. Assumptions 4 and 5 summarize the exogeneity of explanatory variables

and distributional assumptions of disturbances. The conditions in Assumption 5 are needed for

the NED properties of relevant terms. The mixing coefficient for the random field {xni}ni=1 in

Assumption 5(b) does not only depend on the distance between two separate subsets of spatial

units but also their sizes.5 Assumption 6 is an identification condition for the model.6 As a ratio

of two standard deviations, δ is necessarily nonnegative, that is stated in Assumption 7. Under the

above assumptions, pointwise and uniform LLNs can be applied to prove the uniform convergence

of the sample average log likelihood function. With identification uniqueness of the true parameters

and equicontinuity of the limiting expected log likelihood function in parameters, the MLE θ̂ will

be consistent (White, 1994). The detailed proof is in Appendix B.

Proposition 2.1. Under Assumptions 1–7, the MLE θ̂ of model (2.1) is consistent.

We next investigate the asymptotic distribution of the MLE. Let Gn(λ) = Wn(In − λWn)−1,

εni(λ, β) = yni − λwn,i·Yn − x′niβ, and f(t) = φ(t)/Φ(t) be the inverse Mills ratio, where φ(t) is

the density function of the standard normal distribution. The first order derivatives of the log

5See Jenish and Prucha (2012) for the detailed definition.
6Due to the nonlinearity of model (2.1), a primitive identification condition is not obvious.
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likelihood function on its parameters are

∂ lnLn(θ)

∂λ
= − tr[Gn(λ)] +

1

σ2

n∑
i=1

wn,i·Ynεni(λ, β) +
δ

σ

n∑
i=1

wn,i.Ynf
(
− δ
σ
εni(λ, β)

)
, (2.3)

∂ lnLn(θ)

∂β
=

1

σ2

n∑
i=1

xniεni(λ, β) +
δ

σ

n∑
i=1

xnif
(
− δ
σ
εni(λ, β)

)
, (2.4)

∂ lnLn(θ)

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

ε2ni(λ, β) +
δ

2σ3

n∑
i=1

f
(
− δ
σ
εni(λ, β)

)
εni(λ, β), (2.5)

∂ lnLn(θ)

∂δ
= − 1

σ

n∑
i=1

f
(
− δ
σ
εni(λ, β)

)
εni(λ, β). (2.6)

These scores and the second order derivatives used to construct the information matrix will be reg-

ular when δ0 > 0. However, there are some irregularities for the case with δ0 happened to be zero.

Here we consider both situations. If δ0 = 0 but unknown to the investigator, then this constraint

would not be imposed for estimation. For this case, we see that ∂ lnLn(η,0)
∂δ

= −σ
√

2
π
∂ lnLn(η,0)

∂β1
, where

η = [λ, β1, β
′
2, σ

2]′ and β1 is the first component of β = [β1, β
′
2]′, because f(0) = φ(0)

Φ(0)
=
√

2
π
. Thus,

when the true value δ0 is zero, the scores of model (2.1) are linearly dependent and the informa-

tion matrix is singular, which is similar to the SF model with no spatial dependence. The SARSF

model has an additional term ∂ lnLn(η,0)
∂λ

, but it would not create additional linear dependence on

other derivatives because ∂ lnLn(η,0)
∂λ

= 1
σ2 [Gn(λ)Xnβ]′εn(λ, β) + 1

σ2 ε
′
n(λ, β)Gn(λ)εn(λ, β)− tr[Gn(λ)]

is linear-quadratic in εn(λ, β), where εn(λ, β) = [εn1(λ, β), . . . , εnn(λ, β)]′ and Xn = [xn1, . . . , xnn]′,

so the additional score ∂ lnLn(η0,0)
∂λ

due to the presence of spatial dependence will not be linearly

dependent on other scores, which do not have a quadratic term. With δ0 = 0, however the

asymptotic distribution of the MLE can be derived by reparameterizing the model into one with a

nonsingular information matrix, as in the usual SF model without spatial interactions (Lee, 1993).

When δ0 6= 0, the scores are generally not linearly dependent, so the asymptotic distribution of

the MLE can be derived as usual by a mean value theorem expansion. In the following, we shall

first consider the regular case with δ0 6= 0 and then the irregular one under δ0 = 0.

2.1 Asymptotic distribution under δ0 6= 0

When δ0 6= 0, the information matrix E(∂ lnLn(θ0)
∂θ

∂ lnLn(θ0)
∂θ′

) = −E(∂
2 lnLn(θ0)
∂θ∂θ′

) is generally nonsin-

gular and we assume that it is so in the limit.

Assumption 8. limn→∞ E(− 1
n
∂2 lnLn(θ0)

∂θ∂θ′
) is positive definite.

The asymptotic distribution of θ̂ follows by a mean value theorem expansion of its first order

condition. The following regularity conditions are needed in the analysis.
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Assumption 9. (a) When δ0 > 0, the true value of θ is in the interior of its parameter space.

(b) For the case with δ0 = 0, the true values of all remaining parameters are in the interior of their

parameter subspace.

Assumption 10. (a) sup1≤k≤kx,i,n E[|xni,k|6] < ∞; (b) α > 5d, where α is that one in As-

sumption 3(b)(ii); (c) for the α-mixing coefficients of {xni}ni=1 in Assumption 5, α̌(s) satisfies∑∞
s=1 s

d[1+c3ι∗/(2+ι∗)]−1[α̂(s)]ι
∗/(4+2ι∗) < ∞ for some 0 < ι∗ < 1, , where the constant c3 is the one

in Assumption 5(b).

Assumption 9 is a familiar condition required to derive asymptotic distributions of estimators.

With δ0 > 0, all components of the true value θ0 are in the interior of the parameter space. On the

other hand, if δ0 = 0, the remaining true parameters are not subject to boundary constraints so

they are in the interior of their parameter subspace. The moment condition in Assumption 10(a) is

used to have the convergence of the second order derivatives of 1
n

lnLn(θ) at a consistent estimator

of θ0. In addition to sup1≤k≤kx,i,n E[|xni,k|6] <∞, Assumption 10(b)–(c) modify the declining rate

α of wn,ij in Assumption 3 and that on α̌(s) accordingly for the applicability of the CLT for an

NED process in Jenish and Prucha (2012).

Proposition 2.2. Under Assumptions 1–10 and δ0 6= 0,

√
n(θ̂ − θ0)

d−→ N
(

0, lim
n→∞

(
− 1

n
E
∂2 lnLn(θ0)

∂θ∂θ′
)−1
)
.

This proposition gives the asymptotic distribution of the MLE θ̂ of θ0 when there is inefficiency

in the stochastic frontier function. This is a regular situation of the model. It remains to consider

the irregular case when the production function of each firm is efficient. For that case, the analysis

is relatively complicated and will be presented in the next subsection.

2.2 The boundary case with δ0 = 0

When δ0 = 0, it is on the boundary of its parameter space and the scores are linearly dependent

as mentioned above. Then the usual analysis on asymptotic distributions does not work, but we

can provide an analysis based on reparameterizations.

Let β†1 = β1 − δσ
√

2
π

be a reparameterization. Then the log likelihood function in terms of

[λ, β†1, β
′
2, σ

2, δ]′ is

lnL2n(λ, β†1, β2, σ
2, δ) ≡ lnLn

(
λ, β†1 + δσ

√
2

π
, β2, σ

2, δ
)
.

Denote η† = [λ, β†1, β
′
2, σ

2]′. The derivatives of lnL2n(λ, β†1, β2, σ
2, δ) are

∂ lnL2n(λ, β†1, β2, σ
2, δ)

∂λ
=
∂ lnLn

(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂λ
,
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∂ lnL2n(λ, β†1, β2, σ
2, δ)

∂β†1
=
∂ lnLn

(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂β1

,

∂ lnL2n(λ, β†1, β2, σ
2, δ)

∂β2

=
∂ lnLn

(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂β2

,

∂ lnL2n(λ, β†1, β2, σ
2, δ)

∂σ2
=

δ

2σ

√
2

π

∂ lnLn
(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂β1

+
∂ lnLn

(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂σ2
,

∂ lnL2n(λ, β†1, β2, σ
2, δ)

∂δ
= σ

√
2

π

∂ lnLn
(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂β1

+
∂ lnLn

(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂δ
.

At δ = 0, because β†1 = β1 and η† = η, we have ∂ lnL2n(λ,β1,β2,σ2,0)
∂η†

= ∂ lnLn(η,0)
∂η

, but

∂ lnL2n(λ, β1, β2, σ
2, 0)

∂δ
= 0 (2.7)

identically for all possible values of η due to the linear dependence of ∂ lnLn(λ,β1,β2,σ2,0)
∂θ

in (2.3)–(2.6).

Thus, as ∂ lnL2n(η0,0)
∂δ

is not the leading order term of a Taylor expansion in deriving the asymptotic

distribution of the MLE that maximizes lnL2n(λ, β†1, β2, σ
2, δ), we need to investigate the second

order derivative ∂2 lnL2n(η0,0)
∂δ2

. Since

∂2 lnL2n(λ, β†1, β2, σ
2, δ)

∂δ2
=

2σ2

π

∂2 lnLn
(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂β2
1

+ 2σ

√
2

π

∂2 lnLn
(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂β1∂δ

+
∂2 lnLn

(
λ, β†1 + δσ

√
2
π
, β2, σ

2, δ
)

∂δ2
,

by the second order derivatives of lnLn(θ) in Appendix A, ∂
2 lnL2n(λ,β1,β2,σ2,0)

∂δ2
= − 2

πσ2

∑n
i=1[ε2ni(λ, β)−

σ2]. Then
∂2 lnL2n(λ, β1, β2, σ

2, 0)

∂δ2
= −4σ2

π

∂ lnL2n(λ, β1, β2, σ
2, 0)

∂σ2
(2.8)

is linearly dependent on the score with respect to σ2. Let σ†2 = σ2/(1 + 2
π
δ2) be another reparam-

eterization, and

lnL3n(λ, β†1, β2, σ
†2, δ) ≡ lnL2n

(
λ, β†1, β2,

(
1 +

2

π
δ2
)
σ†2, δ

)
= lnLn

(
λ, β†1 + δσ†

( 2

π
+

4

π2
δ2
)1/2

, β2,
(
1 +

2

π
δ2
)
σ†2, δ

)
.

9



Then,

∂ lnL3n(λ, β†1, β2, σ
†2, δ)

∂λ
=
∂ lnL2n(λ, β†1, β2, (1 + 2

π
δ2)σ†2, δ)

∂λ
, (2.9)

∂ lnL3n(λ, β†1, β2, σ
†2, δ)

∂β†1
=
∂ lnL2n(λ, β†1, β2, (1 + 2

π
δ2)σ†2, δ)

∂β†1
, (2.10)

∂ lnL3n(λ, β†1, β2, σ
†2, δ)

∂β2

=
∂ lnL2n(λ, β†1, β2, (1 + 2

π
δ2)σ†2, δ)

∂β2

, (2.11)

∂ lnL3n(λ, β†1, β2, σ
†2, δ)

∂σ†2
=
(
1 +

2

π
δ2
)∂ lnL2n(λ, β†1, β2, (1 + 2

π
δ2)σ†2, δ)

∂σ2
, (2.12)

∂ lnL3n(λ, β†1, β2, σ
†2, δ)

∂δ
=

4δσ†2

π

∂ lnL2n(λ, β†1, β2, (1 + 2
π
δ2)σ†2, δ)

∂σ2

+
∂ lnL2n(λ, β†1, β2, (1 + 2

π
δ2)σ†2, δ)

∂δ
;

(2.13)

and hence,

∂2 lnL3n(λ, β†1, β2, σ
†2, δ)

∂δ2

=
4σ†2

π

∂ lnL2n(λ, β†1, β2, (1 + 2
π
δ2)σ†2, δ)

∂σ2
+

16δ2σ†4

π2

∂2 lnL2n(λ, β†1, β2, (1 + 2
π
δ2)σ†2, δ)

∂σ4

+
8δσ†2

π

∂2 lnL2n(λ, β†1, β2, (1 + 2
π
δ2)σ†2, δ)

∂σ2∂δ
+
∂2 lnL2n(λ, β†1, β2, (1 + 2

π
δ2)σ†2, δ)

∂δ2
. (2.14)

It follows from (2.8) and (2.14) that

∂2 lnL3n(λ, β1, β2, σ
2, 0)

∂δ2
= 0.

Also from (2.7)–(2.12) at δ0 = 0,

∂ lnL3n(λ, β1, β2, σ
2, 0)

∂η‡
=
∂ lnLn(η, 0)

∂η
,

where η‡ = [λ, β†1, β
′
2, σ

†2]′. Furthermore, by (2.7) and (2.13),

∂ lnL3n(λ, β1, β2, σ
2, 0)

∂δ
= 0.

Thus, neither ∂ lnL3n(η0,0)
∂δ

nor ∂2 lnL3n(η0,0)
∂δ2

is the leading order term of a Taylor expansion in deriving

the asymptotic distribution of the MLE that maximizes lnL3n(λ, β†1, β2, σ
†2, δ), and the third order

derivative ∂3 lnL3n(η0,0)
∂δ3

need be examined.7 It follows that, by one more reparameterization, the

model can be transformed to be one with a nonsingular information matrix so that the asymptotic

7See also Rotnitzky et al. (2000) for such an analysis on models with i.i.d. data.
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distribution of the MLE for the reparameterized coefficients can be derived as usual (Lee, 1993).

Let τ = δ3 and

lnL4n(λ, β†1, β2, σ
†2, τ) ≡ lnL3n(λ, β†1, β2, σ

†2, τ 1/3)

= lnLn

(
λ, β†1 + τ 1/3σ†

( 2

π
+

4

π2
τ 2/3

)1/2
, β2,

(
1 +

2

π
τ 2/3

)
σ†2, τ 1/3

)
.

(2.15)

Then by Proposition 3 in Lee (1993), ∂ lnL4n(λ,β1,β2,σ2,0)
∂τ

= 1
6
∂3 lnL3n(λ,β1,β2,σ2,0)

∂δ3
. It follows that by

some calculation,

∂ lnL4n(λ, β1, β2, σ
2, 0)

∂τ
=

1

6σ3

(
1− 4

π

)√ 2

π

n∑
i=1

ε3ni(λ, β) +
2

πσ

√
2

π

n∑
i=1

εni(λ, β). (2.16)

In addition,

∂ lnL4n(λ0, β10, β20, σ
2
0, 0)

∂η‡
=


1
σ2
0
ε′nGnεn − tr(Gn) + 1

σ2
0
(GnXnβ0)′εn

1
σ2
0
X ′nεn

1
2σ4

0
(ε′nεn − nσ2

0)

 ,

where Gn = Gn(λ0) and εn = [εn1, . . . , εnn]′. For the log likelihood function lnL4n(λ, β†1, β2, σ
†2, τ),

the information matrix is

∆n =


1
σ2
0

E[(GnXnβ0)′(GnXnβ0)] + tr(GnG
(s)
n ) ∗ ∗ ∗

1
σ2
0

E(X ′nGnXnβ0) 1
σ2
0

E(X ′nXn) ∗ ∗
1
σ2
0

tr(Gn) 0 n
2σ4

0
∗

1√
2πσ2

0

E(l′nGnXnβ0) 1√
2πσ2

0

E(l′nXn) 0 n
6π

(5− 16
π

+ 32
π2 )

 , (2.17)

where A(s) = A+A′ for any square matrix A, and ln is an n×1 vector of ones. Under the following

assumption, 1
n
∆n is positive definite for a large enough n.

Assumption 11. Either (a) limn→∞
1
n

E[(GnXnβ0, Xn)′Tn(GnXnβ0, Xn)] is positive definite, where

Tn = In− 3
n(5− 16

π
+ 32
π2

)
lnl
′
n, or (b) limn→∞

1
n

E(X ′nTnXn) is positive definite and limn→∞[ 1
n

tr(G
(s)
n G

(s)
n )−

1
n2 tr2(G

(s)
n )] > 0.

The above assumption is similar to one for the SAR model in Lee (2004), except for the

presence of the matrix Tn, which is due to the inclusion of uni in the SARSF model. Note that

Tn = (In − 1
n
lnl
′
n) + 2−16/π+32/π2

n(5−16/π+32/π2)
lnl
′
n is positive definite because 2− 16/π + 32/π2 is positive. In

addition, 1
n

tr(G
(s)
n G

(s)
n ) ≥ 1

n2 tr2(G
(s)
n ) by the Cauchy-Schwarz inequality.

As δ ≥ 0, τ ≥ 0. The MLE [λ̂, β̂†1, β̂2, σ̂
†2, τ̂ ] of [λ, β†1, β2, σ

†2, τ ] maximizes lnL4n(λ, β†1, β2, σ
†2, τ)

on the transformed parameter space with τ ≥ 0. It is possible that the MLE occurs at the boundary

with τ̂ = 0. Let η̌ be the MLE of η0 for the SAR model, i.e., model (2.1) with εni = vni. Then the

11



MLE [η̂‡′, τ̂ ] is equal to [η̌′, 0] if and only if ∂ lnL4n(η̌,0)
∂τ

≤ 0 as in Waldman (1982). As ∂ lnL4n(η̌,0)
∂τ

=
1
6
∂3 lnL3n(η̌,0)

∂δ3
, ∂ lnL4n(η̌,0)

∂τ
≤ 0 if and only if

∑n
i=1 ε̌

3
ni ≥ 0 by (2.16), where ε̌ni = yni− λ̌wn,i·Yn−x′niβ̌.8

The η̌ satisfies ∂ lnL4n(η̌,0)
∂η‡

= 0. Then under regularity conditions, by the CLT for NED processes

in Jenish and Prucha (2012),

√
n(η̌− η0) =

( 1

n
∆n,11

)−1 1√
n

∂ lnL4n(λ0, β10, β20, σ
2
0, 0)

∂η‡
+ op(1)

d−→ N
(

0, lim
n→∞

( 1

n
∆n,11

)−1
)
, (2.18)

where

∆n,11 =


1
σ2
0

E[(GnXnβ0)′(GnXnβ0)] + tr(GnG
(s)
n ) ∗ ∗

1
σ2
0

E(X ′nGnXnβ0) 1
σ2
0

E(X ′nXn) ∗
1
σ2
0

tr(Gn) 0 n
2σ4

0

 .

Let J = [J1, J2, J
′
3, J4]′ be the multivariate normal vector N(0, limn→∞( 1

n
∆n,11)−1), where J1, J2

and J4 are univariate normal random variables. Under regularity conditions, by a Taylor expansion

and (2.18),

1√
n

n∑
i=1

ε̌3ni =
1√
n

n∑
i=1

ε3ni −
3σ2

0

n
[E(l′nGnXnβ0, l

′
nXn, 0)]

√
n(η̌ − η0) + op(1) = Γn + op(1), (2.19)

where Γn = 1√
n

∑n
i=1 ε

3
ni −

3σ2
0

n
[E(l′nGnXnβ0, l

′
nXn, 0)]

(
1
n
∆n,11

)−1 1√
n

∂ lnL4n(λ0,β10,β20,σ2
0 ,0)

∂η‡
. Since

E
[( 1√

n

n∑
i=1

ε3ni

)( 1√
n

∂ lnL4n(λ0, β10, β20, σ
2
0, 0)

∂η‡′

)]
=

3σ2
0

n
E[l′nGnXnβ0, l

′
nXn, 0],

Γn is uncorrelated with the leading order term
(

1
n
∆n,11

)−1 1√
n

∂ lnL4n(λ0,β10,β20,σ2
0 ,0)

∂η‡
of
√
n(η̌ − η0).

Then 1√
n

∑n
i=1 ε̌

3
ni is asymptotically uncorrelated with

√
n(η̌ − η0). By the CLT in Jenish and

Prucha (2012), [
√
n(η̌ − η0)′, 1√

n

∑n
i=1 ε̌

3
ni]
′ converges in distribution to the normal vector [J ′, K]′,

where K = N(0, 6σ6
0) is independent of J ; therefore, the event ∂ lnL4n(η̌,0)

∂τ
≤ 0 is asymptotically

independent of J .

When τ̂ > 0, the MLE [η̂‡′, τ̂ ]′ satisfies the first order conditions ∂ lnL4n(η̂‡,τ̂)
∂η‡

= 0 and ∂ lnL4n(η̂‡,τ̂)
∂τ

=

0. Let F = [F1, F2, F
′
3, F4, F5]′ be the normal vector distributed as N(0, limn→∞( 1

n
∆n)−1), where F1,

F2, F4 and F5 are univariate random variables, and the distribution of N(0, limn→∞( 1
n
∆n)−1) is the

asymptotic distribution of ( 1
n
∆n)−1 1√

n

∂ lnL4n(λ0,β10,β20,σ2
0 ,0)

∂θ‡
for θ‡ = [η‡′, τ ]′. We may show that con-

ditional on τ̂ > 0,
√
n[η̂‡′−η′0, τ̂ ]′ converges in distribution to the random vector [F1, F2, F

′
3, F4, |F5|]′,

where |F5| represents the truncated normal of F5 on the nonnegative axis.

8When δ0 > 0, 1
n

∑n
i=1 ε̌

3
ni has a negative probability limit, by a proof similar to that for 1

n

∑n
i=1 ε̃

3
ni in the proof

of Proposition 2.5. However, for a finite sample size in practice, it can be the case that
∑n

i=1 ε̌
3
ni ≥ 0, which implies

that [η̌′, 0]′ is a stationary point of the log likelihood function. This is the so-called “wrong skew” problem (see,
e.g., Olson et al., 1980; Waldman, 1982; Simar and Wilson, 2010). Horrace and Wright (2019) study conditions for
the existence of stationary points in parametric stochastic frontier models.
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Denote K̂ = 1√
n

∑n
i=1 ε̌

3
ni. Since δ = τ 1/3, conditional on K̂ ≥ 0, δ̂ = 0; conditional on K̂ < 0,

(n1/6δ̂)3 = n1/2τ̂
d−→ |F5|, which implies that n1/6δ̂ = Op(1). With the asymptotic distribution of

[η̂‡′, τ̂ ]′, and the relations β1 = β†1 + τ 1/3σ†( 2
π

+ 4
π2 τ

2/3)1/2 and σ2 = (1 + 2
π
τ 2/3)σ†2, conditional on

K̂ ≥ 0, the asymptotic distributions of β̂1 and σ̂2 are the same as those of β̂†1 and σ̂†2; conditional

on K̂ < 0,

n1/6(β̂1 − β10) = n1/6(β̂†1 − β10) + n1/6τ̂ 1/3σ̂†
( 2

π
+

4

π2
τ̂ 2/3

)1/2

= Op(n
1/6−1/2) + n1/6δ̂σ0

√
2/π + op(1)

= (n1/6δ̂)σ0

√
2/π + op(1)

and

n1/3(σ̂2 − σ2
0) = n1/3(σ̂†2 − σ2

0) +
2

π
n1/3τ̂ 2/3σ̂†2

= Op(n
1/3−1/2) +

2

π
(n1/6δ̂)2σ2

0 + op(1)

=
2

π
(n1/6δ̂)2σ2

0 + op(1).

The analysis requires the following assumption.

Assumption 12. (a) sup1≤k≤kx,i,n E[|xni,k|14] <∞; (b) α > 17
5
d; (c) for the α-mixing coefficients

of {xni}ni=1 in Assumption 5, α̌(s) satisfies
∑∞

s=1 s
d[1+c3ι∗/(2+ι∗)]−1[α̂(s)]ι

∗/(4+2ι∗) < ∞ for some

0 < ι∗ < 5.

Since ∂ lnL3n(η‡,0)
∂δ

= ∂2 lnL3n(η‡,0)
∂δ2

= 0, the analysis on the asymptotic distribution of the MLE

θ̂ essentially relies on higher order Taylor expansions of lnL3n(η‡, δ), thus Assumption 12(a) is

needed so that the orders of terms in a proper higher order Taylor expansion can be derived. With

sup1≤k≤kx,i,n E[|xni,k|14] <∞, Assumption 12(b)–(c) are conditions for the applicability of the CLT

in Jenish and Prucha (2012).

Proposition 2.3. Under Assumptions 1–7, 9, 11–12 and δ0 = 0,

(i) conditional on K̂ ≥ 0, δ̂ = 0 and
√
n(η̂− η0)

d−→ J , where J is independent of K, the limit of

K̂; and

(ii) conditional on K̂ < 0, (n1/6δ̂)3 d−→ |F5|, n1/6(β̂1−β10) =
√

2
π
σ0(n1/6δ̂)+op(1), n1/3(σ̂2−σ2

0) =

2
π
σ2

0(n1/6δ̂)2 + op(1), and
√
n[λ̂− λ0, β̂

′
2 − β′20]′

d−→ [F1, F
′
3]′.

2.3 Tests for H0: δ0 = 0

As the asymptotic distribution of the MLE depends on whether δ0 = 0 or not, we consider LR and

score tests of δ0 = 0. For the LR test, using the relation lnL4n(λ, β†1, β2, σ
†2, τ) = lnLn

(
λ, β†1 +

13



τ 1/3σ†( 2
π

+ 4
π2 τ

2/3)1/2, β2, (1 + 2
π
τ 2/3)σ†2, τ 1/3

)
in (2.15), we have 2[lnLn(η̂, δ̂) − lnLn(η̌, 0)] =

2[lnL4n(η̂‡, τ̂)− lnL4n(η̌, 0)] · I(
∑n

i=1 ε̌
3
ni < 0). Then the asymptotic distribution of 2[lnLn(η̂, δ̂)−

lnLn(η̌, 0)] is χ2(0) · I(K ≥ 0) + χ2(1) · I(K < 0), which is derived by a Taylor expansion, where

χ2(0) is degenerate with a unit mass at zero. Due to the irregular feature of Ln(θ), a corresponding

score test should be constructed with a higher order derivative of lnL3n(η‡, δ) at [η̌, 0] (Lee and

Chesher, 1986). Equivalently, we may construct a score test with ∂ lnL4n(η̌,0)
∂τ

. By (2.16) and (2.19),

the score test statistic, which turns out to be
n
∑n
i=1 ε̌

3
ni√

6(
∑n
i=1 ε̌

2
ni)

3/2 , is asymptotically standard normal,

and the test is left sided since δ ≥ 0.

Proposition 2.4. Under Assumptions 1–7, 9 and 11–12, when δ0 = 0, we have

(a) 2[lnLn(η̂, δ̂)− lnLn(η̌, 0)]
d−→ χ2(0) · I(K ≥ 0) + χ2(1) · I(K < 0); and

(b) the score test statistic
n
∑n
i=1 ε̌

3
ni√

6(
∑n
i=1 ε̌

2
ni)

3/2

d−→ N(0, 1), and H0: δ0 = 0 is rejected if
n
∑n
i=1 ε̌

3
ni√

6(
∑n
i=1 ε̌

2
ni)

3/2 <

cς , where cς satisfies Φ(cς) = ς for a chosen level of significance ς.

The LR test involves both unrestricted and restricted MLEs, while the score test only involves

the restricted MLE. If the LR test is used, the MLEs will be computed; if the score test is used, in

the case that the null hypothesis of δ0 = 0 is not rejected, a researcher might further consider the

choice of an appropriate model before computing the MLE of the SARSF model. By performing a

test and then constructing an estimation based on the result of a test, the final estimator would be

subject to the pretesting problem if the level of significance is fixed but does not depend on sample

size. However, one might argue that it is reasonable to have the level of significance decrease as

the sample size increases, then asymptotically the pretesting problem would not be an issue any

more. Indeed, in practice, we can suggest such a testing procedure and then execute the proper

estimation.

Also, a consistent estimator of [λ0, β
′
20]′ can be derived by a two stage least squares (2SLS).

While the 2SLS estimate of the intercept term might not be consistent, it can be adjusted to

achieve consistency. Overall, a corrected 2SLS estimator (C2SLSE) of θ0 can be derived similarly

to the corrected ordinary least squares estimator for the SF model with no spatial dependence

(Aigner et al., 1977). The details are in the next subsection. The C2SLSE is consistent but might

not be asymptotically efficient under regularity conditions. It is also computationally simple for

large sample sizes, since it avoids the computation of the determinant |In − λWn|.9

2.4 Corrected 2SLS estimation

Let Qn be an IV matrix for Zn = [WnYn, Xn], which can consist of, e.g., linearly independent

columns of [Xn,WnXn,W
2
nXn]. Then the 2SLS estimate κ̃ of κ0 = [λ0, β

′
0]′ is κ̃ = (Z ′nPnZn)−1Z ′nPnYn,

where Pn = Qn(Q′nQn)−1Q′n. Let ε̃ni = yni − λ̃wn,i·Yn − x′niβ̃. We can estimate σ2
u0 by σ̃2

u =

9It can also be used as the starting point in optimization subroutines for the search of the MLE.

14



[
π
π−4

√
π
2

(
1
n

∑n
i=1 ε̃

3
ni

)]2/3
if 1

n

∑n
i=1 ε̃

3
ni < 0, and σ̃2

u = 0 otherwise. The σ2
v0 can be estimated by

σ̃2
v = 1

n

∑n
i=1 ε̃

2
ni− π−2

π
σ̃2
u. Then estimates of σ2

0 and δ0 are, respectively, σ̃2 = σ̃2
u+σ̃2

v and δ̃ = σ̃u/σ̃v.

To derive a consistent estimate of β10, adjust the 2SLS estimate β̃1 to be β̃1c = β̃1 +
√

2
π
σ̃u. The

C2SLSE of θ0 is θ̃c = [λ̃, β̃1c, β̃
′
2, σ̃

2, δ̃]′. We maintain the following assumption for the C2SLSE,

which would be satisfied by proper selection of IVs.

Assumption 13. (a) 1
n
Q′n[εn − E(εn)] = Op(n

−1/2); (b) plimn→∞
1
n
Q′nGn[εn − E(εn)] = 0;

(c) plimn→∞
1
n
Q′n[Gnln(β10−σu0

√
2/π)+GnX2nβ20, Xn] has full column rank; (d) plimn→∞

1
n
Q′nQn

is positive definite.

Assumption 13(a) imposes a relatively stronger condition than the exogeneity condition that

plimn→∞
1
n
Q′n[εn − E(εn)] = 0 of the IV matrix Qn in terms of its rate of convergence. This is

because we would like to investigate the convergence rate of the C2SLSE below. Assumption 13(b)

is needed due to the presence of the spatial lag WnYn. These two conditions would be satisfied by

a proper selection of Qn, e.g., Qn consists of linearly independent columns of [Xn,WnXn,W
2
nXn],

so that the LLN can be applied and the convergence rate of such averages would be of order
√
n.

Assumption 13(c) requires that the instruments are relevant. It has taken into account the nonzero

mean of vni if σu0 6= 0. When β10 = σu0

√
2/π and β20 = 0, Assumption 13(c) would not hold as

there is no valid IV for WnYn. In the case that Wn is normalized to have row sums equal to one,

as Gnln is proportional to ln and Xn also contains ln, Assumption 13(c) requires β20 to be nonzero

in order to avoid this possible multicolinearity in the regressors (of the reduced form equation).

Assumption 13(d) is standard.

Proposition 2.5. Under Assumptions 1–5 and 13,

(i) if δ0 > 0, θ̃c = θ0 +Op(n
−1/2);

(ii) if δ0 = 0, λ̃ = λ0 + Op(n
−1/2), β̃2 = β20 + Op(n

−1/2), δ̃ = Op(n
−1/6), β̃1c = β10 + Op(n

−1/6)

and σ̃2 = σ2
0 +Op(n

−1/3).

When δ0 > 0, the C2SLSE has the
√
n-rate of convergence; when δ0 = 0, only λ̃ and β̃2 have

the
√
n-rate of convergence, and other parameter estimators have slower rates of convergence, with

the rates equal to the corresponding ones of the MLE.

3 Monte Carlo

In this section, we report some Monte Carlo results on the estimates and tests considered in this

paper.
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We generate data from model (2.1). The spatial weights matrix Wn is based on the queen

criterion and normalized to have row sums equal to one.10 There are three variables in xni: a

constant term and two variables randomly drawn from the standard normal distribution. The

true value of β = [β1, β2, β3]′ is [0.5, 0.5, 0.5]′, λ0 is either 0.2 or 0.6, σ2
0 is either 1 or 2, and δ0

is either 0, 0.5, 1, 1.5, 2 or 2.5. The sample size n is either 144 or 400. The number of Monte

Carlo repetitions is 5, 000. Due to a small percentage of outliers, we report the following robust

measures of central tendency and dispersions of the MLEs and C2SLSEs: the median bias (MB),

the median absolute deviation (MAD), and the interdecile range (IDR).11 For the estimates of δ,

we also report the percentages of estimates equal to zero, and the MBs, MADs and IDRs with

zero estimates excluded.

The estimation results when δ0 = 0 are reported in Table 1. The MLE-r is a restricted MLE

with δ = 0 imposed, i.e., the MLE of a standard SAR model. The MLE-r is
√
n-consistent under

regularity conditions (Lee, 2004). Recall that the information matrix of model (2.1) is singular

when δ0 = 0. As a result, only the MLEs and C2SLSEs of λ, β2 and β3 have the
√
n-rate of

convergence, and those of β1, σ2 and δ have slower rates of convergence. Table 1 shows that

MLE-r performs the best, MLE has similar performance as that of MLE-r for λ, β2 and β3, but

MLE performs worse than MLE-r for β1 and σ2. The MLEs and C2SLSEs of λ, β2 and β3 have

relatively small MBs in all cases, while those of β1, σ2 and δ can have larger MBs, especially those

of β1. For λ, the C2SLSEs have much larger MBs, MADs and IDRs than those of the MLEs; for

β1, the C2SLSEs also have larger MBs, MADs and IDRs than those of the MLEs except when

n = 144 and λ0 = 0.6; for β2 and β3, the C2SLSEs have similar MBs, MADs and IDRs as those

of the MLEs; for σ2, the C2SLSEs have larger MBs and MADs than those of the MLEs, but they

have slightly smaller IDRs; for δ, the C2SLSEs have slightly smaller IDRs than those of the MLEs,

but neither the MLE nor the C2SLSE has a dominating performance in terms of the MB and

MAD. Note that some MBs and MADs of the estimates of δ are 0.000. This is because more than

50% estimates are estimated as zero.

Table 2 reports the estimation results when δ0 6= 0 and n = 144. In addition to MBs, MADs

and IDRs, coverage probabilities (CP) of 95% confidence intervals are also reported for MLE-r

and MLE. As MLE-r restricts the wrong restriction δ = 0, it has large biases and extremely low

CPs for β1 and σ2. The MLEs and C2SLSEs have the
√
n-rate of convergence when δ0 6= 0. The

MBs of the MLEs are relatively small in all cases, and they are generally smaller than those of

the C2SLSEs. For λ, β1, β2 and β3, the MLEs have smaller MADs and IDRs than those of the

C2SLSEs in most cases; for σ2 and δ, the C2SLSEs have smaller MADs and IDRs in some cases.

When δ0 = 1, the CPs of the MLEs for λ, β2 and β3 are close to the nominal 95%, while the CPs

10Connectivity for the queen criterion is based on a grid of cells. Each cell corresponds to a reference location,
so the sample size is k2 for a k × k grid. The spatial weight wn,ij is 1 if cell i and cell j share a common side or
vertex, and wn,ij = 0 otherwise. See Kelejian and Robinson (1995) for more details and definitions of various types
of spatial weights matrices.

11The IDR is the difference between the 90% quantile and 10% quantile in the empirical distribution.
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of β1, σ2 and δ are significantly lower than 95%; when δ0 = 2, all CPs of the MLEs are close to

95%. Note that in all cases, more than a quarter of MLEs and C2SLSEs of δ are estimated as zero

when δ0 = 1, but less than 2.5% of MLEs and C2SLSEs of δ are estimated as zero when δ0 = 2.

The large percentages of zero estimates when δ0 = 1 explain why the CPs for MLEs and C2SLSEs

of some parameters are much lower than the nominal level, while the small percentages of zero

estimates when δ0 = 2 explain why the CPs are close to the nominal level. Thus, with the sample

size n = 144, we observe a relatively severe wrong skew problem for δ0 = 1, which is mentioned in

footnote 8.

Table 3 reports the estimation results when δ0 6= 0 for a larger sample size n = 400. We observe

that the MBs, MADs and IDRs are smaller than those in Table 2. Compared to the results with

n = 144, the C2SLSEs of σ2 and δ have smaller MADs and IDRs than those of the MLEs in much

fewer cases, and other patterns are similar. Note that, with the sample size n = 400, in all cases,

less than 15% of MLEs and C2SLSEs of δ are estimated as zero for δ0 = 1, and almost all MLEs

and C2SLSEs of δ are positive for δ0 = 2. For δ0 = 1, with zero estimates excluded, while the MBs

are larger, the MADs and IDRs are much smaller.

Empirical sizes of the score and LR tests are reported in Table 4. With n = 144, at the 5%

level of significance, the size distortions of the score and LR tests are within, respectively, 0.9 and

0.8 percentage points; for the 10% level of significance, they are within, respectively, 1.6 and 1.3

percentage points. Size distortion generally decreases as n increases (from 144 to 400).

Table 5 reports empirical powers of the tests. The score and LR tests have similar powers.

Powers increase as δ0 or the sample size increases. For n = 144 and δ0 = 0.5, the powers are

similar to the significance level and are small; but for n = 400 and δ0 = 2.5, the powers are all

close to 1.

4 Conclusion

We study asymptotic properties of the MLE and a corrected 2SLSE for the SARSF model in this

paper. When inefficiency exists, all model parameter estimators are
√
n consistent and asymptoti-

cally normal; when there is no inefficiency, only some parameter estimators are
√
n consistent and

the rest of parameters have slower rates of convergence. We also derive the asymptotic distributions

of the score and likelihood ratio test statistics that test for the existence of inefficiency.

For the SARSF model with exponential distribution under efficiency, some very preliminary

investigation has indicated that its information matrix might still be non-singular and the rate

of convergence of its ML estimator would still be regular. So it is likely that the irregularity of

estimates for an SF model and an SARSF model, when all firms are efficiently operated, depends on

a parametric form of a one-sided distribution of the possibly inefficient disturbance—a particular

feature of a stochastic frontier model. Our analysis does not allow for distributional misspecification

of inefficiency and disturbance terms. It is of interest to extend the analysis to the case with
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Table 1: MBs, MADs and IDRs of parameter estimates when δ0 = 0

λ0 = 0.2, σ2
0 = 1 λ0 = 0.2, σ2

0 = 2 λ0 = 0.6, σ2
0 = 1 λ0 = 0.6, σ2

0 = 2

n = 144
λ MLE-r -0.027[0.084]0.336 -0.027[0.091]0.352 -0.023[0.061]0.242 -0.029[0.063]0.249

MLE -0.027[0.085]0.337 -0.027[0.092]0.353 -0.024[0.061]0.243 -0.029[0.063]0.250
C2SLSE 0.068[0.174]0.706 0.135[0.229]0.917 0.063[0.112]0.465 0.114[0.140]0.596

β1 MLE-r 0.013[0.079]0.303 0.016[0.100]0.377 0.025[0.097]0.385 0.025[0.115]0.445
MLE 0.233[0.287]0.987 0.319[0.401]1.374 0.282[0.316]1.038 0.353[0.422]1.434
C2SLSE 0.251[0.329]1.039 0.339[0.468]1.443 0.236[0.344]1.120 0.293[0.483]1.519

β2 MLE-r -0.002[0.058]0.216 0.001[0.079]0.309 0.001[0.058]0.219 0.002[0.082]0.312
MLE -0.001[0.058]0.218 0.000[0.079]0.310 0.001[0.058]0.221 0.002[0.083]0.313
C2SLSE -0.007[0.058]0.220 -0.007[0.080]0.312 -0.005[0.058]0.220 -0.009[0.084]0.315

β3 MLE-r 0.001[0.057]0.215 -0.004[0.082]0.306 0.002[0.058]0.214 0.001[0.079]0.309
MLE 0.000[0.057]0.216 -0.004[0.082]0.306 0.002[0.058]0.217 -0.000[0.079]0.310
C2SLSE -0.005[0.057]0.217 -0.012[0.082]0.310 -0.005[0.059]0.219 -0.012[0.081]0.311

σ2 MLE-r -0.036[0.077]0.295 -0.066[0.151]0.590 -0.027[0.080]0.298 -0.045[0.158]0.610
MLE 0.096[0.190]0.885 0.200[0.374]1.740 0.106[0.192]0.902 0.210[0.377]1.838
C2SLSE 0.114[0.192]0.829 0.261[0.394]1.677 0.105[0.193]0.850 0.245[0.392]1.727

δ MLE-r 0.000[0.000]0.000 0.000[0.000]0.000 0.000[0.000]0.000 0.000[0.000]0.000
MLE 0.000[0.000]1.494 0.124[0.124]1.472 0.064[0.064]1.487 0.000[0.000]1.497

1.026[0.339]1.306{0.501} 1.027[0.329]1.280{0.494} 1.037[0.334]1.347{0.498} 1.038[0.342]1.307{0.504}
C2SLSE 0.000[0.000]1.354 0.217[0.217]1.337 0.000[0.000]1.373 0.162[0.162]1.367

0.981[0.287]1.090{0.501} 0.979[0.282]1.052{0.496} 0.988[0.285]1.118{0.504} 0.982[0.289]1.094{0.499}

n = 400
λ MLE-r -0.011[0.052]0.198 -0.012[0.055]0.208 -0.009[0.036]0.141 -0.011[0.039]0.148

MLE -0.010[0.052]0.198 -0.012[0.055]0.210 -0.009[0.036]0.141 -0.011[0.039]0.148
C2SLSE 0.023[0.110]0.428 0.049[0.153]0.589 0.025[0.075]0.298 0.050[0.099]0.401

β1 MLE-r 0.005[0.048]0.184 0.006[0.061]0.229 0.008[0.059]0.219 0.010[0.068]0.261
MLE 0.157[0.219]0.794 0.211[0.297]1.114 0.185[0.238]0.811 0.232[0.313]1.134
C2SLSE 0.209[0.267]0.845 0.305[0.392]1.184 0.220[0.284]0.883 0.290[0.403]1.256

β2 MLE-r -0.001[0.035]0.128 -0.001[0.047]0.179 0.001[0.034]0.129 -0.001[0.047]0.183
MLE -0.001[0.035]0.128 -0.000[0.047]0.180 0.000[0.035]0.129 -0.001[0.047]0.183
C2SLSE -0.004[0.035]0.131 -0.006[0.047]0.179 -0.003[0.035]0.129 -0.006[0.048]0.183

β3 MLE-r -0.002[0.033]0.129 -0.001[0.048]0.184 0.000[0.035]0.129 0.001[0.048]0.184
MLE -0.002[0.033]0.129 -0.000[0.048]0.183 0.000[0.035]0.128 0.001[0.048]0.183
C2SLSE -0.004[0.034]0.130 -0.003[0.049]0.185 -0.002[0.035]0.128 -0.005[0.049]0.184

σ2 MLE-r -0.014[0.049]0.181 -0.024[0.095]0.361 -0.007[0.047]0.184 -0.016[0.100]0.378
MLE 0.075[0.126]0.601 0.160[0.258]1.194 0.081[0.129]0.592 0.163[0.262]1.217
C2SLSE 0.082[0.128]0.590 0.188[0.271]1.180 0.089[0.134]0.582 0.182[0.282]1.206

δ MLE-r 0.000[0.000]0.000 0.000[0.000]0.000 0.000[0.000]0.000 0.000[0.000]0.000
MLE 0.075[0.075]1.077 0.106[0.106]1.086 0.081[0.081]1.087 0.000[0.000]1.086

0.810[0.220]0.829{0.499} 0.809[0.226]0.862{0.495} 0.801[0.223]0.828{0.498} 0.804[0.224]0.833{0.502}
C2SLSE 0.000[0.000]1.062 0.169[0.169]1.077 0.000[0.000]1.060 0.000[0.000]1.064

0.806[0.201]0.772{0.501} 0.805[0.208]0.774{0.497} 0.799[0.205]0.777{0.502} 0.806[0.208]0.770{0.503}
a For parameters except δ, the three numbers in each cell are MB[MAD]IDR; for δ, the additional rows for MLE and

C2SLSE have four numbers in each cell, where the first three numbers are MB[MAD]IDR with zero estimates excluded
and the last number in curly parentheses is the percentage of zero estimates. MB: median bias; MAD: median absolute
deviation; IDR: interdecile range.

b β0 = [0.5, 0.5, 0.5]′, and the number of Monte Carlo repetitions is 5, 000.
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Table 2: MBs, MADs and IDRs of parameter estimates when δ0 6= 0 and n = 144

λ0 = 0.2, σ2
0 = 1 λ0 = 0.2, σ2

0 = 2 λ0 = 0.6, σ2
0 = 1 λ0 = 0.6, σ2

0 = 2

δ0 = 1
λ MLE-r -0.025[0.085]0.325(0.939) -0.026[0.087]0.338(0.946) -0.023[0.058]0.228(0.943) -0.027[0.063]0.241(0.943)

MLE -0.026[0.085]0.324(0.938) -0.027[0.088]0.340(0.944) -0.022[0.058]0.229(0.939) -0.027[0.063]0.241(0.944)
C2SLSE 0.055[0.150]0.592( *** ) 0.101[0.191]0.772( *** ) 0.046[0.098]0.401( *** ) 0.087[0.126]0.535( *** )

β1 MLE-r -0.567[0.048]0.187(0.000) -0.804[0.075]0.288(0.000) -0.568[0.051]0.200(0.000) -0.812[0.081]0.326(0.000)
MLE -0.036[0.245]0.871(0.654) -0.056[0.339]1.211(0.667) -0.029[0.232]0.866(0.666) -0.056[0.337]1.227(0.676)
C2SLSE -0.049[0.228]0.839( *** ) -0.059[0.344]1.182( *** ) -0.039[0.219]0.829( *** ) -0.019[0.347]1.216( *** )

β2 MLE-r -0.002[0.048]0.183(0.942) -0.003[0.068]0.254(0.945) -0.000[0.048]0.178(0.950) -0.003[0.069]0.258(0.940)
MLE -0.002[0.048]0.183(0.936) -0.002[0.068]0.256(0.944) -0.000[0.048]0.179(0.948) -0.003[0.068]0.260(0.940)
C2SLSE -0.005[0.048]0.183( *** ) -0.008[0.068]0.258( *** ) -0.006[0.048]0.177( *** ) -0.011[0.069]0.261( *** )

β3 MLE-r -0.000[0.047]0.178(0.941) -0.000[0.066]0.251(0.949) 0.001[0.046]0.175(0.947) 0.000[0.067]0.257(0.947)
MLE 0.001[0.047]0.178(0.939) -0.000[0.066]0.252(0.947) 0.000[0.046]0.177(0.944) 0.001[0.068]0.258(0.945)
C2SLSE -0.003[0.047]0.179( *** ) -0.007[0.066]0.252( *** ) -0.005[0.046]0.176( *** ) -0.009[0.068]0.256( *** )

σ2 MLE-r -0.341[0.053]0.206(0.040) -0.685[0.109]0.406(0.039) -0.341[0.056]0.207(0.044) -0.672[0.108]0.411(0.046)
MLE -0.065[0.237]0.785(0.718) -0.120[0.477]1.565(0.716) -0.052[0.241]0.788(0.720) -0.077[0.488]1.566(0.731)
C2SLSE -0.079[0.215]0.737( *** ) -0.148[0.434]1.456( *** ) -0.077[0.220]0.743( *** ) -0.134[0.442]1.503( *** )

δ MLE-r -1.000[0.000]0.000(0.000) -1.000[0.000]0.000(0.000) -1.000[0.000]0.000(0.000) -1.000[0.000]0.000(0.000)
MLE -0.026[0.617]1.971(0.714) -0.014[0.604]1.898(0.714) -0.014[0.604]1.959(0.715) 0.005[0.589]1.944(0.724)

0.236[0.394]1.573{0.268} 0.238[0.367]1.474{0.272} 0.249[0.378]1.510{0.268} 0.245[0.376]1.455{0.261}
C2SLSE -0.080[0.548]1.776( *** ) -0.080[0.537]1.736( *** ) -0.059[0.530]1.783( *** ) -0.043[0.519]1.786( *** )

0.171[0.343]1.295{0.275} 0.162[0.319]1.246{0.285} 0.177[0.328]1.321{0.274} 0.174[0.327]1.281{0.272}

δ0 = 2
λ MLE-r -0.021[0.077]0.294(0.950) -0.028[0.085]0.328(0.943) -0.022[0.055]0.212(0.945) -0.025[0.060]0.232(0.948)

MLE -0.018[0.076]0.289(0.944) -0.026[0.082]0.325(0.937) -0.019[0.055]0.208(0.938) -0.025[0.058]0.225(0.941)
C2SLSE 0.038[0.129]0.504( *** ) 0.077[0.172]0.676( *** ) 0.033[0.086]0.338( *** ) 0.061[0.112]0.449( *** )

β1 MLE-r -0.716[0.046]0.176(0.000) -1.020[0.081]0.306(0.000) -0.720[0.052]0.200(0.000) -1.035[0.095]0.376(0.000)
MLE -0.011[0.096]0.386(0.928) -0.025[0.141]0.576(0.936) -0.015[0.096]0.403(0.927) -0.047[0.150]0.609(0.936)
C2SLSE -0.031[0.106]0.418( *** ) -0.019[0.176]0.712( *** ) -0.024[0.109]0.435( *** ) -0.001[0.195]0.795( *** )

β2 MLE-r -0.002[0.040]0.151(0.942) 0.002[0.056]0.216(0.943) 0.000[0.040]0.151(0.948) -0.001[0.056]0.216(0.939)
MLE -0.001[0.039]0.147(0.941) 0.002[0.054]0.209(0.939) 0.001[0.038]0.146(0.935) -0.002[0.054]0.211(0.931)
C2SLSE -0.004[0.041]0.153( *** ) -0.002[0.057]0.217( *** ) -0.004[0.040]0.153( *** ) -0.008[0.057]0.219( *** )

β3 MLE-r -0.001[0.040]0.154(0.949) -0.002[0.058]0.219(0.944) 0.001[0.040]0.152(0.942) 0.003[0.055]0.216(0.947)
MLE -0.001[0.039]0.148(0.942) -0.001[0.056]0.212(0.930) 0.001[0.037]0.148(0.934) 0.004[0.055]0.208(0.942)
C2SLSE -0.003[0.041]0.154( *** ) -0.006[0.058]0.220( *** ) -0.003[0.041]0.151( *** ) -0.004[0.056]0.216( *** )

σ2 MLE-r -0.526[0.041]0.156(0.000) -1.056[0.082]0.309(0.000) -0.523[0.041]0.162(0.000) -1.050[0.084]0.320(0.000)
MLE -0.026[0.156]0.592(0.944) -0.062[0.309]1.181(0.943) -0.022[0.152]0.600(0.939) -0.059[0.301]1.186(0.940)
C2SLSE -0.068[0.154]0.596( *** ) -0.140[0.308]1.206( *** ) -0.068[0.154]0.600( *** ) -0.160[0.311]1.180( *** )

δ MLE-r -2.000[0.000]0.000(0.000) -2.000[0.000]0.000(0.000) -2.000[0.000]0.000(0.000) -2.000[0.000]0.000(0.000)
MLE 0.077[0.529]2.253(0.977) 0.087[0.537]2.276(0.976) 0.072[0.530]2.203(0.971) 0.075[0.512]2.134(0.980)

0.093[0.521]2.188{0.018} 0.110[0.528]2.235{0.017} 0.091[0.520]2.150{0.021} 0.094[0.505]2.075{0.016}
C2SLSE -0.152[0.479]2.145( *** ) -0.158[0.490]2.214( *** ) -0.147[0.505]2.176( *** ) -0.176[0.467]2.113( *** )

-0.135[0.468]2.105{0.021} -0.145[0.478]2.180{0.018} -0.126[0.494]2.138{0.022} -0.159[0.457]2.078{0.019}
a For parameters except δ, the four numbers in each cell are MB[MAD]IDR(CP); for δ, the additional rows for MLE and

C2SLSE have four numbers in each cell, where the first three numbers are MB[MAD]IDR with zero estimates excluded
and the last number in curly parentheses is the percentage of zero estimates. MB: median bias; MAD: median absolute
deviation; IDR: interdecile range; CP: coverage probability of a 95% confidence interval.

b β0 = [0.5, 0.5, 0.5]′, and the number of Monte Carlo repetitions is 5, 000.
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Table 3: MBs, MADs and IDRs of parameter estimates when δ0 6= 0 and n = 400

λ0 = 0.2, σ2
0 = 1 λ0 = 0.2, σ2

0 = 2 λ0 = 0.6, σ2
0 = 1 λ0 = 0.6, σ2

0 = 2

δ0 = 1
λ MLE-r -0.009[0.049]0.192(0.944) -0.009[0.055]0.204(0.950) -0.006[0.034]0.133(0.945) -0.011[0.037]0.142(0.948)

MLE -0.009[0.049]0.191(0.943) -0.009[0.054]0.204(0.949) -0.006[0.034]0.133(0.945) -0.011[0.037]0.143(0.946)
C2SLSE 0.020[0.094]0.361( *** ) 0.045[0.129]0.503( *** ) 0.016[0.062]0.255( *** ) 0.032[0.088]0.346( *** )

β1 MLE-r -0.565[0.029]0.108(0.000) -0.801[0.044]0.171(0.000) -0.565[0.029]0.113(0.000) -0.805[0.050]0.191(0.000)
MLE -0.008[0.125]0.719(0.808) -0.015[0.183]1.015(0.813) -0.006[0.127]0.724(0.797) -0.014[0.180]1.009(0.802)
C2SLSE -0.012[0.121]0.708( *** ) -0.011[0.186]1.003( *** ) -0.012[0.125]0.715( *** ) -0.007[0.190]0.994( *** )

β2 MLE-r -0.000[0.028]0.105(0.945) 0.000[0.040]0.150(0.948) 0.000[0.028]0.104(0.955) 0.001[0.039]0.146(0.956)
MLE 0.000[0.028]0.105(0.947) -0.000[0.040]0.151(0.947) -0.000[0.028]0.105(0.955) 0.000[0.039]0.145(0.954)
C2SLSE -0.001[0.028]0.105( *** ) -0.003[0.041]0.152( *** ) -0.002[0.028]0.105( *** ) -0.004[0.039]0.150( *** )

β3 MLE-r -0.002[0.028]0.106(0.954) -0.001[0.040]0.149(0.954) 0.000[0.028]0.105(0.949) -0.000[0.040]0.153(0.945)
MLE -0.002[0.028]0.105(0.955) -0.001[0.039]0.149(0.955) 0.000[0.028]0.105(0.949) 0.001[0.040]0.152(0.944)
C2SLSE -0.003[0.028]0.105( *** ) -0.004[0.040]0.150( *** ) -0.002[0.028]0.107( *** ) -0.003[0.041]0.153( *** )

σ2 MLE-r -0.327[0.033]0.126(0.000) -0.652[0.066]0.251(0.000) -0.326[0.034]0.128(0.000) -0.649[0.068]0.255(0.000)
MLE -0.019[0.149]0.563(0.842) -0.033[0.307]1.132(0.841) -0.015[0.155]0.571(0.835) -0.018[0.308]1.143(0.838)
C2SLSE -0.026[0.145]0.547( *** ) -0.040[0.296]1.109( *** ) -0.024[0.153]0.560( *** ) -0.044[0.299]1.120( *** )

δ MLE-r -1.000[0.000]0.000(0.000) -1.000[0.000]0.000(0.000) -1.000[0.000]0.000(0.000) -1.000[0.000]0.000(0.000)
MLE -0.003[0.293]1.516(0.836) -0.004[0.305]1.499(0.837) 0.007[0.307]1.514(0.829) 0.015[0.303]1.543(0.830)

0.061[0.240]0.947{0.132} 0.069[0.251]0.929{0.138} 0.084[0.245]0.957{0.143} 0.090[0.248]0.962{0.138}
C2SLSE -0.016[0.283]1.475( *** ) -0.022[0.294]1.472( *** ) -0.014[0.300]1.470( *** ) -0.003[0.291]1.501( *** )

0.049[0.235]0.886{0.135} 0.048[0.239]0.898{0.141} 0.065[0.238]0.901{0.147} 0.067[0.235]0.921{0.142}

δ0 = 2
λ MLE-r -0.007[0.048]0.181(0.954) -0.008[0.051]0.197(0.950) -0.007[0.033]0.125(0.947) -0.008[0.036]0.140(0.944)

MLE -0.007[0.046]0.176(0.954) -0.007[0.050]0.195(0.952) -0.007[0.032]0.121(0.946) -0.008[0.034]0.136(0.946)
C2SLSE 0.012[0.079]0.314( *** ) 0.030[0.112]0.432( *** ) 0.011[0.055]0.213( *** ) 0.022[0.078]0.302( *** )

β1 MLE-r -0.716[0.027]0.102(0.000) -1.012[0.047]0.178(0.000) -0.717[0.029]0.114(0.000) -1.019[0.059]0.221(0.000)
MLE -0.003[0.052]0.204(0.961) -0.011[0.080]0.307(0.956) -0.007[0.054]0.211(0.957) -0.018[0.086]0.325(0.954)
C2SLSE -0.011[0.062]0.238( *** ) -0.005[0.105]0.423( *** ) -0.010[0.064]0.243( *** ) 0.002[0.124]0.486( *** )

β2 MLE-r -0.001[0.024]0.090(0.954) -0.000[0.033]0.129(0.942) 0.000[0.023]0.090(0.953) -0.001[0.033]0.128(0.953)
MLE -0.000[0.023]0.086(0.946) -0.000[0.032]0.123(0.940) 0.000[0.022]0.085(0.954) -0.002[0.032]0.121(0.951)
C2SLSE -0.002[0.024]0.091( *** ) -0.003[0.034]0.131( *** ) -0.001[0.024]0.090( *** ) -0.003[0.033]0.129( *** )

β3 MLE-r 0.001[0.025]0.092(0.942) 0.001[0.033]0.127(0.956) -0.000[0.023]0.090(0.948) 0.002[0.034]0.129(0.945)
MLE 0.001[0.023]0.087(0.943) 0.000[0.032]0.121(0.951) -0.000[0.022]0.087(0.948) 0.001[0.032]0.123(0.946)
C2SLSE -0.000[0.025]0.091( *** ) -0.002[0.033]0.127( *** ) -0.002[0.024]0.090( *** ) -0.002[0.035]0.129( *** )

σ2 MLE-r -0.515[0.025]0.094(0.000) -1.031[0.049]0.190(0.000) -0.514[0.026]0.099(0.000) -1.028[0.050]0.190(0.000)
MLE -0.006[0.087]0.334(0.950) -0.024[0.177]0.681(0.950) -0.009[0.087]0.338(0.955) -0.019[0.179]0.670(0.951)
C2SLSE -0.024[0.094]0.358( *** ) -0.053[0.191]0.728( *** ) -0.025[0.095]0.361( *** ) -0.055[0.192]0.737( *** )

δ MLE-r -2.000[0.000]0.000(0.000) -2.000[0.000]0.000(0.000) -2.000[0.000]0.000(0.000) -2.000[0.000]0.000(0.000)
MLE 0.035[0.284]1.116(0.963) 0.024[0.289]1.111(0.964) 0.033[0.285]1.113(0.963) 0.027[0.287]1.104(0.962)

0.035[0.284]1.116{0.000} 0.024[0.289]1.111{0.000} 0.033[0.285]1.112{0.000} 0.027[0.287]1.104{0.000}
C2SLSE -0.056[0.307]1.248( *** ) -0.070[0.316]1.265( *** ) -0.064[0.310]1.287( *** ) -0.064[0.317]1.250( *** )

-0.056[0.307]1.248{0.000} -0.070[0.316]1.265{0.000} -0.064[0.310]1.286{0.000} -0.064[0.317]1.250{0.000}
a For parameters except δ, the four numbers in each cell are MB[MAD]IDR(CP); for δ, the additional rows for MLE and

C2SLSE have four numbers in each cell, where the first three numbers are MB[MAD]IDR with zero estimates excluded
and the last number in curly parentheses is the percentage of zero estimates. MB: median bias; MAD: median absolute
deviation; IDR: interdecile range; CP: coverage probability of a 95% confidence interval.

b β0 = [0.5, 0.5, 0.5]′, and the number of Monte Carlo repetitions is 5, 000.
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Table 4: Empirical sizes of the score and LR tests

ς = 5% ς = 10%

Score LR Score LR

n = 144, λ0 = 0.2, σ2
0 = 1 0.043 0.053 0.084 0.098

n = 144, λ0 = 0.2, σ2
0 = 2 0.041 0.051 0.090 0.102

n = 144, λ0 = 0.6, σ2
0 = 1 0.044 0.055 0.096 0.113

n = 144, λ0 = 0.6, σ2
0 = 2 0.046 0.058 0.093 0.103

n = 400, λ0 = 0.2, σ2
0 = 1 0.048 0.051 0.099 0.100

n = 400, λ0 = 0.2, σ2
0 = 2 0.051 0.054 0.102 0.104

n = 400, λ0 = 0.6, σ2
0 = 1 0.050 0.051 0.094 0.097

n = 400, λ0 = 0.6, σ2
0 = 2 0.048 0.049 0.098 0.101

a β0 = [0.5, 0.5, 0.5]′, ς is the level of siginificance, and the number of
Monte Carlo repetitions is 5, 000.

Table 5: Empirical powers of the score and LR tests

Score LR

δ0 = 0.5 δ0 = 1 δ0 = 1.5 δ0 = 2 δ0 = 2.5 δ0 = 0.5 δ0 = 1 δ0 = 1.5 δ0 = 2 δ0 = 2.5

ς = 5% n = 144, λ0 = 0.2, σ2
0 = 1 0.054 0.152 0.393 0.645 0.824 0.067 0.174 0.434 0.700 0.870

n = 144, λ0 = 0.2, σ2
0 = 2 0.055 0.152 0.386 0.653 0.824 0.066 0.174 0.433 0.713 0.870

n = 144, λ0 = 0.6, σ2
0 = 1 0.058 0.147 0.379 0.640 0.832 0.069 0.165 0.425 0.699 0.881

n = 144, λ0 = 0.6, σ2
0 = 2 0.061 0.147 0.382 0.644 0.835 0.075 0.167 0.423 0.696 0.878

n = 400, λ0 = 0.2, σ2
0 = 1 0.066 0.287 0.750 0.974 0.998 0.069 0.298 0.764 0.979 0.998

n = 400, λ0 = 0.2, σ2
0 = 2 0.078 0.290 0.756 0.975 0.998 0.082 0.297 0.769 0.978 0.998

n = 400, λ0 = 0.6, σ2
0 = 1 0.076 0.285 0.756 0.972 0.998 0.080 0.289 0.770 0.975 0.999

n = 400, λ0 = 0.6, σ2
0 = 2 0.065 0.303 0.756 0.972 0.997 0.067 0.308 0.770 0.974 0.998

ς = 10% n = 144, λ0 = 0.2, σ2
0 = 1 0.109 0.253 0.526 0.772 0.904 0.124 0.277 0.559 0.806 0.925

n = 144, λ0 = 0.2, σ2
0 = 2 0.105 0.246 0.527 0.784 0.903 0.120 0.270 0.562 0.814 0.925

n = 144, λ0 = 0.6, σ2
0 = 1 0.116 0.242 0.517 0.762 0.914 0.133 0.267 0.552 0.794 0.932

n = 144, λ0 = 0.6, σ2
0 = 2 0.126 0.244 0.524 0.764 0.911 0.138 0.269 0.553 0.800 0.932

n = 400, λ0 = 0.2, σ2
0 = 1 0.126 0.421 0.851 0.990 0.999 0.130 0.426 0.856 0.991 0.999

n = 400, λ0 = 0.2, σ2
0 = 2 0.147 0.418 0.851 0.990 1.000 0.151 0.422 0.858 0.992 1.000

n = 400, λ0 = 0.6, σ2
0 = 1 0.141 0.411 0.856 0.987 0.999 0.144 0.416 0.863 0.987 0.999

n = 400, λ0 = 0.6, σ2
0 = 2 0.131 0.429 0.852 0.988 0.999 0.134 0.433 0.859 0.989 0.999

a β0 = [0.5, 0.5, 0.5]′, ς is the level of siginificance, and the number of Monte Carlo repetitions is 5, 000.
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unknown distribution of inefficiency and disturbance terms in future research.
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Appendix A Second order derivatives of lnLn(θ)
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where f (1)(t) = ∂f(t)
∂t

= −tf(t)− f 2(t).

Appendix B Proofs

For any random variable t with a finite pth absolute moment, where p ≥ 1, denote its Lp-norm by

‖t‖p = E[|t|p]1/p. Let g = {gni, i ∈ Dn, n ≥ 1} and ν = {νni, i ∈ Dn, n ≥ 1} be two random fields,

where Dn satisfies Assumption 1. Assume that g is uniformly Lp bounded for some p ≥ 1, i.e.,

supi,n ‖gni‖p < ∞. Let Fni(s) be the σ-field generated by the random variables νnj’s with units

j’s located within the ball Bi(s), where Bi(s) is centered at i with radius s. The random field g

is said to be Lp-NED on ν if ‖gni − E(gni|Fni(s))‖p ≤ dniψ(s) for some arrays of finite positive

constants {dni, i ∈ Dn, n ≥ 1} and for some sequence ψ(s) ≥ 0 such that lims→∞ ψ(s) = 0. The

ψ(s) is called the NED coefficient. If we also have supn supi∈Dn dni <∞, g is said to be uniformly

Lp-NED on ν.

The results in the following lemmas are frequently used in subsequent proofs, so we collect

them in lemmas. For j ≥ 0, f (j)(t) denotes the jth derivative of f(t). In the following proofs, c

will denote a generic positive constant that may be different in different cases.

Lemma B.1. Suppose that Assumptions 1–4 and 7 hold. Let Λ and B be, respectively, the param-

eter spaces of λ and β.

(a) If sup1≤k≤kx,i,n ‖xni,k‖p <∞ for some p ≥ 1, then supi,n ‖yni‖p <∞, supi,n ‖wn,i·Yn‖p <∞,

and supi,n,λ∈Λ,β∈B ‖εni(λ, β)‖p <∞.

(b) If sup1≤k≤kx,i,n ‖xni,k‖p < ∞ for some p ≥ 2, supi,n,λ∈Λ,β∈B ‖ ln Φ(− δ
σ
εni(λ, β))‖p/2 < ∞; if

sup1≤k≤kx,i,n ‖xni,k‖p <∞ for some p ≥ j + 1 with j ≥ 0,

sup
i,n,λ∈Λ,β∈B

∥∥f (j)
(
− δ
σ
εni(λ, β)

)∥∥
p/(j+1)

<∞.

Proof. (a) The reduced form of yni is yni =
∑n

j=1 tn,ij(x
′
njβ0 + vnj − unj), where tn,ij is the

(i, j)th element of (In − λ0Wn)−1. For any matrix A = [aij], let abs(A) = [|aij|]. Note that

abs((In − λ0Wn)−1) ≤∗ (In − abs(λ0Wn))−1, where B ≤∗ C for conformable matrices B = [bij]

and C = [cij] means that bij ≤ cij for all i, j. Denote Mn = (In − abs(λ0Wn))−1 = [mn,ij]. Then

supi,n ‖yni‖p ≤ supi,n
∑n

j=1 mn,ij(
∑kx

k=1 ‖xnj,k‖p|β0k|+‖vnj‖p+‖unj‖p) by the Minkowski inequality.

As λm supn ‖Wn‖∞ <∞, sup1≤k≤kx,j,n ‖xnj,k‖p <∞, supj,n ‖vnj‖p <∞ and supj,n ‖unj‖p <∞, we

have supi,n ‖yni‖p <∞. So is {wn,i·Yn}ni=1. As εni(λ, β) = yni − λwn,i·Yn − x′niβ, by the Minkowski

inequality, supi,n,λ∈Λ,β∈B ‖εni(λ, β)‖p <∞.

(b) By the proof of Lemma A.9 in Xu and Lee (2015), | ln Φ(t)| ≤ c(t2 + |t| + 1) and |f(t)| ≤
2|t|+ c. Then the first result follows by the Minkowski inequality. Since f (1)(t) = −tf(t)− f 2(t),

f (j)(t) for j > 1 can be derived recursively and it can be regarded as a (j + 1)-order polynomial
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function of [t, f(t)]. Thus, |f (j)(t)| ≤ c(|t|j+1 + · · · + 1). With sup1≤k≤kx,i,n ‖xni,k‖p <∞ for some

p ≥ j + 1, the second result follows by the Minkowski inequality and (a).

Lemma B.2. Suppose that Assumptions 1–4 and 7 hold. Let Λ and B be, respectively, the param-

eter spaces of λ and β.

(a) If sup1≤k≤kx,i,n ‖xni,k‖p <∞ for some p ≥ 2, {yni}ni=1 is uniformly L2-NED on {xni, vni, uni}ni=1

with NED coefficient ψ(s) = c
s/d0
1 under Assumption 3(a), where c1 is defined in Assump-

tion 2; and ψ(s) = s−(α−d) under Assumption 3(b). The same holds for {wn,i·Yn}ni=1 and

{εni(λ, β)}ni=1.

(b) If sup1≤k≤kx,i,n ‖xni,k‖p < ∞ for some p > 4, then {wn,i·Ynεni}ni=1, {wn,i·Ynxni,j}ni=1 and

{wn,i·Ynf(− δ0
σ0
εni)}ni=1 are uniformly L2-NED on {xni, vni, uni}ni=1 with NED coefficient ψ(s) =

c
s(p−4)/[d0(2p−4)]
1 under Assumption 3(a), and ψ(s) = s−(α−d)(p−4)/(2p−4) under Assumption

3(b).

(c) If sup1≤k≤kx,i,n ‖xni,k‖p < ∞ for some p > 4, {ε2ni(λ, β)}ni=1 and {ln Φ(− δ
σ
εni(λ, β))}ni=1 are

uniformly L2-NED on {xni, vni, uni}ni=1; if sup1≤k≤kx,i,n ‖xni,k‖p < ∞ for some p > 2j,

{(wn,i·Yn)j}ni=1 is uniformly L2-NED on {xni, vni, uni}ni=1; if sup1≤k≤kx,i,n ‖xni,k‖p < ∞ for

some p > 6, {f(− δ
σ
εni(λ, β))}ni=1 is uniformly L2-NED.

Proof. (a) By Proposition 1 in Jenish and Prucha (2012), {yni}ni=1 is uniformly L2-NED on

{xni, vni, uni}ni=1 if lims→∞ supi,n
∑

j:d(i,j)>smn,ij = 0 and sup1≤k≤kx,i,n ‖xni,k‖2 < ∞. By the proof

of Proposition 1 in Xu and Lee (2015), supi,n
∑

j:d(i,j)>smn,ij ≤ cc
s/d0
1 under Assumption 3(a), and

supi,n
∑

j:d(i,j)>smn,ij ≤ cs−(α−d) under Assumption 3(b). Thus {yni}ni=1 is uniformlyL2-NED on

{xni, vni, uni}ni=1 with NED coefficient ψ(s) = c
s/d0
1 under Assumption 3(a) and ψ(s) = s−(α−d)

under Assumption 3(b). With the NED property of {yni}ni=1, by the proof of Proposition 1 in Xu

and Lee (2015), {wn,i·Yn}ni=1 is also uniformly L2-NED on {xni, vni, uni}ni=1 with the same NED

coefficient as that of {yni}ni=1. The same holds for εni(λ, β) as εni(λ, β) = yni − λwn,i·Yn − x′niβ is

linear in yni, wn,i·Yn and xni.

(b) With the NED property of {wn,i·Yn}ni=1 in (a), the results directly follow by Lemma A.2 in

Xu and Lee (2015).

(c) By the mean value theorem, |tj1 − tj2| ≤ j|t̄|j−1 · |t1 − t2| ≤ j(|t1|j−1 + |t2|j−1) · |t1 − t2|,
| ln Φ(t1) − ln Φ(t2)| ≤ |f(ṫ)| · |t1 − t2| ≤ (2|t1| + 2|t2| + c)|t1 − t2| and |f(t1) − f(t2)| ≤ |f (1)(ẗ)| ·
|t1 − t2| ≤ c(t21 + t22 + 1) · |t1 − t2|, where t̄, ṫ and ẗ are between t1 and t2. By Lemma B.1(a),

if sup1≤k≤kx,i,n ‖xni,k‖p < ∞, then supi,n ‖εni(λ, β)‖p ≤ ∞ and supi,n ‖wn,i·Yn‖p ≤ ∞. The NED

results in the lemma on functions of εni(λ, β) and wn,i·Yn then follow by Lemma A.4 in Xu and

Lee (2015).

Proof of Proposition 2.1. We first prove the uniform convergence of lnLn(θ) that supθ∈Θ
1
n
| lnLn(θ)−
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E[lnLn(θ)]| = op(1). Note that

1

n
[lnLn(θ)− E[lnLn(θ)]] = a1n(θ) + a2n(θ),

where a1n(θ) = − 1
2nσ2

∑n
i=1{ε2ni(λ, β) − E[ε2ni(λ, β)]} and a2n(θ) = 1

n
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{
ln Φ

(
− δ
σ
εni(λ, β)

)
−

E
[
ln Φ

(
− δ
σ
εni(λ, β)

)]}
. We shall prove that supθ∈Θ |a1n(θ)| = op(1) and supθ∈Θ |a2n(θ)| = op(1).

Under Assumptions 1–5, by Lemma B.1, {ε2ni(λ, β)}ni=1 and {ln Φ(− δ
σ
εni(λ, β))}ni=1 are uniformly

L2+ι/2 bounded; by Lemma B.2(c), they are uniformly L2-NED on {xni, vni, uni}ni=1. Then a1n(θ) =

op(1) and a2n(θ) = op(1) by Theorem 1 in Jenish and Prucha (2012). Since a1n(θ) is quadratic

in [λ, β′] and the parameter space of σ2 is compact, supθ∈Θ |a1n(θ)| = op(1). For the proof of

supθ∈Θ |a2n(θ)| = op(1), with a2n(θ) = op(1), by Theorem 1 in Andrews (1992), we only need

to prove that a2n(θ) is stochastically equicontinuous (SE). Denote λ̇ = − δ
σ
λ, β̇ = − δ

σ
β, δ̇ =

− δ
σ

and θ̇ = [λ̇, β̇′, σ2, δ̇]′. Since the parameter space of θ is compact, the elements of ∂λ̇
∂θ

, ∂β̇
∂θ′

and ∂δ̇
∂θ

are bounded. Then by Lemma A.5 in Xu and Lee (2015), we only need to prove that
1
n

∑n
i=1{ln Φ(ε̇ni(θ̇))−E[ln Φ(ε̇ni(θ̇)]} is SE, where ε̇ni(θ̇) = δ̇yni − λ̇wn,i·Yn − x′niβ̇. By the proof of

Lemma B.2, | ln Φ(t1)− ln Φ(t2)| ≤ (2|t1|+ 2|t2|+ c)|t1 − t2|. Then

∣∣∣ 1
n

n∑
i=1

ln Φ(ε̇ni(θ̇1))− 1

n

n∑
i=1

ln Φ(ε̇ni(θ̇2))
∣∣∣

≤ 1

n

n∑
i=1

[2|ε̇ni(θ̇1)|+ 2|ε̇ni(θ̇2)|+ c] · |ε̇ni(θ̇1)− ε̇ni(θ̇2)|

≤ 1

n

n∑
i=1

[2|ε̇ni(θ̇1)|+ 2|ε̇ni(θ̇2)|+ c]
[
|yni|+ |wn,i·Yn|+

kx∑
k=1

|xni,k|
]

×
(
|δ̇1 − δ̇2|+ |λ̇1 − λ̇2|+

kx∑
k=1

|β̇1k − β̇2k|
)
.

Since {yni}ni=1, {wn,i·Yn}ni=1 and {xni,k}ni=1 are uniformly L4 bounded, each term of [2|ε̇ni(θ̇1)| +
2|ε̇ni(θ̇2)| + c][|yni| + |wn,i·Yn| +

∑kx
k=1 |xni,k|] is uniformly L2 bounded by the Cauchy-Schwarz

inequality. It follows that 1
n

∑n
i=1 E[ln Φ(ε̇ni(θ̇)] is equicontinuous. Thus, 1

n

∑n
i=1{ln Φ(ε̇ni(θ̇)) −

E[ln Φ(ε̇ni(θ̇)]} is SE by Lemma 1(a) in Andrews (1992). As the parameter space of σ2 is compact

and εni(λ, β) is linear in θ, − 1
2nσ2

∑n
i=1 E[ε2ni(λ, β)] is equicontinuous. It follows that 1

n
E[lnLn(θ)]

is equicontinuous.

With the identification condition in Assumption 6, the uniform convergence supθ∈Θ
1
n
| lnLn(θ)−

E[lnLn(θ)]| = op(1) and the equicontinuity of 1
n

E[lnLn(θ)], the consistency of the MLE follows.

Proof of Proposition 2.2. By the mean value theorem, 0 = ∂ lnLn(θ̂)
∂θ

= ∂ lnLn(θ0)
∂θ

+ ∂2 lnLn(θ̄)
∂θ∂θ′

(θ̂− θ0),
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where θ̄ lies between θ̂ and θ0. Then

√
n(θ̂ − θ0) =

(
− 1

n

∂2 lnLn(θ̄)

∂θ∂θ′
)−1 1√

n

∂ lnLn(θ0)

∂θ
.

We first prove the asymptotic normality of 1√
n
∂ lnLn(θ0)

∂θ
. The elements of ∂ lnLn(θ0)

∂θ
have the following

forms: c
∑n

i=1 wn,i·Ynεni, c
∑n

i=1 wn,i·Ynf(− δ0
σ0
εni), c

∑n
i=1 xniεni, c

∑n
i=1 xnif(− δ0

σ0
εni), c

∑n
i=1 ε

2
ni,

c
∑n

i=1 εnif(− δ0
σ0
εni) and c. By Lemma B.1(a) and the Cauchy-Schwarz inequality, {wn,i·Ynεni}ni=1 is

uniformly Lp/2 bounded; by Lemma B.2(b), {wn,i·Ynεni}ni=1 is uniformly L2-NED on {xni, vni, uni}ni=1

with NED coefficient ψ(s) = c
s(p−4)/[d0(2p−4)]
1 under Assumption 3(a) and ψ(s) = s−(α−d)(p−4)/(2p−4)

under Assumption 3(b), where p = 6 under Assumption 10(a). To apply the CLT in Theorem 2

of Jenish and Prucha (2012) to {wn,i·Ynεni}ni=1, ψ(s) should satisfy
∑∞

s=1 s
d−1ψ(s) <∞. If ψ(s) =

c
s(p−4)/[d0(2p−4)]
1 , then

∑∞
s=1 s

d−1ψ(s) < ∞ as 0 < c
(p−4)/[d0(2p−4)]
1 < 1; if ψ(s) = s−(α−d)(p−4)/(2p−4),∑∞

s=1 s
d−1ψ(s) < ∞ requires d − (α − d)(p − 4)/(2p − 4) < 0, i.e. α > (3 + 4

p−4
)d. With p = 6,

α > 5d is maintained in Assumption 10(b). In addition, for the α-mixing coefficient of {xni}ni=1, α̂(s)

should satisfy Assumption 3 in Jenish and Prucha (2012):
∑∞

s=1 s
d[1+c3ι∗/(2+ι∗)]−1[α̂(s)]ι

∗/(4+2ι∗) <

∞, where ι∗ is some positive number smaller than p/2 − 2 so that Assumption 4(a) in Jenish

and Prucha (2012) is satisfied. This condition is maintained in Assumption 10(c). By Lemma

B.2, {wn,i·Ynf(− δ0
σ0
εni)}ni=1 has the same NED property as {wn,i·Ynεni}ni=1. The rest of random

fields {cxniεni}ni=1, {cxnif(− δ0
σ0
εni)}ni=1, {cε2ni}ni=1 and {cεnif(− δ0

σ0
εni)}ni=1 involved in ∂ lnLn(θ0)

∂θ
are

trivially L2-NED with ψ(s) = 0. Then by the CLT in Theorem 2 of Jenish and Prucha (2012),
1√
n
∂ lnLn(θ0)

∂θ

d−→ N(0, limn→∞
1
n

E(∂ lnLn(θ0)
∂θ

∂ lnLn(θ0)
∂θ′

)).

As 1
n

E(∂
2 lnLn(θ0)
∂θ∂θ′

) = − 1
n

E(∂ lnLn(θ0)
∂θ

∂ lnLn(θ0)
∂θ′

), it remains to prove that 1
n
∂2 lnLn(θ̄)
∂θ∂θ′

= E( 1
n
∂2 lnLn(θ0)

∂θ∂θ′
)+

op(1). We shall prove that (i) 1
n
∂2 lnLn(θ̄)
∂θ∂θ′

= 1
n
∂2 lnLn(θ0)

∂θ∂θ′
+op(1) and (ii) 1

n
∂2 lnLn(θ0)

∂θ∂θ′
= E( 1

n
∂2 lnLn(θ0)

∂θ∂θ′
)+

op(1). To prove (i), we first prove a general result on the order of the jth derivative of 1
n

lnLn(θ).

Except − tr(Gk
n(λ)) = O(n) for 1 ≤ k ≤ j, other terms in the jth derivative of lnLn(θ) have the

form c(θ)
∑n

i=1 hni,1 · · ·hni,j or c(θ)
∑n

i=1 hni,1 · · ·hni,jf (k)(− δ
σ
εni(λ, β)), where c(θ) is a function of

θ, 0 ≤ k ≤ j − 1, and hni,r for 1 ≤ r ≤ j is either 1, εni(λ, β), wn,i·Yn, or an element of xni. By

Lemma B.1(b), supi,n,λ∈Λ,β∈B ‖f (k)(− δ
σ
εni(λ, β))‖p/(k+1) <∞ if supi,k,n ‖xni,k‖p <∞ for p ≥ k + 1.

If supi,r,n E(|hni,r|2j) <∞, then supi,n E[|hni,1 · · ·hni,j|] ≤ supi,n ‖hni,1‖j · · · ‖hni,j‖j <∞ and

sup
i,n,λ∈Λ,β∈B

E
[∣∣hni,1 · · ·hni,jf (k)

(
− δ
σ
εni(λ, β)

)∣∣]
≤ sup

i,n,λ∈Λ,β∈B
‖hni,1‖2j · · · ‖hni,j‖2j

∥∥f (k)
(
− δ
σ
εni(λ, β)

)∥∥
2
<∞

for 1 ≤ k ≤ j − 1 by the generalized Hölder’s inequality and Lemma B.1(a). Thus, if

sup
1≤k≤kx,i,n

E(|xni,k|2j) <∞,
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the jth derivative of 1
n

lnLn(θ) is Op(1). In particular, if sup1≤k≤kx,i,n E(|xni,k|6) < ∞, the third

derivative of 1
n

lnLn(θ) is Op(1). Hence, (i) holds by the mean value theorem under Assumption

10(a).

We next prove (ii). By the above argument, except − tr(G2
n), elements of ∂2 lnLn(θ0)

∂θ∂θ′
have

the form c
∑n

i=1 hni,1hni,2, c
∑n

i=1 hni,1hni,2f(− δ0
σ0
εni) or c

∑n
i=1 hni,1hni,2f

(1)(− δ0
σ0
εni), where hni,r

for r = 1, 2 is either 1, εni, wn,i·Yn, or an element of xni. By Lemma B.1 and the Cauchy-Schwarz

inequality, each {hni,1hni,2}ni=1 is uniformly L3 bounded; by Lemma B.2, each {hni,1hni,2}ni=1 is

uniformly L2-NED. By the generalized Hölder’s inequality,

∥∥hni,1hni,2f (1)
(
− δ0

σ0

εni
)∥∥

3/2
≤ ‖hni,1‖6‖hni,2‖6

∥∥f (1)
(
− δ0

σ0

εni
)∥∥

3
.

Thus, each {hni,1hni,2f (1)(− δ0
σ0
εni)}ni=1 is uniformly L3/2 bounded. Since

∥∥∥hni,1hni,2f (1)
(
− δ0

σ0

εni
)
− E

[
hni,1hni,2f

(1)
(
− δ0

σ0

εni
)∣∣Fni(s)]∥∥∥

=
∥∥∥[hni,1hni,2 − E(hni,1hni,2|Fni(s))]f (1)

(
− δ0

σ0

εni
)∥∥∥

≤ ‖hni,1hni,2 − E[hni,1hni,2|Fni(s)]‖2

∥∥∥f (1)
(
− δ0

σ0

εni
)∥∥∥

2
,

each {hni,1hni,2f (1)(− δ0
σ0
εni)}ni=1 is uniformly L1-NED. Similarly, each {hni,1hni,2f(− δ0

σ0
εni)}ni=1 is

uniformly L3/2 bounded and uniformly L1-NED. Thus, by the LLN in Theorem 1 of Jenish and

Prucha (2012), (ii) holds. In consequence, the asymptotic distribution of θ̂ in the proposition

follows.

Proof of Proposition 2.3. As the proof is sketched in the main text, here we only verify some claims

that have not been proved.

We first prove that limn→∞
1
n
∆n is positive definite (PD) under Assumption 11. For a block

matrix E = ( A B
C D ), where A and D are square matrices and D is invertible,(

I −BD−1

0 I

)(
A B

C D

)(
I 0

−D−1C I

)
=

(
A−BD−1C 0

0 D

)
. (B.1)

If E is symmetric and D is PD, then E is PD when A−BD−1C is PD. Partition ∆n in (2.17) into

a 2× 2 block matrix so that the (2, 2)th block is the scalar n
6π

(5− 16
π

+ 32
π2 ), which corresponds to
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the D block in (B.1). By (B.1), ∆n is PD if
1
σ2
0

E[(GnXnβ0)′Tn(GnXnβ0)] + tr(GnG
(s)
n ) ∗ ∗

1
σ2
0

E(X ′nTnGnXnβ0) 1
σ2
0

E(X ′nTnXn) ∗
1
σ2
0

tr(Gn) 0 n
2σ4

0


+

3

nσ2
0(5− 16

π
+ 32

π2 )
[E(Ξ′1nΞ1n)− E(Ξ′1n) E(Ξ1n)]

(B.2)

is PD, where Tn = In − 3
n(5− 16

π
+ 32
π2

)
lnl
′
n is PD and Ξ1n = [l′nGnXnβ0, l

′
nXn, 0]. As E(Ξ′1nΞ1n) −

E(Ξ′1n) E(Ξ1n) is positive semidefinite, applying (B.1) to the first matrix in (B.2), ∆n is PD if(
1
σ2
0

E[(GnXnβ0)′Tn(GnXnβ0)] + tr(GnG
(s)
n )− 2

n
tr2(Gn) ∗

1
σ2
0

E(X ′nTnGnXnβ0) 1
σ2
0

E(X ′nTnXn)

)
(B.3)

is PD. If limn→∞
1
n

E[(GnXnβ0, Xn)′Tn(GnXnβ0, Xn)] is PD, since

tr(GnG
(s)
n )− 2

n
tr2(Gn) =

1

2
tr(G(s)

n G(s)
n )− 1

2n
tr2(G(s)

n ) ≥ 0,

limn→∞
1
n
∆n is PD. Alternatively, if E(X ′nTnXn) is PD, applying (B.1) to (B.3), ∆n is PD when

1
σ2
0
Ξ2n + [tr(GnG

(s)
n )− 2

n
tr2(Gn)] > 0, where

Ξ2n = E[(GnXnβ0)′Tn(GnXnβ0)]− E[(GnXnβ0)′TnXn][E(X ′nTnXn)]−1 E(X ′nTnGnXnβ0) ≥ 0.

Thus, lim
n→∞

1
n
∆n is PD under Assumption 11.

We next prove (2.18). By the mean value theorem, 0 = ∂ lnL4n(η̌,0)
∂η‡

= ∂ lnL4n(η0,0)
∂η‡

+ ∂2 lnL4n(η̄,0)
∂η‡∂η‡′

(η̌−
η0), where η̄ lies between η̌ and η0. Then

√
n(η̌ − η0) = −( 1

n
∂2 lnL4n(η̄,0)

∂η‡∂η‡′
)−1 1√

n
∂ lnL4n(η0,0)

∂η‡
. We first

prove the asymptotic normality of 1√
n
∂ lnL4n(η0,0)

∂η‡
. As ∂ lnL4n(η,0)

∂η‡
= ∂ lnLn(η,0)

∂η
is a subvector of

∂ lnLn(θ0)
∂θ

with δ0 = 0, by the proof of Proposition 2.2, 1√
n
∂ lnL4n(η0,0)

∂η‡
d−→ N(0, limn→∞( 1

n
∆n,11)−1),

and under Assumption 12(a) with p = 14, α > (3 + 4
p−4

)d = 17
5
d and 0 < ι∗ < p/2− 2 = 5, which

are maintained in Assumption 12(b)–(c).

As E(∂
2 lnL4n(η0,0)
∂η‡∂η‡′

) = −∆n,11, it remains to prove that 1
n
∂2 lnL4n(η̄,0)

∂η‡∂η‡′
= E( 1

n
∂2 lnL4n(η0,0)

∂η‡∂η‡′
) + op(1).

We shall prove that 1
n
∂2 lnL4n(η0,0)

∂η‡∂η‡′
= E( 1

n
∂2 lnL4n(η0,0)

∂η‡∂η‡′
)+op(1) and 1

n
∂2 lnL4n(η̌,0)

∂η‡∂η‡′
= 1

n
∂ lnL4n(η0,0)
∂η‡∂η‡′

+op(1).

By (A.1)–(A.10), except − tr(G2
n), elements of ∂2 lnL4n(η0,0)

∂η‡∂η‡′
have the form c

∑n
i=1 ζni, where ζni is

either (wn,i·Yn)2, wn,i·Ynxni,j, wn,i·Ynεni, wn,i·Yn, xni,jxni,k, xni,jεni ε
2
ni, εni or xni,j. By Lemma B.2

and the Cauchy-Schwarz inequality, each {ζni}ni=1 is uniformly L2 bounded. Furthermore, each

{ζni}ni=1 is uniformly L2-NED on {xni, vni, uni}ni=1. Thus, 1
n
∂2 lnL4n(η0,0)

∂η‡∂η‡′
= E( 1

n
∂2 lnL4n(η0,0)

∂η‡∂η‡′
) + op(1).

As ∂2 lnL4n(η̌,0)
∂η‡∂η‡′

= ∂2 lnLn(η̌,0)
∂η∂η′

and each term for the third derivative of lnLn(θ) is shown to be Op(1)

in the proof of Proposition 2.2, by the mean value theorem, 1
n
∂2 lnL4n(η̌,0)

∂η‡∂η‡′
= 1

n
∂2 lnL4n(η0,0)

∂η‡∂η‡′
+ op(1).
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We further prove that (2.19) holds. Let zni = [wn,i·Yn, x
′
ni]
′, κ0 = [λ0, β

′
0]′ and κ̌ = [λ̌, β̌′]′. Then

ε̌ni = εni + z′ni(κ0 − κ̌). It follows that

1

n

n∑
i=1

ε̌3ni =
1

n

n∑
i=1

ε3ni +
3

n

n∑
i=1

ε2niz
′
ni(κ0 − κ̌) +

3

n

n∑
i=1

εni(κ0 − κ̌)′zniz
′
ni(κ0 − κ̌)

+
1

n

n∑
i=1

(κ0 − κ̌)′zniz
′
ni(κ0 − κ̌)z′ni(κ0 − κ̌).

By the Lindeberg-Lévy CLT, 1
n

∑n
i=1 ε

3
ni = E(ε3ni)+Op(n

−1/2) = Op(n
−1/2). By Theorem 1 in Jenish

and Prucha (2012), 1
n

∑n
i=1 ε

2
nizni = 1

n

∑n
i=1 E(ε2nizni) + op(1) =

σ2
0

n
E[(GnXnβ0, Xn)′ln] + op(1) =

Op(1). Our proof above shows that 1
n

∑n
i=1 zniz

′
niznij = Op(1) and 1

n

∑n
i=1 zniz

′
niεni = Op(1), where

znij is the jth element of zni. Hence, (2.19) holds.

We continue to prove that the asymptotic distribution of
√
n[η̂‡′, τ̂ ]′ conditional on

∑n
i=1 ε̌

3
ni ≤

0 is [F1, F2, F
′
3, F4, |F5|]′. Since 1√

n

∑n
i=1 ε̌

3
ni is asymptotically normal with mean zero, we only

need to prove that the MLE ω̇ of ω = [η‡′, τ ]′ from the log likelihood function lnL4n(ω) with

no nonnegativity restriction on τ has the asymptotic distribution N(0, limn→∞( 1
n
∆n)−1). By the

mean value theorem, 0 = ∂ lnL4n(ω̇)
∂ω

= ∂ lnL4n(ω0)
∂ω

+ ∂2 lnL4n(ω̄)
∂ω∂ω′

(ω̂ − ω0), where ω̄ lies between ω̇

and ω0. Then
√
n(ω̇ − ω0) = (− 1

n
∂2 lnL4n(ω̄)
∂ω∂ω′

)−1 1√
n
∂ lnL4n(ω0)

∂ω
. Compared to ∂ lnL4n(η0,0)

∂η‡
, by (2.16),

∂ lnL4n(ω0)
∂ω

has the additional element
∑n

i=1[ 1
6σ3

0
(1− 4

π
)
√

2
π
ε3ni + 2

πσ0

√
2
π
εni], which is a sum of i.i.d.

elements. Thus, as shown above for 1√
n
∂ lnL4n(η0,0)

∂η‡
, by Theorem 2 in Jenish and Prucha (2012),

1√
n
∂ lnL4n(ω0)

∂ω

d−→ N(0, limn→∞( 1
n
∆n)−1).

For the asymptotic distribution of
√
n[η̂‡′, τ̂ ]′ conditional on

∑n
i=1 ε̌

3
ni ≤ 0, it remains to prove

that 1
n
∂2 lnL4n(ω̄)
∂ω∂ω′

= −E( 1
n
∂ lnL4n(ω0)

∂ω
∂ lnL4n(ω0)

∂ω′
) + op(1). For that purpose, we shall prove the follow-

ing:

1

n

∂2 lnL4n(ω̄)

∂ω∂ω′
=

1

n

∂2 lnL4n(ω0)

∂ω∂ω′
+ op(1), (B.4)

1

n

∂2 lnL4n(ω0)

∂ω∂ω′
= E

( 1

n

∂2 lnL4n(ω0)

∂ω∂ω′
)

+ op(1), (B.5)

E
( 1

n

∂2 lnL4n(ω0)

∂ω∂ω′
)

= −E
( 1

n

∂ lnL4n(ω0)

∂ω

∂ lnL4n(ω0)

∂ω′
)
. (B.6)

We first prove (B.6). As ∂ lnL4n(ω)
∂τ

= 1
3
τ−2/3 ∂ lnL3n(η‡,τ1/3)

∂δ
,

∂2 lnL4n(ω)

∂τ 2
=

1

9
τ−4/3∂

2 lnL3n(η‡, τ 1/3)

∂δ2
− 2

9
τ−5/3∂ lnL3n(η‡, τ 1/3)

∂δ
.

Thus, by L’Hôpital’s rule,

∂2 lnL4n(η‡, 0)

∂τ 2
= lim

δ→0

( 1

9δ4

∂2 lnL3n(η‡, δ)

∂δ2
− 2

9δ5

∂ lnL3n(η‡, δ)

∂δ

)
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= lim
δ→0

1

9δ5

(
δ
∂2 lnL3n(η‡, δ)

∂δ2
− 2

∂ lnL3n(η‡, δ)

∂δ

)
= lim

δ→0

1

45δ4

(
δ
∂3 lnL3n(η‡, δ)

∂δ3
− ∂2 lnL3n(η‡, δ)

∂δ2

)
= lim

δ→0

1

180δ2

∂4 lnL3n(η‡, δ)

∂δ4

=
1

360

∂6 lnL3n(η‡, 0)

∂δ6
,

and
∂2 lnL4n(η‡, δ)

∂τ∂η‡
= lim

δ→0

1

3δ2

∂2 lnL3n(η‡, δ)

∂δ∂η‡
=

1

6

∂4 lnL3n(η‡, 0)

∂δ3∂η‡
.

As ∂ lnL3n(η‡,0)
∂δ

= ∂2 lnL3n(η‡,0)
∂δ2

= 0, by Lemma 1 in Rotnitzky et al. (2000),

∂6 lnL3n(ω0)

∂δ6
=

1

L3n(ω0)

∂6L3n(ω0)

∂δ6
− 6!

2× (3!)2

(∂3 lnL3n(ω0)

∂δ3

)2

and ∂4 lnL3n(ω0)
∂δ3∂η‡

= 1
L3n(ω0)

∂4L3n(ω0)
∂δ3∂η‡

−∂3 lnL3n(ω0)
∂δ3

∂ lnL3n(ω0)
∂η‡

. As ∂ lnL4n(ω0)
∂τ

= 1
6
∂3 lnL3n(ω0)

∂δ3
and ∂ lnL4n(ω0)

∂η‡
=

∂ lnL3n(ω0)
∂η‡

by Proposition 3 in Lee (1993), we have

E
(∂2 lnL4n(ω0)

∂τ 2

)
= −E

[(∂ lnL4n(ω0)

∂τ

)2]
= − 1

36
E
[(∂3 lnL3n(ω0)

∂δ3

)2]
and E(∂

2 lnL4n(ω0)
∂τ∂η‡

) = −E(∂ lnL4n(ω0)
∂τ

∂ lnL4n(ω0)
∂η‡

) = −1
6

E(∂
3 lnL3n(ω0)

∂δ3
∂ lnL3n(ω0)

∂η‡
). Hence, (B.6) holds.

We next prove (B.4). As shown above, ∂2 lnL4n(ω)
∂ω∂ω′

as τ → 0 involves the sixth order derivatives

of lnLn(θ). Under Assumption 12, by the proof of Proposition 2.2, each term in the seventh order

derivatives of 1
n

lnLn(θ) is Op(1). Then by the mean value theorem, 1
n
∂2 lnL4n(ω̄)
∂ω∂ω′

= 1
n
∂2 lnL4n(ω0)

∂ω∂ω′
+

op(1).

For (B.5), note that except − tr(G2
n), each element of ∂2 lnL4n(ω0)

∂ω∂ω′
has the form

c
n∑
i=1

(wn,i·Yn)jhni,1 · · ·hni,k,

where 0 ≤ j ≤ 6, j + k ≤ 6, and hni,r for 1 ≤ r ≤ k is either εni or an element of xni. We shall

prove that each {(wn,i·Yn)jhni,1 · · ·hni,k}ni=1 with 1 ≤ j ≤ 6 and j + k ≤ 6 is uniformly L2-NED

on {xni, vni, uni}ni=1 under Assumption 12. By Lemma B.2(c), since sup1≤k≤kx,i,n ‖xni,k‖14 < ∞,

{(wn,i·Yn)j}ni=1 is uniformly L2-NED on {xni, vni, uni}ni=1 for 1 ≤ j ≤ 6. Then for 1 ≤ j ≤ 3 and

1 ≤ k ≤ 3, {(wn,i·Yn)jhni,1 · · ·hni,k}ni=1 is uniformly L2-NED on {xni, vni, uni}ni=1 by Lemma A.2 in

Xu and Lee (2015), since supi,n ‖(wn,i·Yn)j‖14/3 <∞ and supi,n ‖hni,1 · · ·hni,k‖14/3 <∞. Similarly,

{wn,i·Ynhni,1 · · ·hni,k}ni=1 for k = 4 or 5, {(wn,i·Yn)2hni,1 · · ·hni,4}ni=1, {(wn,i·Yn)4hni,1 · · ·hni,k}ni=1 for

k = 1 or 2, and {(wn,i·Yn)5hni,1}ni=1 are all uniformly L2-NED on {xni, vni, uni}ni=1, since the random

variables in these random fields can be written as, respectively, [wn,i·Ynhni,1hni,2] · [hni,3 · · ·hni,k],
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[(wn,i·Yn)2hni,1] · [hni,2hni,3hni,4], [(wn,i·Yn)3] · [wn,i·Ynhni,1 · · ·hni,k], and [(wn,i·Yn)3] · [(wn,i·Yn)2hni,1],

where each term in the square brackets is L14/3 bounded uniformly in i and n by the gener-

alized Hölder’s inequality and uniformly L2-NED. Hence, each {(wn,i·Yn)jhni,1 · · ·hni,k}ni=1 with

1 ≤ j ≤ 6 and j + k ≤ 6 is uniformly L2-NED on {xni, vni, uni}ni=1. It follows that 1
n
∂2 lnL4n(ω0)

∂ω∂ω′
=

E( 1
n
∂2 lnL4n(ω0)

∂ω∂ω′
) + op(1).

Proof of Proposition 2.4. The asymptotic distribution of the score test statistic follows by using

(2.19), so it remains only for us to prove the asymptotic distribution of the LR test statistic. Denote

ω = [η‡′, τ ]′ and ω̌ = [η̌′, 0]′. When
∑n

i=1 ε̌
3
ni < 0,

√
n(ω̂ − ω0) = ( 1

n
∆n)−1 1√

n
∂L4n(ω0)

∂ω
+ op(1). As

√
n(η̌−η0) = ( 1

n
∆n,11)−1 1√

n
∂L4n(ω0)
∂η‡

+op(1),
√
n(ω̌− ω̂) = Ξ3n

1√
n
∂L4n(ω0)

∂ω
+op(1) when

∑n
i=1 ε̌

3
ni < 0,

where Ξ3n = ( 1
n
∆n)−1 −

(
( 1
n

∆n,11)−1 0
0 0

)
. By a first order Taylor expansion,

2[lnLn(θ̂)− lnLn(η̌, 0)] = −2[lnL4n(ω̌)− lnL4n(ω̂)]

= −
√
n(ω̌ − ω̂)′

1

n

∂2L4n(ω̄)

∂ω∂ω′
√
n(ω̌ − ω̂)

=
( 1√

n

∂L4n(ω0)

∂ω′
)
Ξ3n

( 1

n
∆n

)
Ξ3n

( 1√
n

∂L4n(ω0)

∂ω

)
I
( n∑
i=1

ε̌3ni < 0
)

+ op(1)

=
[( 1

n
∆n

)−1/2 1√
n

∂L4n(ω0)

∂ω

]′( 1

n
∆n

)1/2
Ξ3n

( 1

n
∆n

)
Ξ3n

( 1

n
∆n

)1/2

·
[( 1

n
∆n

)−1/2 1√
n

∂L4n(ω0)

∂ω

]
I
( n∑
i=1

ε̌3ni < 0
)

+ op(1),

where ω̄ lies between ω̌ and ω̂, and ( 1
n
∆n)−1/2 1√

n
∂L4n(ω0)

∂ω

d−→ N(0, Ikx+3). Partition ∆n into a 2× 2

block matrix such that ∆n =
(

∆n,11 ∆n,12

∆n,21 ∆n,22

)
. It can be shown by the block matrix inverse formula

that

Ξ3n

( 1

n
∆n

)
Ξ3n = [−∆n,21∆−1

n,11, Ikx+2]′
( 1

n
∆n,22 −

1

n
∆n,21∆−1

n,11∆n,12

)−1
[−∆n,21∆−1

n,11, Ikx+2],

and 1
n
∆n,22 − 1

n
∆n,21∆−1

n,11∆n,12 = [−∆n,21∆−1
n,11, Ikx+2] 1

n
∆n[−∆n,21∆−1

n,11, Ikx+2]′. Thus,

(
1

n
∆n)1/2Ξ3n(

1

n
∆n)Ξ3n(

1

n
∆n)1/2

is a projection matrix with rank being 1. Hence, 2[lnLn(θ̂) − lnLn(η̌, 0)]
d−→ χ2(0) · I(K ≥ 0) +

χ2(1) · I(K < 0).

Proof of Proposition 2.5. Note that E(εni) = −σu0

√
2
π
. Denote κa = [λ0, β10 − σu0

√
2
π
, β′20]′. The

2SLS estimator κ̃ satisfies

κ̃ = (Z ′nPnZn)−1Z ′nPn(Znκ0 + εn) = κa + (Z ′nPnZn)−1Z ′nPn[εn − E(εn)]
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= κa +
[ 1

n
Z ′nQn

( 1

n
Q′nQn

)−1 1

n
Q′nZn

]−1 1

n
Z ′nQn

( 1

n
Q′nQn

)−1 1

n
Q′n[εn − E(εn)],

where 1
n
Q′nZn = 1

n
Q′n[Gn(Xnβ0 + E(εn)), Xn] + 1

n
Q′nGn[εn−E(εn), 0]. Thus, under Assumption 13,

κ̃ = κa+Op(n
−1/2). As ε̃ni = yni− z′niκa+ z′ni(κa− κ̃) = ζni+ z′ni(κa− κ̃), where zni = [wn,i·Yn, x

′
ni]
′

and ζni = vni − (uni − σu0

√
2
π
), it follows that

1

n

n∑
i=1

ε̃3ni =
1

n

n∑
i=1

ζ3
ni +

3

n

n∑
i=1

ζ2
niz
′
ni(κa − κ̃) +

3

n

n∑
i=1

ζni(κa − κ̃)′zniz
′
ni(κa − κ̃)

+
1

n

n∑
i=1

(κa − κ̃)′zniz
′
ni(κ̃− κa)z′ni(κa − κ̃).

By the Lindeberg-Lévy CLT, 1
n

∑n
i=1 ζ

3
ni = E(ζ3

ni) + Op(n
−1/2) =

(π−4)σ3
u0

π

√
2
π

+ Op(n
−1/2). For

1 ≤ j ≤ 3, let hnij be 1 or an element of zni. Then by the generalized Hölder’s inequality,

supi,n E |ζknihni1hni2hni3| ≤ supi,n[E(ζ4k
ni )]

1/4[E(h4
ni1)]1/4[E(h4

ni2)]1/4[E(h4
ni3)]1/4 < ∞, where k = 0, 1

or 2. Thus, 1
n

∑n
i=1 ζ

2
niz
′
ni = Op(1), 1

n

∑n
i=1 ζnizniz

′
ni = Op(1), and 1

n

∑n
i=1 zniz

′
niznij = Op(1). Hence,

1
n

∑n
i=1 ε̃

3
ni =

(π−4)σ3
u0

π

√
2
π

+Op(n
−1/2). In addition,

1

n

n∑
i=1

ε̃2ni =
1

n

n∑
i=1

ζ2
ni +

2

n

n∑
i=1

ζniz
′
ni(κa − κ̃) +

1

n

n∑
i=1

(κa − κ̃)′zniz
′
ni(κa − κ̃)

=
π − 2

π
σ2
u0 + σ2

v0 +Op(n
−1/2),

since 1
n

∑n
i=1 ζ

2
ni = π−2

π
σ2
u0 + σ2

v0 +Op(n
−1/2).

If σu0 6= 0, then plimn→∞
1
n

∑n
i=1 ε̃

3
ni =

(π−4)σ3
u0

π

√
2
π
< 0. Thus 1

n

∑n
i=1 ε̃

3
n < 0 with probability

approaching one and σ̃2
u = σ2

u0 + op(1). For the function g(t) = t2/3, by the mean value theorem,

σ̃2
u = g( π

π−4

√
π
2
( 1
n

∑n
i=1 ε̃

3
ni)) = g(σ3

u0)+ 2
3
(σ̄3

u)
−1/3[ π

π−4

√
π
2
( 1
n

∑n
i=1 ε̃

3
ni)−σ3

u0], where σ̄3
u lies between

π
π−4

√
π
2
( 1
n

∑n
i=1 ε̃

3
ni) and σ3

u0. Thus σ̃2
u = σ2

u0 + Op(n
−1/2). It follows that σ̃2

v = σ2
v0 + Op(n

−1/2).

Similarly, β̃1c = β10 +Op(n
−1/2) by the mean value theorem.

If σu0 = 0, then

1√
n

n∑
i=1

ε̃3ni =
1√
n

n∑
i=1

ζ3
ni −

3

n

n∑
i=1

ζ2
niz
′
ni(

1

n
Z ′nPnZn)−1 1√

n
Z ′nPn[εn − E(εn)] + op(1) = Op(1),

since E[( 1√
n

∑n
i=1 ζ

3
ni)

2] = E(ζ6
ni) <∞. When

∑n
i=1 ε̃

3
n ≥ 0, σ̃2

u = 0, δ̃ = 0 and β̃1c−β10 = Op(n
−1/2);

when
∑n

i=1 ε̃
3
n < 0, σ̃2

u = Op(n
−1/3), σ̃2

v = σ2
v0 + Op(n

−1/3), δ̃ = Op(n
−1/6), and β̃1c − β10 =

Op(n
−1/6).
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