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Abstract

This paper considers the generalized empirical likelihood (GEL) estimation and tests of high order spatial

autoregressive (SAR) models by exploring an inherent martingale structure. The GEL estimator has the same

asymptotic distribution as the generalized method of moments estimator explored with same moment conditions

for estimation, but circumvents a first step estimation of the optimal weighting matrix with a preliminary

estimator, and thus can be robust to unknown heteroskedasticity and non-normality. While the GEL removes

the asymptotic bias from the preliminary estimator and partially removes the bias due to the correlation between

the moment conditions and their Jacobian, the empirical likelihood as a special member of GELs further partially

removes the bias from estimating the second moment matrix. We also formulate the GEL overidentification test,

Moran’s I test, and GEL ratio tests for parameter restrictions and non-nested hypotheses. While some of the

conventional tests might not be robust to non-normality and/or unknown heteroskedasticity, the corresponding

GEL tests can be robust.

Keywords: Spatial autoregressive model, empirical likelihood, higher order asymptotic bias, unknown het-

eroskedasticity, non-normality, EL ratio test
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1 Introduction

In this paper, we consider empirical likelihood (EL) and generalized EL (GEL) estimation and tests of popular

spatial autoregressive (SAR) models with spatially dependent data. The EL approach is introduced in Owen

(1991) for independent sample observations. It can be interpreted as a nonparametric maximum likelihood and a

generalized minimum contrast estimation method (Kitamura, 2007).1 The class of GEL estimators includes the EL,

∗Corresponding author. Tel.: +1 614 292 5508; fax: +1 614 292 4192. E-mail addresses: jin.fei@sufe.edu.cn (F. Jin), lee.1777@osu.edu

(L.-F. Lee).
1Helpful reviews include, among others, Hall and La Scala (1990), Owen (2001), Kitamura (2007) and Chen and Keilegom (2009).
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the exponential tilting (ET) of Kitamura and Stutzer (1997) and Imbens et al. (1998), and the continuous updating

generalized method of moments (GMM) of Hansen et al. (1996). With independent sample observations, the EL

and GEL can have various advantages over other methods as shown in the literature. They can be robust against

distributional assumptions but may still have good properties analogous to the parametric likelihood approach

in estimation and testing. As alternatives to the two-step optimal GMM estimation which usually requires a

first step estimation of an optimal weighting matrix with a preliminary estimator, the EL and GEL estimators

are one-step estimators. They are consistent and have the same asymptotic distribution as the two-step optimal

GMM estimator by using same moment conditions, but invariant to parameter-dependent linear transformations of

moment conditions, and have improved high order properties (Imbens et al., 1998; Owen, 2001; Newey and Smith,

2004). In particular, Newey and Smith (2004) show that, for i.i.d. data, the GEL estimator has no asymptotic bias

from estimation of the Jacobian or the preliminary estimator, and the EL further removes a bias component from

estimation of the second moment matrix. In finite samples, while the two-step optimal GMM can have large bias

(e.g., Altonji and Segal, 1996), the GEL estimators are observed to perform better than the GMM estimator (e.g.,

Hansen et al., 1996; Imbens, 1997; Ramalho, 2002; Mittelhammer et al., 2005; Newey et al., 2005). The EL and

GEL can also be applied to testing problems. As a nonparametric analog of the parametric likelihood ratio statistic,

a GEL ratio statistic follows an asymptotic chi-squared distribution under the null. An EL ratio test and confidence

region are often Bartlett correctable (Corcoran, 1998; DiCiccio et al., 1991; Lazar and Mykland, 1999), and EL tests

are Bahadur efficient (Otsu, 2010) and have optimality properties in terms of large deviations (Kitamura, 2001).

The EL and GEL have originally been considered for independent data. Later on, there are attempts to

generalize them for time series data (e.g., Kitamura, 1997). For time series, some authors have studied the EL

for models with martingale structures. Mykland (1995) generalizes the EL definition for i.i.d. data to models with

martingale structures and introduces the concept of dual likelihood, and Chuang and Chan (2002) develop the

EL for autoregressive models with innovations that form a martingale difference sequence. The EL has also been

considered for regularly (e.g., Nordman, 2008a,b) and irregularly (e.g., Bandyopadhyay et al., 2015; Van Hala et al.,

2015) spaced spatial data. In the spatial econometric literature, Marsh and Mittelhammer (2004) and Perevodchikov

et al. (2012) investigate some GEL estimation methods for the SAR model, Fernández-Vázquez et al. (2009) propose

to use the ET to estimate spatial weights and other parameters in the SAR model, and Kostov (2013) considers

the EL estimation of a spatial quantile regression.

However, existing research on the GEL approach for spatial econometric models is limited in the following ways:

First, only linear moments are used in estimation. As a result, the GEL approach is similar to that for i.i.d. data

in its setting, even though dependent variables are spatially dependent. However, quadratic moments that capture

spatial dependence might lead to significant efficiency gain (Lee, 2007). Both linear and quadratic moments are

fundamental statistics in likelihood estimation of an SAR model. In the extreme case of pure SAR models with

no exogenous variables, which includes spatially dependent disturbances in a regression equation, no instrumental

variables (IV) are available and existing GEL procedures are not directly applicable. Second, even though sample
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observations are spatially dependent, the GEL estimation procedures are described but no theoretical justification

has been provided in the existing econometric literature. Third, only first order SAR models are considered. These

motivate our investigation of the GEL approach for SAR models. We focus our study on the GEL estimation and

tests of a general high order SAR model with SAR disturbances (SARAR model) using both linear and quadratic

moments. Such a model includes the SAR model with a single spatial lag, and the regression model with spatially

dependent disturbances.2 Quadratic moments for SARAR models, motivated from the quasi-maximum likelihood

(QML) estimation and Moran’s I test, are quadratic forms of the whole disturbance vector and thus involve all

observations. For the GEL estimation, a key step is to write them as sums of martingale differences.3 Treating

each martingale difference as if it were a data observation, we can set up the GEL objective function to derive

corresponding estimates and relevant test statistics. We shall investigate the asymptotic properties of the GEL

estimator, its higher order asymptotic bias, and various tests in the GEL framework.4

We show that, for spatial data, the GEL estimation with moment conditions can remove the asymptotic bias

from the preliminary estimator and partially remove the asymptotic bias due to the correlation between moment

conditions and their Jacobian. The EL further partially removes the bias from estimation of the second moment

matrix. This conclusion is consistent with that in Anatolyev (2005) for stationary time series models with non-i.i.d.

but serially uncorrelated data. In the event that only linear moments are used, the EL has the ability to completely

remove the asymptotic bias from estimation of the second moment matrix.

We also consider test statistics in the GEL framework. The GEL objective function (with proper normalization)

evaluated at the GEL estimator is an overidentification test statistic that can be used to test for validity of moment

conditions. Tests of parameter restrictions can be conveniently implemented with GEL ratio statistics. The popular

Moran’s I test for spatial dependence formulated with a GEL ratio is robust to unknown heteroskedasticity. In

addition, we employ the GEL ratio statistic to construct a spatial J test for competing SARAR models (Kelejian,

2008; Kelejian and Piras, 2011). Unlike original spatial J tests based on the two-stage least squares (2SLS) or

generalized spatial 2SLS (GS2SLS) estimation (Kelejian and Prucha, 1998), the spatial J test with a GEL ratio

conveniently employs quadratic moments in addition to linear ones to obtain more efficient estimators for testing.

These tests do not involve estimation of variances and are robust to unknown heteroskedasticity. For testing with

quadratic moments, GEL tests are also robust to non-normality in the sense that (higher order) moment parameters

do not need to be evaluated.

Various estimation methods for the SARAR model, which includes the SAR and spatial error (SE) models

2We appreciate suggestions from an Associate Editor to devote our attention to the high order SARAR model for its generality

rather than the first order one.
3In the time series literature, quadratic statistics have long been written as martingales (See, e.g., Hall and Heyde, 1980). The

importance of martingale processes for spatial random variables has been recognized by Kelejian and Prucha (2001). They develop a

central limit theorem for a general linear-quadratic form of independent disturbances by exploring its martingale structure.
4Although we only focus on the SARAR model, by exploring martingale structures, estimation of other spatial econometric models

including nonlinear ones may be possibly studied by an extension of kernel smoothing of moment conditions motivated by Kitamura

and Stutzer (1997) and Smith (1997). But that will be investigated in a future study.
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as special cases, have been proposed in the literature, e.g., the GS2SLS estimation (Kelejian and Prucha, 1998),

the QML estimation (Lee, 2004), and the GMM estimation (Lee, 2007; Liu et al., 2010; Lee and Liu, 2010).5 The

GS2SLS estimates the equation by the 2SLS, thus it is computationally simple, but can be asymptotically inefficient

compared to the QML. Although being relatively efficient, the QML may be computationally intensive for large

sample sizes, especially for high order SARAR models. The GMM, which may employ not only linear moments in

disturbances but also quadratic ones, can be computationally simpler than the QML and asymptotically as efficient

as or efficient relative to the QML.6 In the presence of unknown heteroskedasticity, by selecting quadratic matrices

with zero diagonals, the GMM can yield robust estimates (Kelejian and Prucha, 2010; Lin and Lee, 2010). Liu and

Yang (2015) propose to modify the QML scores to obtain estimators robust to unknown heteroskedasticity.

This paper is organized as follows. Section 2 introduces a general high order SARAR model, and the GEL and

GMM estimation in both homoskedastic and heteroskedastic cases based on its martingale structure. Section 3

shows the consistency and asymptotic normality of the GEL estimator and compares its asymptotic bias with that

of the GMM estimator. Section 4 investigates test statistics in the GEL framework. Section 5 reports some Monte

Carlo results, which demonstrate that GEL estimators and test statistics have desirable finite sample performance.

Section 6 concludes. Lemmas and proofs of theorems are collected in appendices.7

2 The SARAR model and GEL estimation

Consider the SARAR model with p-order spatial lags and q-order spatial errors (for short, SARAR(p,q)):

Yn =

p∑
j=1

κjWjnYn +Xnβ + Un, Un =

q∑
k=1

τkMknUn + Vn, (1)

where n is the sample size, Yn is an n× 1 vector of observations on the dependent variable, Xn is an n× kx matrix

of exogenous variables with coefficient vector β, Wjn and Mkn are n × n nonstochastic spatial weights matrices

with zero diagonals, κj and τk are scalar spatial dependence parameters, and Vn = [vni] is an n × 1 vector of

independent disturbances with mean zero and finite variances. In this paper, we consider both the homoskedastic

case that vni’s have the same variance and the heteroskedastic case that vni’s have different variances with unknown

form. Let In be the n × n identity matrix, κ = (κ1, . . . , κp)
′, τ = (τ1, . . . , τq)

′, Sn(κ) = In −
∑p
j=1 κjWjn,

Rn(τ) = In −
∑q
k=1 τkMkn, and (κ′0, τ

′
0, β
′
0) be the true value of (κ′, τ ′, β′). As an equilibrium model, Yn has the

reduced form Yn = S−1
n (Xnβ0 + R−1

n Vn), where Sn = Sn(κ0) and Rn = Rn(τ0) are assumed to be invertible. The

Xn is assumed to be nonstochastic for convenience, as in Kelejian and Prucha (1998) and Lee (2004).8

If the disturbances vni’s in model (1) are i.i.d. with mean 0 and variance σ2
0 , the moment vector for a GMM

5Due to endogeneity of the spatial lag in an SAR model, the least squares estimator is only consistent in certain cases (Lee, 2002).
6The GMM estimator with properly chosen moments can be as efficient as the QML estimator for the SARAR model with normal

disturbances, but it can be more efficient than the latter in the case of non-normal disturbances (Liu et al., 2010; Lee and Liu, 2010).
7Proofs of lemmas and some other material are provided in an online supplementary file available at: http://econ.shufe.edu.cn/

kindeditor-4.1.10/attached/file/20180716/20180716231318_52942.pdf.
8Alternatively, Xn can be stochastic with finite moments of certain order.

4

http://econ.shufe.edu.cn/kindeditor-4.1.10/attached/file/20180716/20180716231318_52942.pdf
http://econ.shufe.edu.cn/kindeditor-4.1.10/attached/file/20180716/20180716231318_52942.pdf


estimation can be

gn(θ) =
1

n
[V ′n(θ)P1nVn(θ)− σ2 tr(P1n), . . . , V ′n(θ)PkpnVn(θ)− σ2 tr(Pkpn), V ′n(θ)Qn]′, (2)

where Vn(θ) = Rn(τ)[Sn(κ)Yn−Xnβ], with θ = (κ′, τ ′, β′, σ2)′ being a kθ-dimensional vector for kθ = kx+p+q+1,

Pln for l = 1, . . . , kp are n × n nonstochastic matrices, and Qn is an n × kq IV matrix with full column rank

kq. Without loss of generality, assume that Pln, for l = 1, . . . , kp, are symmetric and linearly independent.9 The

quadratic moments are valid since E(V ′nPlnVn) = σ2
0 tr(Pln). The IV matrix Qn may consist of independent columns

of Xn,WjnXn and so on, and Pln’s can be functions of Wjn and Mkn such as W
(s)
jn , M

(s)
kn , (W 2

jn)(s), (M2
kn)(s),

(WjnW
′
kn)(s) and (MjnM

′
kn)(s), where A(s) = A + A′ for any square matrix A. The total number of moments in

gn(θ) is kg = kp + kq, which is greater than or equal to kθ.

A quadratic form has in general a double summation. However, it can also be written in a single summation with

the remaining summation written into partial sums: V ′n(θ)PlnVn(θ) − σ2 tr(Pln) =
∑n
i=1 ωln,i(θ) for l = 1, . . . , kp,

where

ωln,i(θ) = pln,ii[v
2
ni(θ)− σ2] + 2vni(θ)

i−1∑
j=1

pln,ijvnj(θ) (3)

with vnj(θ) being the jth element of Vn(θ), and

gni(θ) = [ω1n,i(θ), . . . , ωkpn,i(θ), Q
′
nivni(θ)]

′, (4)

where Qni contains kq IVs of the ith unit, i.e., Qn = [Qn1, . . . , Qnn]′. Then gn(θ) = 1
n

∑n
i=1 gni(θ). The quadratic

moments involve the variance parameter σ2 due to (3) in order that gn(θ) can be decomposed into a sum of gni(θ)’s

in (4), where gni(θ0) for i = 1, . . . , n, are martingale differences (Kelejian and Prucha, 2001).10 Thus the variance

of gn(θ0) is 1
n2

∑n
i=1 E[gni(θ0)g′ni(θ0)]. Our quadratic moments involving the estimation of σ2 are in line with those

in Kelejian and Prucha (1998, 1999).11

In the case that there is unknown heteroskedasticity, we may select all Pln’s to have zero diagonals in order

to derive valid moment conditions, as in Kelejian and Prucha (2010) and Lin and Lee (2010). Such Pln’s can

be W
(s)
jn , M

(s)
kn , (W 2

jn)(s) − 2 diag(W 2
jn), (M2

kn)(s) − 2 diag(M2
kn), (WjnW

′
kn)(s) − 2 diag(WjnW

′
kn), (MjnM

′
kn)(s) −

2 diag(MjnM
′
kn) and so on, where diag(A) for a square matrix A denotes a diagonal matrix formed by the diagonal

elements of A. Let the moment vector be

gn(θ) =
1

n
[V ′n(θ)P1nVn(θ), . . . , V ′n(θ)PkpnVn(θ), V ′n(θ)Qn]′, (5)

9If Pln is not symmetric, replacing it with (Pln + P ′ln)/2 does not change the value of the moment vector.
10This is a technical issue in the GEL estimation framework. For that reason, it is not possible to unify the GEL estimation for

the homoskedastic and heteroskedastic cases into a single estimation framework, unless we restrict Pjn’s to have zero diagonals in the

homoskedastic case. Furthermore, the variance σ2 can be estimated in the above GEL framework, while it is not meaningful to be

estimated in a heteroskedastic case.
11Lee (2001, 2007) use quadratic moments of the form E(V ′nPnVn) = 0 with tr(Pn) = 0 to formulate the GMM estimation, which

do not involve σ2. The quadratic moments involving no σ2 in Lee (2001, 2007) would not be technically appropriate to be used here

due to the required martingale difference property. As shown in Lee (2001, 2007), in the case that vni’s are normal, there are moment

vectors with which the resulting GMM estimators are as efficient as the maximum likelihood estimator.
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where Pln’s have zero diagonals, and Vn(θ) is the same as above, but θ = (κ′, τ ′, β′)′ would not contain σ2 so that

kθ = kx + p+ q is the dimension of θ.12 Then ωln,i(θ) and gni(θ) can still have the forms in (3) and (4), except that

the first term of ωln,i(θ) on the r.h.s. of (3) is zero.

We consider the GEL estimator:

θ̂n,gel = arg minθ∈Θsupλ∈Λn(θ)

n∑
i=1

ρ(λ′gni(θ)), (6)

where Λn(θ) = {λ : λ′gni(θ) ∈ V, i = 1, . . . , n} for an open interval V containing 0, and ρ(v) is a twice continuously

differentiable concave function of a scalar v on V.13 Denote ρk(v) = dkρ(v)
dvk

and ρk = ρk(0) for k = 1 and 2. As long

as ρ1 6= 0 and ρ2 < 0, without loss of generality, we may let ρ1 = ρ2 = −1 (Newey and Smith, 2004). The EL is a

special case of the GEL with ρ(v) = ln(1− v) for v < 1 (Qin and Lawless, 1994; Smith, 1997); the ET is a special

case with ρ(v) = −ev (Kitamura and Stutzer, 1997; Smith, 1997); and the continuous updating GMM is a special

case with a quadratic ρ(v) = − 1
2 (v + 1)2 (Newey and Smith, 2004).

To study large sample properties of the GEL estimator, we assume formally the following regularity conditions.

Assumption 1. Either (i) vni’s are i.i.d. with mean zero, variance σ2
0 and E(|vni|4+ι) <∞ for some ι > 0; or (ii)

vni’s are independent with mean zero and variances σ2
ni’s, and supn sup1≤i≤n E(|vni|4+ι) <∞.

Assumption 2. The elements of Xn are uniformly bounded constants, and limn→∞
1
nX
′
nXn exists and is nonsin-

gular.

Assumption 3. (i) Wjn and Mkn have zero diagonals for j = 1, . . . , p and k = 1, . . . , q;14 (ii) Sn and Rn are

nonsingular; (iii) the sequences of matrices {S−1
n }, {R−1

n }, {W1n}, . . . , {Wpn}, {M1n}, . . . , {Mqn} are bounded

in both row and column sum norms.

Assumption 4. (i) The sequences of matrices {P1n}, . . . , {Pkpn} are bounded in both row and column sum norms,

and the elements of Qn are uniformly bounded constants; (ii) Pjn for j = 1, . . . , kp have zero diagonals if vni’s are

heteroskedastic.

Assumption 5. θ0 in a compact parameter space Θ ⊂ Rkθ is the unique solution to limn→∞
1
n E[gn(θ)] = 0.

Assumption 6. ρ(v) is concave on V, twice continuously differentiable in a neighborhood of zero, and ρ1 = ρ2 = −1.

We shall consider both homoskedastic and heteroskedastic cases, so Assumption 1 gives general conditions to

allow both cases. Assumptions 1(i) and 2–4(i) are the same as Assumptions 1–4 in Lee and Liu (2010). Assump-

tion 1(ii) for the heteroskedastic case is the same as that in Lin and Lee (2010). The existence of moments higher

12This is proper because a single σ2 would not be meaningful with heteroskedastic errors.
13In practice, λ can be chosen from Rkg . If there is some θ such that, for any λ, there exists some i such that λ′gni(θ) falls out of

the domain of ρ(·), it is theoretically appropriate to set the GEL objective function at θ to infinity. If not, but λ′gni(θ) falls out of the

domain of ρ(·) for some i and λ, then this λ is not the solution of the problem. This is because λ̂n = Op(n−1/2) by Theorem 3.1, and

with probability approaching one, λ′gni(θ) ∈ V for all 1 ≤ i ≤ n, θ ∈ Θ and ‖λ‖ ≤ n−ζ , where ζ is a positive number, by Lemma 10.
14In this paper, whenever we mention a spatial weights matrix, it is implicit that it has a zero diagonal.
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than the fourth order in Assumption 1 is needed for the application of the central limit theorem on linear-quadratic

forms as in Kelejian and Prucha (2001). In Assumption 2, explanatory variables are assumed to be constants and

uniformly bounded for convenience and multicollinearity is ruled out. Assumption 3(i) is a normalization often

assumed in order to provide meaningful interpretation on interaction effects in the literature. Assumption 3(ii)

guarantees the existence of an equilibrium of the model. Assumption 3(iii), originated in Kelejian and Prucha

(1998, 1999), restricts the degree of spatial dependence to be manageable. As Pln’s and Qn are functions of Wjn’s,

Mkn’s and Xn, it is reasonable to maintain Assumption 4(i). Assumption 4(ii) is needed in the heteroskedastic

case so that the moments are valid. Compactness of parameter spaces in Assumption 5 is a standard assumption

on extremum estimation. A high level identification condition is maintained in Assumption 5 for simplicity. Low

level conditions can be derived as in Lee and Liu (2010), which are discussed in the supplementary file. These con-

ditions are full rank conditions on the IV matrix, the quadratic matrices Pln’s and the spatial weights matrices.15

Assumption 6 is a smoothness condition on ρ(·) as in Newey and Smith (2004).

It is of interest to compare asymptotic properties of the GEL and GMM. Let Ωn(θ) = 1
n

∑n
i=1 gni(θ)g

′
ni(θ), then

var[
√
ngn(θ0)] = E[Ωn(θ0)] ≡ Ω̄n. An estimate of Ω̄n is given by Ωn(θ̃n) with some initial consistent estimator θ̃n.

With Ωn(θ̃n), we consider the following feasible optimal GMM (FOGMM) estimator:

θ̂n,gmm = arg minθ∈Θg
′
n(θ)Ω−1

n (θ̃n)gn(θ). (7)

We shall compare this FOGMM estimator with the GEL estimator. For these estimators, Ω̄n is required to be

nonsingular in the limit. For any square matrix A, let vec(A) be the vectorization of A and vecD(A) be the

column vector formed by the diagonal elements of A. In the homoskedastic case, let µj be the jth moment of

vni for j = 3, 4, P ∗jn =
√
µ4 − σ4

0 −
µ2
3

σ2
0

diag(Pjn) +
√

2σ2
0(Pjn − diag(Pjn)), Ξn = [vec(P ∗1n), . . . , vec(P ∗kpn)] and

Ξnd = [vecD(P1n), . . . , vecD(Pkpn)].16 Then, as in Debarsy et al. (2015),

Ω̄n =
1

n

Ξ′nΞn 0

0 0

+
[µ3

σ0
Ξnd, σ0Qn

]′[µ3

σ0
Ξnd, σ0Qn

]
.

In the heteroskedastic case, let Πn be the diagonal matrix formed by σ2
ni’s, and

Ξ∗n =
√

2[vec(Π1/2
n P1nΠ1/2

n ), . . . , vec(Π1/2
n PkpnΠ1/2

n )].

Then Ω̄n = 1
n

Ξ∗′nΞ∗n 0

0 Q′nΠnQn

. The following assumption provides sufficient conditions for the nonsingularity

of Ω̄n in the limit.

15As pointed out by an anonymous referee, the true parameters may not be uniquely identified in the just-identification case via

the moment condition alone. However, they are generally uniquely identified in the over-identification case. For the first order SAR

model, even though the true parameters are not uniquely identified in the just-identification case via the moment condition alone, one

closed-form root of the sample moment equation can be shown to be consistent (Jin and Lee, 2012).

16By the Cauchy-Schwarz inequality, E[(v2ni − σ2
ni)

2] E(v2ni) ≥ [E(v3ni − σ2
nivni)]

2, i.e., (µ4 − σ4
0)σ2

0 ≥ µ23. Thus, µ4 − σ4
0 −

µ2
3

σ2
0
≥ 0.
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Assumption 7. In the homoskedastic case, either (i) limn→∞
1
nQ
′
nQn and limn→∞

1
nΞ′nΞn have full rank, or (ii)

limn→∞
1
n [µ3

σ0
Ξnd, σ0Qn]′[µ3

σ0
Ξnd, σ0Qn] has full rank. Furthermore, in the heteroskedastic case, limn→∞

1
nQ
′
nΠnQn

and limn→∞
1
nΞ∗′nΞ∗n have full rank.

In the homoskedastic case, the condition limn→∞
1
nΞ′nΞn requires Pjn’s to be linearly independent for large

enough n. When µ3 = 0, e.g., vni’s are normal, the condition in (ii) of Assumption 7 will not hold and will not be

needed. In the heteroskedastic case, Ω̄n is block diagonal and does not involve third and fourth moments of vni’s,

as Pjn’s have zero diagonals. The conditions are similar to those in the homoskedastic case and Pjn’s are required

to be linearly independent for large enough n.

The initial estimator θ̃n for the FOGMM can be derived from minθ∈Θ g
′
n(θ)Ĵ−1

n gn(θ), where Ĵn is a kg × kg

weighting matrix. Following Newey and Smith (2004), we assume that Ĵn satisfies the following assumption.

Assumption 8. Ĵn = J̄n + n−1/2ξJn +Op(n
−1), where limn→∞ J̄n is positive definite, ξJn = Op(1) and E(ξJn) = 0.

This statistical property on the estimated weighting matrix provides a rigorous setting for subsequent analysis

on higher order asymptotic properties of the FOGMM estimator.

3 Large sample properties of estimators

In this section, we investigate the consistency and asymptotic normality of the GEL estimator, and compare its

asymptotic bias of some higher order with that of the FOGMM estimator.

3.1 Consistency and asymptotic distribution

For the GEL estimation, it is convenient to present results on asymptotic properties in both the homoskedastic and

heteroskedastic cases together, though θ and other terms below may have different expressions in the two cases.

The following theorem establishes the consistency of θ̂n,gel and related probability orders of the moment vector and

the corresponding GEL estimate λ̂n,gel of λ.

Theorem 3.1. Under Assumptions 1–7, θ̂n,gel
p−→ θ0, gn(θ̂n,gel) = Op(n

−1/2); furthermore,

λ̂n,gel = arg maxλ∈Λn(θ̂n,gel)

∑n
i=1 ρ(λ′gni(θ̂n,gel)) exists with probability approaching one, and λ̂n,gel = Op(n

−1/2).

With the consistency of the GEL estimator, its asymptotic distribution can be derived by expanding the first

order condition. Denote Ḡn = E(∂gn(θ0)
∂θ′ ).

Assumption 9. (i) θ0 ∈ int(Θ); (ii) limn→∞ Ḡn has full rank.

As usual, Assumption 9(i) guarantees the validity of the first order condition, which will be used to de-

rive the asymptotic distribution of the estimator, and Assumption 9(ii) rules out functionally dependent mo-

ments. Let γ = (θ′, λ′)′ and γ0 = (θ′0, 01×kg )′. Furthermore, denote Σ̄n = (Ḡ′nΩ̄−1
n Ḡn)−1 and D̄n = Ω̄−1

n −

Ω̄−1
n Ḡn(Ḡ′nΩ̄−1

n Ḡn)−1Ḡ′nΩ̄−1
n . The next theorem shows that γ̂n,gel = (θ̂′n,gel, λ̂

′
n,gel)

′ is asymptotically normal.
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Theorem 3.2. Under Assumptions 1–7 and 9,
√
n(γ̂n,gel−γ0)

d−→ N
(
0, limn→∞ diag(Σ̄n, D̄n)), where diag(Σ̄n, D̄n)

is the block diagonal matrix formed by the blocks Σ̄n and D̄n.

This theorem shows that the GEL estimator θ̂n,gel of θ0 has the same asymptotic distribution as the GMM

estimator θ̂n,gmm in (7) (see e.g., Lee (2007) and Lee and Liu (2010)).

3.2 Stochastic expansion and high order asymptotic bias

To study high order asymptotic biases of the GMM and GEL estimators, we shall first derive Nagar-type expansions

(Nagar, 1959) of a
√
n-consistent estimator γ̂n of γ0 with the form

√
n(γ̂n − γ0) = ξn + n−1/2ψn +Op(n

−1), (8)

where ξn = Op(1), E(ξn) = 0 and ψn = Op(1). High order bias of γ̂n can be computed as 1
n E(ψn).

For the FOGMM estimator θ̂n,gmm, following Newey and Smith (2004), an auxiliary parameter vector

λ̂n,gmm = −Ω−1
n (θ̃n)gn(θ̂n,gmm)

can be defined to make the derivation of its corresponding Nagar-type expansion easier.17 With λ̂n,gmm, the first

order condition for θ̂n,gmm can be written as

0 = −
(

G′n(θ̂n,gmm)λ̂n,gmm

gn(θ̂n,gmm) + Ωn(θ̃n)λ̂n,gmm

)
, (9)

and we derive the expansion for the whole vector γ̂n,gmm = (θ̂′n,gmm, λ̂
′
n,gmm)′. The expansion requires the existence

of higher order moments of disturbances.

Assumption 10. supn sup1≤i≤n E |vni|8 <∞.

Theorem 3.3. For the FOGMM estimator γ̂n,gmm, under Assumptions 1–5 and 7–10, the expansion (8) holds with

ξn = −
(
H̄n
D̄n

)√
ngn(θ0), where H̄n = (Ḡ′nΩ̄−1

n Ḡn)−1Ḡ′nΩ̄−1
n .

The explicit form of ψn for the asymptotic expansion of γ̂n,gmm is rather complex, but can be found in Appendix A

in the proof of this theorem. A similar expansion for the GEL estimator θ̂n,gel is also in Appendix A. The expansion

requires further smoothness condition on ρ(v).

Assumption 11. ρ(v) is four times continuously differentiable with Lipschitz fourth derivative in a neighborhood

of zero.

Theorem 3.4. For the GEL estimator γ̂n,gel, under Assumptions 1–7 and 9–11, the expansion (8) holds with

ξn = −
(
H̄n
D̄n

)√
ngn(θ0).

The above two theorems show that γ̂n,gel and γ̂n,gmm are asymptotically equivalent. With the expansions, we

can compute the asymptotic biases of the FOGMM and GEL estimators with the form 1
n E(ψn). Let Ωn = Ωn(θ0),

17Alternatively, the expansion can be directly derived from the GMM first order condition as in Rilstone et al. (1996).
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Gn = Gn(θ0), Ḡ
(l)
n = E(∂Gn(θ0)

∂θl
), gn = gn(θ0), gni = gni(θ0), g

(l)
ni = ∂gni(θ0)

∂θl
, and ekθ,l be the lth column of the

kθ × kθ identity matrix, where θl denotes the lth element of θ.

Theorem 3.5. Under Assumptions 1–5 and 7–10, the bias of the FOGMM estimator θ̂n,gmm is BIn+BGn +BΩ
n +BJn ,

where BIn = H̄n E(GnH̄ngn) − 1
2n

∑kθ
l=1 H̄nḠ

(l)
n Σ̄nekθ,l, B

G
n = −Σ̄n E(G′nD̄ngn), BΩ

n = H̄n E(ΩnD̄ngn) and BJn =

−
∑kθ
l=1

1
n2

∑n
i=1 H̄n[E(gnig

(l)′

ni + g
(l)
ni g
′
ni)](H̄

J
n − H̄n)′ekθ,l, with H̄J

n = (Ḡ′nJ̄
−1
n Ḡn)−1Ḡ′nJ̄

−1
n .

In Theorem 3.5, BIn is the asymptotic bias for a GMM estimator dealing with the optimal linear combination

Ḡ′nΩ̄−1
n gn(θ) of empirical moments gn(θ); BGn arises from estimating Ḡn; BΩ

n arises from estimating the second

moment matrix Ω̄n with the empirical variance Ωn; and BJn arises from the choice of the initial GMM estimator.

For the latter, if J̄n is a scalar multiple of Ω̄n, then BJn = 0 as H̄n = H̄J
n . With exact identification, D̄n = 0. In

that case, BGn = BΩ
n = BJn = 0. Let Gni = ∂gni(θ0)

∂θ′ = [g
(1)
ni , . . . , g

(kθ)
ni ].

Theorem 3.6. Under Assumptions 1–7 and 9–11, the bias of the GEL estimator θ̂n,gel is BIn+BGn−B̃Gn +BΩ
n+ρ3

2 B̃
Ω
n ,

where B̃Gn = − 1
n2 Σ̄n

∑n
i=1 E(G′niD̄ngni), ρ3 = d3ρ(0)

dv3 , and B̃Ω
n = 1

n2

∑n
i=1 H̄n E(gnig

′
niD̄ngni).

Again with exact identification, B̃Gn and B̃Ω
n are also zero, so the bias is simply BIn. For overidentification cases,

since gni(θ0)’s are not independent across i, in general, BGn 6= B̃Gn and BΩ
n 6= B̃Ω

n . Thus, unlike the case with i.i.d.

data, the bias of the GEL estimator does not reduce to BIn +BΩ
n + ρ3

2 B̃
Ω
n and does not reduce further to BIn for the

EL with ρ3 = −2. The GEL only partially removes the asymptotic bias from the correlation between Gn(θ0) and

gn(θ0). This conclusion is similar to that in Anatolyev (2005) for stationary time series models with non-i.i.d. but

serially uncorrelated data. In the presence of serial correlation, by using smoothed moment conditions, Anatolyev

(2005) shows that, for certain kernel functions, the GEL can completely remove some high order bias terms from

those of the GMM based on the same smoothed moment conditions. However, the main purpose of introducing

smoothing is to derive efficient GEL estimates. When sample observations are uncorrelated, the GEL yields efficient

estimates and the standard practice is to use unsmoothed moment conditions. For SAR models, the martingale

difference are uncorrelated, so the GEL can generate efficient estimates.18

When gn(θ) only contains linear moments, gni becomes Qnivni. Then, with only IV estimation, BΩ
n = B̃Ω

n .

Corollary 3.1. When gn(θ) = 1
nQ
′
nVn(θ), the bias of the EL estimator reduces to BIn +BGn − B̃Gn , and the bias of

the FOGMM estimator is BIn +BGn +BΩ
n +BJn , where BΩ

n = 1
n2 H̄n

∑n
i=1QniQ

′
niD̄nQni E(v3

ni).

The bias of the EL estimator reduces to BIn+BGn − B̃Gn because the EL has ρ3 = −2, and hence, it does not have

a bias from estimation of the second moment matrix Ω̄n. If we further assume that E(v3
ni) = 0 for i = 1, . . . , n, then

BΩ
n = B̃Ω

n = 0. In that case, BΩ
n is removed from the bias of the FOGMM estimator, and BΩ

n + ρ3
2 B̃

Ω
n is removed

from the bias of any GEL estimator.

18It might be possible to consider smoothed moment conditions, e.g., smoothing the martingale differences. However, it is not clear

whether the resulting GEL estimate can have lower high order bias than that based on the unsmooth moment conditions. Smoothing

also involves additional practical complications on bandwidth selection. We thus leave this interesting question to future research.
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4 Test statistics

In this section, we investigate several popular test statistics for SAR models in the GEL framework, including the

parameter restriction test, overidentification test, Moran’s I test and spatial J test. As shown below, an interesting

aspect of those test statistics in the GEL framework is their robustness to unknown heteroskedasticity as long as

their moment conditions are valid, while conventional test statistics without taking into account carefully their

heteroskedastic variances for relevant evaluation might not be robust. Furthermore, while certain conventional test

statistics might not be robust to non-normal distributions if higher order moments are not properly taken into

account, test statistics in the GEL framework can be robust without referring to higher order moments as they are

internalized.

4.1 Test for parameter restrictions

We may test for parameter restrictions in the GEL framework. Let θ = (α′, φ′)′, where α is a subvector of θ.

Suppose that we are interested in testing whether the true value of α is equal to zero or more generally a known

constant vector cα. For example, if our interest is to test spatial dependence, α might be the vector of spatial

dependence parameters κ and/or τ in (1). Let θ̇n = (c′α, φ̇
′
n)′ be the restricted GEL estimator with the restriction

α = cα imposed, and λ̇n = arg maxλ∈Λn(θ̇n)

∑n
i=1 ρ(λ′gni(θ̇n)). By the max-min characterization of the saddle point

of the GEL objective function,
∑n
i=1 ρ(λ̇′ngni(θ̇n)) ≥

∑n
i=1 ρ(λ̂′ngni(θ̇n)) ≥

∑n
i=1 ρ(λ̂′ngni(θ̂n)). Then we have the

following GEL ratio test.

Theorem 4.1. Suppose that Assumptions 1–7 and 9 are satisfied. Then under the null hypothesis H0 : α0 = cα,

2[
∑n
i=1 ρ(λ̇′ngni(θ̇n))−

∑n
i=1 ρ(λ̂′ngni(θ̂n))]

d−→ χ2(kα), where kα is the dimension of α0.

The GEL ratio test is asymptotically equivalent to the distance difference test in the GMM framework (Donald

et al., 2003). This is so also for an SAR model. But it does not involve estimation of an optimal weighting of

moments as in the GMM distance difference test. The GEL ratio has a similarity to a classical likelihood ratio

statistic. As long as the moment vector gn(θ) is valid, this test statistic can be formulated and is robust to unknown

heteroskedasticity. These latter and distribution-free features are more attractive than those of a likelihood ratio

test statistic. In a likelihood ratio test, the likelihood function needs to be properly specified to take into account

heteroskedasticity and distributions of sample observations. For this GEL, one relies only on moments and does

not need to have the proper formulation of heteroskedastic variances and distributions of disturbances. Since it is

invariant under equivalent forms of the null hypothesis, it does not have the drawback of the Wald test that virtually

any value of the Wald statistic can be obtained by writing the null hypothesis in different ways (Lafontaine and

White, 1986).

To understand power properties of this test statistic, we consider a local alternative sequence. Suppose that

the true value of α is subject to a Pitman drift αn = cα + n−1/2dα, where dα is a kα × 1 vector of constants. Let

Ḡnα = E(∂gn(θ0)
∂α′ ), Ḡnφ = E(∂gn(θ0)

∂φ′ ), D̄nφ = Ω̄−1
n − Ω̄−1

n Ḡnφ(Ḡ′nφΩ̄−1
n Ḡnφ)−1Ḡ′nφΩ̄−1

n , and χ2(a, b) be a noncentral
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chi-squared distribution with a degrees of freedom and a noncentrality parameter b.

Theorem 4.2. Suppose that Assumptions 1–7 and 9 are satisfied. Then, under the Pitman drift αn = cα+n−1/2dα,

2
[ n∑
i=1

ρ(λ̇′ngni(θ̇n))−
n∑
i=1

ρ(λ̂′ngni(θ̂n))
]
d−→ χ2

(
kα, lim

n→∞
d′αḠ

′
nαD̄nφḠnαdα

)
.

The GEL ratio statistic is asymptotically distributed with a noncentral chi-squared distribution, which is the

same as that for a distance difference test in the GMM framework (see also Newey and West, 1987).

4.2 Overidentification test

Like the GMM, a properly normalized GEL objective function at the GEL estimator (θ̂′n, λ̂
′
n)′ can provide an

overidentification test of moment conditions. The test statistic 2[
∑n
i=1 ρ(λ̂′ngni(θ̂n))−nρ(0)] is non-negative as ρ(0)

is the restricted value of 1
n

∑n
i=1 ρ(λ′gni(θ̂n)) with the restriction λ = 0 while 1

n

∑n
i=1 ρ(λ̂′ngni(θ̂n)) is an unrestricted

maximum for λ.

Theorem 4.3. Suppose that Assumptions 1–7 and 9 are satisfied. Then 2[
∑n
i=1 ρ(λ̂′ngni(θ̂n))−nρ(0)]

d−→ χ2(kg−kθ),

where the number of moments kg is strictly greater than the number of parameters kθ.

This GEL overidentification test is asymptotically equivalent to the GMM overidentification test. In general,

misspecification of an SAR model may come from different sources which give misspecified moment conditions. The

overidentification test will be able to detect those misspecifications. If one believes that misspecification might come

only from a particular source, then the overidentifcation test might detect it. However, for a specific direction of

departure, it is desirable to design more powerful test statistics. In a subsequent section, we consider a non-nested

test, namely, a J-test, for SAR models with different specifications of spatial weights matrices. Before that, we

consider a test of spatial dependence, the well-known Moran’s I statistic.

4.3 Moran’s I test

Moran’s I test is a popular test for spatial dependence. In practice, the vector of ordinary least squares (OLS)

residuals V̂n = [In −Xn(X ′nXn)−1X ′n]Yn from the regression of Yn on Xn in the regression model Yn = Xnβ + Vn

is often used and the test is based on the asymptotic distribution of 1√
n
V̂ ′nMnV̂n for a spatial weights matrix Mn.

After normalization with a proper standard error, an asymptotically normal distribution of the normalized statistic

is used for testing. Such a test has a null hypothesis that vni’ in Vn are independent.19 Here we show that such a

test of spatial dependence can be conveniently implemented in the GEL framework. This GEL test can be robust

against unknown heteroskedasticity in disturbances, while there is no need to estimate any variance. To allow

for possible spatial dependence with different specifications on spatial weights matrices, we use the vector of q

19Kelejian and Prucha (2001) propose a generalized Moran’s I test that covers the SARAR and limited dependent variable models.

Qu and Lee (2012, 2013) have considered the use of generalized residuals for the construction of locally most powerful LM tests for the

spatial Tobit model.
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moments
√
nĝn = 1√

n
[V̂ ′nM1nV̂n, . . . , V̂

′
nMqnV̂n]′ to construct a joint test, where M1n, . . . , Mqn are spatial weights

matrices. Let gni = [vni
∑i−1
j=1(m1n,ij +m1n,ji)vnj , . . . , vni

∑i−1
j=1(mqn,ij +mqn,ji)vnj ]

′ and ĝni = [v̂ni
∑i−1
j=1(m1n,ij +

m1n,ji)v̂nj , . . . , v̂ni
∑i−1
j=1(mqn,ij + mqn,ji)v̂nj ]

′, where v̂ni is the ith element of V̂n, for i = 1, . . . , n, and Λ̂n = {λ :

λ′ĝni ∈ V, i = 1, . . . , n}.20

Theorem 4.4. Suppose that Yn = Xnβ0 +Vn, the n×n nonstochastic matrices M1n, . . . , Mqn have zero diagonals,

the sequences {M1n}, . . . , {Mqn} are bounded in row and column sum norms, and limn→∞
1
n

∑n
i=1 E(gnig

′
ni) is

positive definite. Under Assumptions 1, 2 and 6,

2
[

max
λ∈Λ̂n

n∑
i=1

ρ(λ′ĝni)− nρ(0)
]

=
( n∑
i=1

ĝni

)′( n∑
i=1

ĝniĝ
′
ni

)−1( n∑
i=1

ĝni

)
+ op(1)

d−→ χ2(q).

The GEL test statistic can use the estimated ĝni in place of the true gni, because
√
nĝn with the OLS estimated V̂n

has the same asymptotic distribution as
√
ngn = 1√

n
[V ′nM1nVn, . . . , V

′
nMqnVn] with true Vn due to an orthogonality

property. A conventional Moran’s I test would need to evaluate the asymptotic variance of
√
ngn under the

null. If we use
∑n
i=1 ĝniĝ

′
ni to estimate the variance of

∑n
i=1 ĝni, a Moran’s I test, which is robust to unknown

heteroskedasticity, can be computed as (
∑n
i=1 ĝni)

′(
∑n
i=1 ĝniĝ

′
ni)
−1(
∑n
i=1 ĝni), as given in the above theorem. The

GEL version of Moran’s I test can bypass such calculations as the GEL takes care of unknown heteroskedasticity

internally.

For the local power of Moran’s I test, we consider the alternative model being an SE model, Yn = Xnβ + Un

with Un =
∑q
j=1 τnjMjnUn + Vn, where the spatial error dependence parameter τn = [τn1, . . . , τnq]

′ is subject to

the Pitman drift τn = n−1/2dτ = n−1/2[dτ1, . . . , dτq]
′ to zero.

Theorem 4.5. Suppose that Yn = Xnβ0 + Un with Un =
∑q
j=1 n

−1/2dτjMjnUn + Vn, where dτj’s are constants,

the n×n nonstochastic matrices M1n, . . . , Mqn have zero diagonals, the sequences {M1n}, . . . , {Mqn} are bounded

in row and column sum norms, and limn→∞
1
n

∑n
i=1 E(gnig

′
ni) is positive definite. Under Assumptions 1, 2 and 6,

2
[

max
λ∈Λ̂n

n∑
i=1

ρ(λ′ĝni)− nρ(0)
]
d−→ χ2

(
q, lim
n→∞

L′nT
−1
n Ln

)
,

where Ln = 1
n E[

∑q
j=1 V

′
n(M1n + M ′1n)MjnVndτj , . . . ,

∑q
j=1 V

′
n(Mqn + M ′qn)MjnVndτj ]

′ and Tn is a q × q matrix

with its (j, k)th element being 1
n E(V ′nMjnVnV

′
nMknVn).

We may compare this GEL Moran’s I test with the parameter restriction test for spatial error dependence in

the SARAR(0,q) model based on the moment vector 1
n [V ′nM1nVn, . . . , V

′
nMqnVn, V

′
nXn]′. By Theorems 4.2 and 4.5,

these test statistics have the same asymptotic distribution under the same Pitman drift.

The above GEL Moran’s I test using the estimated moment vector
√
nĝn = 1√

n
[V̂ ′nM1nV̂n, . . . , V̂

′
nMqnV̂n]′ relies

on the null model being a linear regression model. Consider the case that the model is an SARAR(p,q) and the test is

for spatial dependence in disturbances. Then, with consistently estimated residual vector V̂n, which can be estimated

residuals from a 2SLS or QML estimated SAR equation,
√
nĝn may not have the same asymptotic distribution as

20Note that ĝn1 = gn1 = 0 by the convention of the summation notation. We define ĝn1 and gn1 for convenience.
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√
ngn and the test statistic would not be asymptotically chi-squared distributed. Neither would be the GEL test

version. This problem occurs due to the issue that the consistent estimator used to construct those moments for

testing has an impact on the asymptotic distribution of the moments.21 To overcome this problem in the GEL

framework, we may consider a corresponding C(α)-type statistic as suggested in Jin and Lee (2017). Let θ = (α, φ′)′,

where α is the spatial error dependence parameter vector τ and the test is on whether α0 = 0. Denote θ̂n = (0, φ̂′n)′

for any
√
n-consistent estimator φ̂n of φ0. Instead of the moment g1n(θ) = 1

n [V ′n(θ)M1nVn(θ), . . . , V ′n(θ)MqnVn(θ)]′,

where Vn(θ) = Rn(τ)[Sn(κ)Yn −Xnβ], we may use the moment gn(θ) = g1n(θ) − ∂g1n(θ)
∂φ′ (∂g2n(θ)

∂φ′ )−1g2n(θ), where

g2n(θ) is a (kθ − q) × 1 vector of linear and quadratic moments. As g1n(θ) and g2n(θ) are linear and quadratic

moments, gn(θ) can be written as gn(θ) = 1
n

∑n
i=1 gni(θ), where gni(θ) = g1n,i(θ)− ∂g1n(θ)

∂φ′ (∂g2n(θ)
∂φ′ )−1g2n,i(θ) with

g1n,i(θ0)’s and g2n,i(θ0)’s being martingale differences. In place of the estimated moment g1n(θ̂n), we would consider

the alternative gn(θ̂n). By the mean value theorem, we can see that
√
ngn(θ̂n) has the same asymptotic distribution

as
√
ngn(θ0).

Theorem 4.6. For model (1) with τ0 = 0, suppose that Assumptions 1–3 and 6 hold,
√
n(φ̂n − φ0) = Op(1), and

limn→∞
1
n

∑n
i=1 E[gni(θ0)g′ni(θ0)] is positive definite. Then,

2
[

max
λ∈Λn(θ̂n)

n∑
i=1

ρ(λ′gni(θ̂n))− nρ(0)
]

=
[ n∑
i=1

gni(θ̂n)
]′[ n∑

i=1

gni(θ̂n)g′ni(θ̂n)
]−1[ n∑

i=1

gni(θ̂n)
]

+ op(1)
d−→ χ2(q).

The test statistic is readily available with the GEL estimate of the Lagrangian multiplier λ. It is robust to

unknown heteroskedasticity if quadratic matrices in the quadratic moments of g2n(θ) have zero diagonals. This

GEL test can use any
√
n-consistent estimator φ̂n. However, it is desirable to choose g2n(θ) and its moment

estimator θ̂n = (0, φ̂′n)′ such that g2n(0, φ̂n) = 0. Because with such moments, the estimated moment vector gn(θ̂n)

is exactly the same as the estimated moment g1n(θ̂n) and we do not change the basic moments g1n(θ) for testing.

However, the individual gni(θ̂n) and g1n,i(θ̂n) are different even though their summations over i are the same. The

direct use of g1n,i(θ̂n) in a GEL test would not overcome the impact of θ̂n on the asymptotic distribution of that

GEL test statistic while the former can, because gn(θ) has an orthogonality property while g1n(θ) does not.

4.4 Spatial J test

Empirical researchers often face the problem on how to specify econometric models. In spatial econometrics, since

an economic theory may be ambiguous on spatial weights matrices, their specifications are frequently challenged.

Thus we may have possible specifications of SARAR models with different spatial weights matrices. For testing

and model selection, SARAR models with different spatial weights matrices are non-nested. A popular testing

procedure is based on the spatial J test (Kelejian, 2008; Kelejian and Piras, 2011).22 In this section, we formulate

the spatial J test in the GEL framework.

21For Moran’s I test, the orthogonality holds because 1√
n

(Yn−Xnβ̂n)′Mjn(Yn−Xnβ̂n) = 1√
n

(Yn−Xnβ0)′Mjn(Yn−Xnβ0)+op(1)

due to β̂n being the OLS estimator.
22Cox-type tests for SARAR models are developed in Jin and Lee (2013). Delgado and Robinson (2015) propose non-nested tests in

a general spatial, spatio-temporal or panel data context.
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Suppose that we are interested in testing model (1) against an alternative SARAR(p1,q1) model:

Yn =

p1∑
j=1

κjWjnYn + Xnβ + Un, Un =

q1∑
k=1

τkMknUn + Vn, (10)

where Wjn, Mjn, Xn and Vn have similar properties as those in model (1). The parameters are in boldface to

distinguish them from those in model (1).23 The J test is originated in Davidson and MacKinnon (1981) and is

based on whether the alternative model can significantly improve the prediction of the dependent variable vector

Yn. Let κ̂n and β̂n be, respectively, estimators of κ and β in (10), which are consistent if model (10) were the true

model. The κ̂n and β̂n can be the QML, GMM or even GEL estimators.24 A predictor of Yn from the alternative

model can be either Ŷn =
∑p1
j=1 κ̂jnWjnYn + Xnβ̂n using the main equation of (10) or Ŷn = S−1

n (κ̂n)Xnβ̂n using

the reduced form of Yn under (10), where Sn(κ̂n) = In −
∑p1
j=1 κ̂jnWjn. The difference of using the two versions

has been discussed in Kelejian and Piras (2011). As Yn is on the right hand side of the first prediction version, that

Ŷn would be endogenous, while the second one is exogenous. The spatial J test of (1) against (10) is based on an

augmented model:

Yn =

p∑
j=1

κjWjnYn +Xnβ + ηŶn + Un, Un =

q∑
k=1

τkMknUn + Vn, (11)

where Ŷn is added in the null model (1) to predict Yn. We test whether the coefficient η is significantly different

from zero or not. If it is not significant, we do not reject the null model; otherwise, we reject it. In Kelejian and

Piras (2011), the spatial J test uses the GS2SLS to estimate the augmented model.25 When Ŷn is exogenous, it can

be included in the IV matrix Qn and no extra IV is needed for Ŷn. For the version that Ŷn is endogenous, extra

IVs would be needed for Ŷn. The GS2SLS uses only linear IV moments but does not utilize quadratic moments for

the main equation of (11). Thus it may lead to a relatively inefficient estimator and a less powerful test (Jin and

Lee, 2013). Here as a generalization, we consider the GEL estimation of model (11) with both linear and quadratic

moments.

For the augmented model (11), let Vn(ϑ) = Rn(τ)[Sn(κ)Yn − Xnβ − ηŶn], where ϑ = (θ′, η)′. The moment

vector can be

gn(ϑ) = [V ′n(ϑ)P1nVn(ϑ)− σ2 tr(P1n), . . . , V ′n(ϑ)PkpnVn(ϑ)− σ2 tr(Pkpn), Q′nVn(ϑ)]

in the homoskedastic case, and

gn(ϑ) = [V ′n(ϑ)P1nVn(ϑ), . . . , V ′n(ϑ)PkpnVn(ϑ), Q′nVn(ϑ)]

where each Pln, l = 1, . . . , kp, has a zero diagonal in the heteroskedastic case. Define gni(ϑ) such that gn(ϑ) =

23While it is possible to test one model against several alternatives simultaneously, we only consider one alternative model for

simplicity.
24Large sample properties of the GEL estimators κ̂n and β̂n are presented in Appendix B under regularity conditions for misspecified

models.
25For the original spatial J test, which uses the GS2SLS to estimate the augmented model, the main equation of (11) is transformed

by pre-multiplying it with Rn(τ̂n) before estimation, where τ̂n is a consistent estimator of τ (Kelejian and Piras, 2011).
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1
n

∑n
i=1 gni(ϑ), and gni(ϑ0)’s are martingale differences under the null, where ϑ0 = (θ′0, 0)′. The GEL estimator is

ϑ̂n = arg minϑ∈Θmaxλ∈Λn(ϑ)

n∑
i=1

ρ(λ′gni(ϑ)),

where Λn(ϑ) = {λ : λ′gni(ϑ) ∈ V, i = 1, . . . , n} and Θ is the parameter space of ϑ. With the identification and

regularity conditions in Appendix B, the spatial J test statistic can be formulated as a GEL ratio. This GEL ratio

test is essentially a test on the parameter restriction that η = 0 in (11). It differs from the one in Section 4.1 in

that here Ŷn on the right hand side of (11) is a generated regressor. As the following theorem will show, the initial

estimate in Ŷn does not have an asymptotic impact on the GEL statistic under the null, because, at η = 0, Ŷn is

an irrelevant variable.

Theorem 4.7. Suppose that Assumptions 1–7, 9 and 12 hold and ϑ0 is in the interior of the compact parameter

space Θ. Then, under H0, 2[
∑n
i=1 ρ(λ̂′ngni(θ̂n)) −maxλ∈Λn(ϑ̂n)

∑n
i=1 ρ(λ′gni(ϑ̂n))]

d−→ χ2(1), where (θ̂′n, λ̂
′
n)′ is the

GEL estimator for model (1), i.e., it is the restricted GEL estimator for (11) with the restriction η = 0 imposed.

5 Monte Carlo

In this section, we report Monte Carlo results on the GEL estimator and test statistics considered in this paper.

5.1 Estimation

For estimation, we consider the following SARAR(2,0) model:26

Yn = κ1W1nYn + κ2W2nYn +Xnβ + Vn. (12)

The first spatial weights matrix W1n is based on the circular world matrix in Arraiz et al. (2010). This matrix

has spatial units equally spaced on a circle, one third of which are connected to ten nearest neighbors and the rest

are connected to two nearest neighbors. The second spatial weights matrix W2n is based on the queen criterion.

These matrices are normalized to have row sums equal to one. There are three exogenous variables in Xn: an

intercept term, a variable randomly drawn from the standard normal distribution N(0, 1) and a variable from

the uniform distribution U [0,
√

12]. The true value β0 of β = (β1, β2, β3)′ is [0.5, 0.5, 0.5]′. The disturbances

vni’s are randomly drawn from the normal distribution N(0, σ2
0) in the homoskedastic case, or N(0, σ2

0c
2
i ) in the

heteroskedastic case, where ci is the number of nonzero elements in the ith row of W1n, and σ2
0 is chosen such

that R2 ≡ var(Xnβ0)/[var(Xnβ0) + σ̄2
n] is either 0.4 or 0.8, where σ̄2

n is the average variance of all vni’s. For the

estimation of model (12), the IV matrix Qn = [Xn,W1nX
∗
n,W2nX

∗
n,W

2
1nX

∗
n,W

2
2nX

∗
n], where X∗n is a submatrix

of Xn that excludes the intercept term so that Qn only contains one intercept. In the homoskedastic case, we

use the moment vector 1
n [V ′nVn − nσ2

0 , V
′
nW1nVn, V

′
nW2nVn, V

′
nW

2
1nVn − σ2

0 tr(W 2
1n), V ′nW

2
2nVn − σ2

0 tr(W 2
2n), V ′nQn]′;

26To illustrate the performance of GEL estimation and tests for high order SARAR models, we report results for models with two

spatial lags of the dependent variable or disturbances. Some Monte Carlo results for the SARAR(1,1) model are reported in the

supplementary file.
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in the heteroskedastic case, we use the moment vector 1
n [V ′nW1nVn, V

′
nW2nVn, V

′
n(W 2

1n − diag(W 2
1n))Vn, V

′
n(W 2

2n −

diag(W 2
2n))Vn, V

′
nQn]′. The number of Monte Carlo repetitions for each case is 1, 000.

Table 1 reports biases, standard errors, and root mean square errors (RMSE) of the GMM, EL and ET estimators

in the homoskedastic case.27 The GMM estimator is a FOGMM estimator where in the first step the identity matrix

is used as the weighting matrix to derive a consistent estimator θ̃n and in the second step Ωn(θ̃n) is used as the

weighting matrix. Overall, the three estimators all have relatively small biases. The biases of the EL and ET

estimators for β2, β3 and σ2 are generally smaller than those of the GMM estimators, and the biases for other

parameters are slightly larger. In particular, for σ2, the bias of the GMM estimator is significantly larger than that

of the ET estimator, while the latter is larger than that of the EL estimator. For the comparison of the EL and ET,

except for the variance parameter σ2, they have similar biases in most cases and neither the EL nor the ET would

dominate each other. In terms of standard errors, the three estimators have similar performance. Since standard

errors of estimates dominate biases for parameters other than σ2, the RMSEs display an order in magnitude similar

to that of standard errors. For σ2, the EL estimator has the smallest RMSE, and the ET estimator has a smaller

RMSE than that of the GMM estimator. As the sample size increases from 144 to 400, biases generally decrease,

and standard errors decrease approximately at the theoretical rate.

[Table 1 about here.]

Table 2 shows summary statistics of the estimators in the heteroskedastic case. While all biases are small, the

bias of the GMM estimator for κ1 with a small R2 is larger than those of the EL and ET, and it is slightly smaller

in other cases. The GMM estimator has slightly smaller standard errors than the EL and ET estimators and thus

smaller RMSEs. The EL estimator is observed to have larger biases, standard errors and RMSEs than those of the

ET estimator.

[Table 2 about here.]

To further compare the performance of estimators, Table 3 reports coverage probabilities (CP) of 95% confidence

intervals for model parameters. In the homoskedastic case, for n = 144, the GMM CPs are below 95%, and those

for σ2 are much smaller than 95%; the EL and ET CPs are significantly closer to 95% than GMM ones, and those

for σ2 are at least ten percentage points higher than corresponding GMM CPs. The ET CPs are higher than EL

ones except for σ2. With a larger sample size n = 400, the CPs are closer to 95%, but the patterns are similar.

In the heteroskedastic case, the EL and ET CPs are still closer to 95% than GMM ones in general, though the

differences are smaller.

[Table 3 about here.]

27We do not consider the continuous updating GMM estimator because it is often observed to possess multiple modes and thus

generally considered to be less desirable than the EL and ET estimators (Hansen et al., 1996; Imbens et al., 1998).
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5.2 Tests for spatial dependence

For various tests for spatial dependence, the data generating process (DGP) is the following SARAR(0,2) model:

Yn = Xnβ + Un, Un = τ1M1nUn + τ2M2nUn + Vn, (13)

where M1n and M2n are equal to, respectively, W1n and W2n in model (12), and other settings are the same as for

(12). The null hypothesis is τ10 = τ20 = 0. We consider nine tests in the homoskedastic case: “PTgmm”, “PTel” and

“PTet” denote parameter restriction tests implemented with, respectively, the GMM distance difference, EL ratio

and ET ratio based on the moment vector 1
n [V ′nVn − nσ2

0 , V
′
nM1nVn, V

′
nM

2
1nVn − σ2

0 tr(M2
1n), V ′nM2nVn, V

′
nM

2
2nVn −

σ2
0 tr(M2

2n), V ′nQn]′; “OTgmm”, “OTel” and “OTet” denote, respectively, the GMM, EL and ET overidentifica-

tion tests based on the moment vector 1
n [V ′nM1nVn, V

′
nM2nVn, V

′
nXn]′; “Moran” denotes Moran’s I test with a

robust variance estimator, and “Moranel” and “Moranet” denote, respectively, EL and ET Moran’s I tests. The

three Moran’s I tests are based on the moment vector 1
n [V ′nM1nVn, V

′
nM2nVn]′, and OLS residuals are used to

formulate test statistics. In the heteroskedastic case, the above tests are also considered, among which param-

eter restriction tests are based on the moment vector 1
n [V ′nM1nVn, V

′
n(M2

1n − diag(M2
1n))Vn, V

′
nM2nVn, V

′
n(M2

2n −

diag(M2
2n))Vn, V

′
nQn]′ which is robust to unknown heteroskedasticity. In addition, we consider two tests which

do not take into account unknown heteroskedasticity: the GMM parameter restriction test “PT∗gmm” based on

the moment vector 1
n [V ′nVn−nσ2

0 , V
′
nM1nVn, V

′
nM

2
1nVn−σ2

0 tr(M2
1n), V ′nM2nVn, V

′
nM

2
2nVn−σ2

0 tr(M2
2n), V ′nQn]′, and

Moran’s I test “Moran∗” based on the moment vector 1
n [V ′nM1nVn, V

′
nM2nVn]′, for which the involved variance is

computed using its analytical form as if the disturbances were homoskedastic.

Table 4 presents empirical sizes for a nominal size of 5%. In the homoskedastic case, PTel and PTet have

relatively large sizes for small sample cases and have improved sizes for larger sample sizes. Other tests have

relatively small size distortions. In the heteroskedastic case, size distortions are larger. As expected, PT∗gmm and

Moran∗ have large size distortions and the distortions do not improve with larger sample sizes. Powers of these

tests except for PT∗gmm and Moran∗ are presented in Table 5 and Table 6. Their powers are generally similar. R2

does not have much impact on powers. These tests are powerful in cases with larger τ01 and τ02 and a larger sample

size.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

5.3 Spatial J tests

For spatial J tests, one SARAR(1,1) model

Yn = κWnYn +Xnβ + Un, Un = τMnUn + Vn (14)
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is tested against another one. We set Wn = Mn. The null and alternative models only differ in Wn; specifically, the

circular world matrix and the one based on the queen criterion are tested against each other. To estimate the null

and alternative models, we use moment vectors similar to those for model (12). To estimate the augmented model

(11), if Ŷn = S−1
n (κ̂n)Xnβ̂n is used as the augmented explanatory variable, Ŷn is added to the IV matrix in the

above moment vectors; on the other hand, if Ŷn = κ̂nWnyn +Xnβ̂n is the augmented explanatory variable, WnX
∗
n

is added to the IV matrix.

Tables 7 and 8 report empirical sizes and powers of spatial J tests for the SARAR model (14). “GMM1” denotes

the spatial J test implemented with the GMM distance difference test using the predictor Ŷn = κ̂nWnYn + Xnβ̂n,

and “GMM2” uses Ŷn = S−1
n (κ̂n)Xnβ̂n. Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET1”

and “ET2”. The EL1, EL2, ET1 and ET2 have relatively larger size distortions for a small sample size, but are

reasonably adequate for a larger sample size. Powers of these tests are similar. With larger R2, κ0 and sample

sizes, these tests are more powerful.

[Table 7 about here.]

[Table 8 about here.]

6 Conclusion

By exploiting the martingale structure of linear and quadratic empirical moments of the high order SARAR model,

this paper considers its GEL estimation and tests in both homoskedastic and heteroskedastic cases. We show that

the GEL estimator is consistent and has the same asymptotic normal distribution as the optimal GMM estimator

based on the same moment conditions. But the GEL avoids a first step estimation of the optimal weighting matrix

with a preliminary estimator and can be robust to unknown heteroskedasticity without the computation of possibly

higher order moment parameters of disturbances. The GEL is free from the asymptotic bias of the preliminary

estimator and partially removes the bias due to the correlation between the moment conditions and their Jacobian.

The EL further partially removes the bias from estimating the second moment matrix. We also investigate the GEL

overidentification test, Moran’s I test, and GEL ratio tests for parameter restrictions and non-nested hypotheses.

These tests do not involve estimation of variances and higher order moment parameters, and can be robust to

unknown heteroskedasticity. Our Monte Carlo results show that GEL estimators and tests perform well compared

with GMM estimators and tests when the latter GMM estimates and tests take into account properly their variances

and/or moment parameters of disturbances. The GMM tests are not robust while GEL tests are much better at

dealing with the extra complexity of spatial models.

In a future research, it is of interest to investigate various optimality properties of EL tests for the SARAR

model as in Kitamura (2001) and Otsu (2010), and their Bartlett correctability. The latter is expected by Mykland
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(1995). However, Bartlett correctability is based on Edgeworth expansions, for which it is not known how to show

general pointwise results on martingales.28
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Appendix A Proofs

Proof of Theorem 3.1. By the reduced form of Yn, Vn(θ) is linear in Vn and quadratic in θ. Then each element of

gn(θ) can be expanded as a linear-quadratic form of Vn and is a polynomial of θ. By Lemma 2(i), supθ∈Θ‖gn(θ)−

E[gn(θ)]‖ p−→ 0. By Lemma 12, gn(θ̂n,gel) = Op(n
−1/2). Let ḡn(θ) = E[gn(θ)], then ‖ḡn(θ̂n,gel)‖ = ‖ḡn(θ̂n,gel) −

gn(θ̂n,gel) + gn(θ̂n,gel)‖ ≤ ‖ḡn(θ̂n,gel)− gn(θ̂n,gel)‖+ ‖gn(θ̂n,gel)‖ = op(1). Since limn→∞ ḡn(θ) is uniquely zero at

θ0, ‖ḡn(θ)‖ must be bounded away from zero outside of any neighborhood of θ0. Therefore θ̂n,gel must be inside

any neighborhood of θ0 with probability approaching one (w.p.a.1), i.e., θ̂n,gel
p−→ θ0. As gn(θ̂n,gel) = Op(n

−1/2),

Lemma 11 holds for θ̄n = θ̂n,gel. Hence, λ̂n,gel = arg maxλ∈Λn(θ̂n,gel)
1
n

∑n
i=1 ρ(λ′gni(θ̂n,gel)) exists w.p.a.1, and

λ̂n,gel = Op(n
−1/2).

Proof of Theorem 3.2. By Theorem 3.1, λ̂n,gel = Op(n
−1/2). Then by Lemma 10, max1≤i≤n|λ̂′n,gelgni(θ̂n,gel)|

p−→ 0.

Hence, the first order condition
n∑
i=1

ρ1(λ̂′n,gelgni(θ̂n,gel))gni(θ̂n,gel) = 0

is satisfied w.p.a.1. By the implicit function theorem, there is a neighborhood of θ̂n,gel where the solution λ(θ) to∑n
i=1 ρ1(λ′gni(θ))gni(θ) = 0 exists and is continuously differentiable. Then by the envelope theorem, the first order

conditions for the GEL are

n∑
i=1

ρ1(λ̂′n,gelgni(θ̂n,gel))G
′
ni(θ̂n,gel)λ̂n,gel = 0 and

n∑
i=1

ρ1(λ̂′n,gelgni(θ̂n,gel))gni(θ̂n,gel) = 0.

Applying the mean value theorem to these first order conditions, we have

0 =

(
0

− 1
n

∑n
i=1 gni(θ0)

)
+ ∆n(γ̂n,gel − γ0),

28For SAR models, a “smoothed” (instead of pointwise) asymptotic expansion based on martingales in Mykland (1993) is shown in

Jin and Lee (2015).

20



where

∆n =
1

n

n∑
i=1

ρ2(λ̄′ngni(θ̄n))G′ni(θ̄n)λ̄nλ̄
′
nGni(θ̄n) + ρ1(λ̄′ngni(θ̄n))[G

(1)′

ni (θ̄n)λ̄n, . . . , G
(kθ)

′

ni (θ̄n)λ̄n] ∗

ρ2(λ̄′ngni(θ̄n))gni(θ̄n)λ̄′nGni(θ̄n) + ρ1(λ̄′ngni(θ̄n))Gni(θ̄n) ρ2(λ̄′ngni(θ̄n))gni(θ̄n)g′ni(θ̄n)


and (θ̄′n, λ̄

′
n)′ is between γ̂n,gel and γ0 elementwise. As max1≤i≤n|λ̂′n,gelgni(θ̂n,gel)|

p−→ 0, by the twice continuous

differentiability of ρ(v), max1≤i≤n |ρl(λ̄′ngni(θ̄n)) + 1| = op(1) for l = 1 and 2. Then by Lemma 5 and the mean

value theorem,

1

n

n∑
i=1

ρ1(λ̄′ngni(θ̄n))Gni(θ̄n) =
1

n

n∑
i=1

[ρ1(λ̄′ngni(θ̄n)) + 1]Gni(θ̄n)− 1

n

n∑
i=1

Gni(θ0)− 1

n

n∑
i=1

kθ∑
l=1

G
(l)
ni (θ̌n)(θ̄nl − θ0l)

= −Ḡn + op(1),

where θ̌n lies between θ̄n and θ0. Similarly, by Lemmas 6 and 7, 1
n

∑n
i=1 ρ2(λ̄′ngni(θ̄n))gni(θ̄n)g′ni(θ̄n) = −Ω̄n+op(1),

1
n

∑n
i=1 ρ2(λ̄′ngni(θ̄n))G′ni(θ̄n)λ̄nλ̄

′
nGni(θ̄n) = op(1), 1

n

∑n
i=1 ρ1(λ̄′ngni(θ̄n))[G

(1)′

ni (θ̄n)λ̄n, . . . , G
(kθ)′

ni (θ̄n)λ̄n] = op(1),

and 1
n

∑n
i=1 ρ2(λ̄′ngni(θ̄n))gni(θ̄n)λ̄′nGni(θ̄n) = op(1). Thus, ∆n = −K̄n + op(1), where K̄n =

 0 Ḡ′n

Ḡn Ω̄n

. Hence,

√
n(γ̂n,gel − γ0) = −K̄−1

n

(
0

1√
n

∑n
i=1 gni(θ0)

)
+ op(1).

Since K̄−1
n =

−Σ̄n H̄n

H̄ ′n D̄n

,

√
n(γ̂n,gel − γ0) = −

(
H̄n

D̄n

)
1√
n

n∑
i=1

gni(θ0) + op(1). (15)

Then the asymptotic distribution of
√
n(γ̂n,gel − γ0) follows by the central limit theorem in Kelejian and Prucha

(2001, Theorem 1).

Proof of Theorem 3.3. Since λ̂n,gmm = −Ω−1
n (θ̃n)gn(θ̂n,gmm) = Op(n

−1/2), by Lemma 9, the first order condition (9)

can be written as

0 = −
(

G′n(θ̂n,gmm)λ̂n,gmm

gn(θ̂n,gmm) + (Ω̄n + n−1/2ξΩ
n )λ̂n,gmm

)
+Op(n

−3/2). (16)

By a second order Taylor expansion and Lemma 5,

0 = −
(

0

gn(θ0)

)
−KΩ

n (θ0)(γ̂n,gmm − γ0)− 1

2

kθ+kg∑
j=1

(γ̂nj,gmm − γ0j)Knj(γ̂n,gmm − γ0) +Op(n
−3/2),

where KΩ
n (θ) =

[G
(1)′

n (θ)λ, . . . , G
(kθ)′

n (θ)λ] G′n(θ)

Gn(θ) Ω̄n + n−1/2ξΩ
n

, Knj =

 0 G
(j)′

n (θ0)

G
(j)
n (θ0) 0

 for 1 ≤ j ≤ kθ, and

Knj =

[G
(1)′

n (θ0)ekg,j−kθ , . . . , G
(kθ)′

n (θ0)ekg,j−kθ ] 0

0 0

 for kθ + 1 ≤ j ≤ kθ + kg. Let K̄n =

 0 Ḡ′n

Ḡn Ω̄n

. Then,

√
n(γ̂n,gmm − γ0) = −K̄−1

n

(
0√

ngn(θ0)

)
− K̄−1

n [KΩ
n (θ0)− K̄n]

√
n(γ̂n,gmm − γ0)

−
√
n

2

kθ+kg∑
j=1

K̄−1
n Knj(γ̂n,gmm − γ0)(γ̂nj,gmm − γ0j) +Op(n

−1).

(17)
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By (17), we have
√
n(γ̂n,gmm − γ0) = ξn +Op(n

−1/2), (18)

where ξn = −K̄−1
n

(
0√

ngn(θ0)

)
= Op(1). Substituting (18) into the second and third terms of (17) yields

√
n(γ̂n,gmm−

γ0) = ξn + n−1/2ψn +Op(n
−1), where

ψn = −K̄−1
n

 0
√
n(G′n − Ḡ′n)

√
n(Gn − Ḡn) ξΩ

n

 ξn −
1

2

kθ+kg∑
j=1

K̄−1
n K̄njξnξnj = Op(1), (19)

with K̄nj =

 0 Ḡ
(j)′

n

Ḡ
(j)
n 0

 for 1 ≤ j ≤ kθ, and K̄nj =

[Ḡ
(1)′

n ekg,j−kθ , . . . , Ḡ
(kθ)′

n ekg,j−kθ ] 0

0 0

 for kθ + 1 ≤ j ≤

kθ + kg.

Proof of Theorem 3.4. Let vni(γ) = λ′gni(θ), hni(γ) = ∂vni(γ)
∂γ =

(G′ni(θ)λ
gni(θ)

)
, and mni(γ) = ρ1(vni(γ))hni(γ). Then

the first order condition of the GEL estimator is:

1

n

n∑
i=1

mni(γ̂n,gel) = 0. (20)

Expressions for derivatives of hni(γ) and mni(γ) are provided in the supplementary file. By a second order Taylor

expansion of (20),

0 =
1

n

n∑
i=1

mni(γ0) +
1

n

n∑
i=1

∂mni(γ0)

∂γ′
(γ̂n,gel − γ0) +

1

2n

n∑
i=1

kθ+kg∑
j=1

(γ̂nj,gel − γ0j)
∂2mni(γ0)

∂γj∂γ′
(γ̂n,gel − γ0)

+Op(‖γ̂n,gel − γ0‖3),

where the order of the remainder is derived by using the Liptchitz hypothesis of ρ(v) and Lemma 5. Hence,

√
n(γ̂n,gel − γ0)

= −
[ 1

n

n∑
i=1

E
(∂mni(γ0)

∂γ′
)]−1{ 1√

n

n∑
i=1

mni(γ0) +
1√
n

[ n∑
i=1

∂mni(γ0)

∂γ′
− E

( n∑
i=1

∂mni(γ0)

∂γ′
)]

(γ̂n,gel − γ0)

+
1

2
√
n

n∑
i=1

kθ+kg∑
j=1

(γ̂nj,gel − γ0j)
∂2mni(γ0)

∂γj∂γ′
(γ̂n,gel − γ0)

}
+Op(

√
n‖γ̂n,gel − γ0‖3).

(21)

Thus,
√
n(γ̂n,gel − γ0) = ξn +Op(n

−1/2), (22)

where ξn = −[ 1
n

∑n
i=1 E(∂mni(γ0)

∂γ′ )]−1 1√
n

∑n
i=1mni(γ0) = −K̄−1

n

(
0√

ngn(θ0)

)
= −

(
H̄n
D̄n

)√
ngn(θ0). Substituting (22)

22



into the second and third terms of (21) yields
√
n(γ̂n,gel − γ0) = ξn + n−1/2ψn +Op(n

−1), where

ψn = −
[ 1

n

n∑
i=1

E
(∂mni(γ0)

∂γ′
)]−1{ 1√

n

[ n∑
i=1

∂mni(γ0)

∂γ′
− E

( n∑
i=1

∂mni(γ0)

∂γ′
)]
ξn +

1

2n

n∑
i=1

kθ+kg∑
j=1

ξnj
[
E
(∂2mni(γ0)

∂γj∂γ′

)]
ξn
}

= −
√
nK̄−1

n

 0 G′n − Ḡ′n

Gn − Ḡn Ωn − Ω̄n

 ξn +
1

2n
K̄−1
n

n∑
i=1

kθ+kg∑
j=1

ξnj
[
E
(∂2mni(γ0)

∂γj∂γ′

)]
ξn

= −
√
nK̄−1

n

 0 G′n − Ḡ′n

Gn − Ḡn Ωn − Ω̄n

 ξn −
1

2n
K̄−1
n

n∑
i=1

kθ∑
j=1

ξnj E

 0 G
(j)′

ni

G
(j)
ni g

(j)
ni g

′
ni + gnig

(j)′

ni

 ξn

− 1

2n
K̄−1
n

n∑
i=1

kg∑
s=1

ξn,kθ+s E

[G
(1)′

ni ekg,s, . . . , G
(kθ)

′

ni ekg,s] G′niekg,sg
′
ni + gnisG

′
ni

gnie
′
kg,sGni + gnisGni −ρ3gnisgnig′ni

 ξn

(23)

with gnis being the sth element of gni.

Proof of Theorem 3.5. Note that ξn = −
(
H̄n
D̄n

)√
ngn(θ0) and E(ξnξ

′
n) = diag(Σ̄n, D̄n). Then by Theorem 3.3, with

ψn in (19),

1

n
E(ψn) = K̄−1

n E

[ 0 G′n

Gn n−1/2ξΩ
n

(H̄n

D̄n

)
gn

]
− 1

2n

kθ∑
j=1

K̄−1
n

 0 Ḡ
(j)′

n

Ḡ
(j)
n 0

 diag(Σ̄n, D̄n)ekθ+kg,j

− 1

2n

kθ+kg∑
j=kθ+1

K̄−1
n

[Ḡ
(1)′

n ekg,j−kθ , . . . , Ḡ
(kθ)′

n ekg,j−kθ ] 0

0 0

 diag(Σ̄n, D̄n)ekθ+kg,j

= K̄−1
n

(
E(G′nD̄ngn)

E(GnH̄ngn + n−1/2ξΩ
n D̄ngn)− 1

2n

∑kθ
j=1 Ḡ

(j)
n Σ̄nekθ,j

)
.

Since ξΩ
n =

√
n(Ωn − Ω̄n) +

∑kθ
j=1

1
n

∑n
i=1[E(gnig

(j)′

ni + g
(j)
ni g

′
ni)]ξ̃nj by Lemma 9, where ξ̃n = −

(H̄Jn
D̄Jn

)√
ngn(θ0)

by Lemma 8, E(n−1/2ξΩ
n D̄ngn) = E(ΩnD̄ngn) −

∑kθ
j=1

1
n2

∑n
i=1[E(gnig

(j)′

ni + g
(j)
ni g

′
ni)]D̄nΩ̄nH̄

J′

n ekθ,j . Since K̄−1
n =−Σ̄n H̄n

H̄ ′n D̄n

 and D̄nΩ̄nH̄
J′

n = H̄J′

n − H̄ ′n, the leading bias of the GMM estimator θ̂n is the first kθ components of

1
n E(ψn), which is

− Σ̄n E(G′nD̄ngn) + H̄n E(GnH̄ngn) + H̄n E(ΩnD̄ngn)

−
kθ∑
j=1

1

n2

n∑
i=1

H̄n[E(gnig
(j)′

ni + g
(j)
ni g

′
ni)](H̄

J
n − H̄n)′ekθ,j −

1

2n

kθ∑
j=1

H̄nḠ
(j)
n Σ̄nekθ,j .

Proof of Theorem 3.6. As in the proof of Theorem 3.5, E(ξnξ
′
n) = diag(Σ̄n, D̄n). Then by Theorem 3.4, with ψn in

(23),

1

n
E(ψn) = K̄−1

n E

[ 0 G′n − Ḡ′n
Gn − Ḡn Ωn − Ω̄n

(H̄n

D̄n

)
gn(θ0)

]

− 1

2n
K̄−1
n

kθ∑
j=1

1

n

n∑
i=1

 0 G
(j)′

ni

G
(j)
ni g

(j)
ni g

′
ni + gnig

(j)′

ni

 diag(Σ̄n, D̄n)ekθ+kg,j

− 1

2n
K̄−1
n

kg∑
s=1

n∑
i=1

[G
(1)′

ni ekg,s, . . . , G
(kθ)′

ni ekg,s] G′niekg,sg
′
ni + gnisG

′
ni

gnie
′
kg,s

Gni + gnisGni −ρ3gnisgnig
′
ni

 diag(Σ̄n, D̄n)ekθ+kg,kθ+s

23



= K̄−1
n

(
E(G′nD̄ngn)

E(GnH̄ngn) + E(ΩnD̄ngn)

)
− 1

2n
K̄−1
n

kθ∑
j=1

1

n

n∑
i=1

(
0

Ḡ
(j)
ni Σ̄nekθ,j

)

− 1

2n
K̄−1
n

kg∑
s=1

1

n

n∑
i=1

(
E(G′niekg,sg

′
ni + gnisG

′
ni)D̄nekg,s

−ρ3 E(gnisgnig′ni)D̄nekg,s

)
.

The leading bias of the GEL estimator θ̂n,gel is the first kθ elements of E(ψn), and, as K̄−1
n =

−Σ̄n H̄n

H̄ ′n D̄n

, it is

− Σ̄n E(G′nD̄ngn) +
1

2n

kg∑
s=1

1

n

n∑
i=1

Σ̄n E(G′niekg,sg
′
ni + gnisG

′
ni)D̄nekg,s + H̄n E(GnH̄ngn) + H̄n E(ΩnD̄ngn)

− 1

2n

kθ∑
j=1

1

n

n∑
i=1

H̄nḠ
(j)
ni Σ̄nekθ,j +

1

2n
ρ3

kg∑
s=1

1

n

n∑
i=1

H̄n E(gnisgnig
′
ni)D̄nekg,s.

Note that
∑kg
s=1 E(G′niekg,sg

′
ni)D̄nekg,s =

∑kg
s=1 E(G′niekg,se

′
kg,s

D̄ngni) = E(G′niD̄ngni),

kg∑
s=1

E(gnisG
′
ni)D̄nekg,s =

kg∑
s=1

E(G′niD̄ngnisekg,s) = E(G′niD̄ngni),

and
∑kg
s=1 E(gnisgnig

′
ni)D̄nekg,s =

∑kg
s=1 E(gnig

′
niD̄nekg,sgnis) = E(gnig

′
niD̄ngni). Thus, the bias is

− Σ̄n E(G′nD̄ngn) +
1

n2
Σ̄n

n∑
i=1

E(G′niD̄ngni) + H̄n E(GnH̄ngn) + H̄n E(ΩnD̄ngn)− 1

2n

kθ∑
j=1

H̄nḠ
(j)
n Σ̄nekθ,j

+
ρ3

2n2

n∑
i=1

H̄n E(gnig
′
niD̄ngni).

Proof of Theorem 4.1. The unconstrained GEL estimator λ̂n is a maximizer, so 1
n

∑n
i=1 ρ1(λ̂′ngni(θ̂n))gni(θ̂n) = 0.

As ρ(0) = 1
n

∑n
i=1 ρ(0·gni(θ̂n)), by a first order Taylor expansion of 1

n

∑n
i=1 ρ(0·gni(θ̂n)) at λ̂n, and using ρ2(0) = −1,

Lemma 5 and (15) successively, we have

−2n
[
ρ(0)− 1

n

n∑
i=1

ρ(λ̂′ngni(θ̂n))
]

= −
n∑
i=1

ρ2(λ̌′ngni(θ̂n))λ̂′ngni(θ̂n)g′ni(θ̂n)λ̂n

=

n∑
i=1

λ̂′ngni(θ̂n)g′ni(θ̂n)λ̂n + op(1)

= nλ̂′nΩ̄nλ̂n + op(1)

= [Ω̄−1/2
n

√
ngn(θ0)]′Ω̄1/2

n D̄nΩ̄1/2
n [Ω̄−1/2

n

√
ngn(θ0)] + op(1),

(24)

where λ̌n lies between 0 and λ̂n, because
√
nλ̂n = −D̄n

1√
n

∑n
i=1 gni(θ0) + op(1) and D̄nΩ̄nD̄

′
n = D̄n.

For the restricted GEL estimators θ̇n and λ̇n, the results in Theorem 3.1 hold under the null by similar arguments.

In particular, θ̇n = θ0 + op(1), and λ̇n = Op(n
−1/2). With these results, as in the proof of Theorem 3.2, we can

apply the mean value theorem to the first order conditions of the restricted GEL estimation

n∑
i=1

ρ1(λ̇′ngni(θ̇n))
∂g′ni(θ̇n)

∂φ
λ̇n = 0 and

n∑
i=1

ρ1(λ̇′ngni(θ̇n))gni(θ̇n) = 0

to obtain
√
n(δ̇n − δ0) = −

(
H̄nφ

D̄nφ

)
1√
n

n∑
i=1

gni(θ0) + op(1).

24



where δ̇n = (φ̇′n, λ̇
′
n)′, Ḡnφ = E(∂gn(θ0)

∂φ′ ), Σ̄nφ = (Ḡ′nφΩ̄−1
n Ḡnφ)−1, H̄nφ = Σ̄nφḠ

′
nφΩ̄−1

n , and D̄nφ = Ω̄−1
n −

Ω̄−1
n ḠnφΣ̄nφḠ

′
nφΩ̄−1

n . Then we can obtain the following expression analogous to (24) above:

− 2n
[
ρ(0)− 1

n

n∑
i=1

ρ(λ̇′ngni(θ̇n))
]

= [Ω̄−1/2
n

√
ngn(θ0)]′Ω̄1/2

n D̄nφΩ̄1/2
n [Ω̄−1/2

n

√
ngn(θ0)] + op(1). (25)

Combining (24) and (25) yields

2
[ n∑
i=1

ρ(λ̇′ngni(θ̇n))−
n∑
i=1

ρ(λ̂′ngni(θ̂n))
]

= [Ω̄−1/2
n

√
ngn(θ0)]′Ω̄1/2

n (D̄nφ − D̄n)Ω̄1/2
n [Ω̄−1/2

n

√
ngn(θ0)] + op(1). (26)

Since Ḡnφ is a submatrix of Ḡn and plimn→∞ Ḡn has full rank,

Ω̄1/2
n (D̄nφ − D̄n)Ω̄1/2

n = Ω̄−1/2
n Ḡn(Ḡ′nΩ̄−1

n Ḡn)−1Ḡ′nΩ̄−1/2
n − Ω̄−1/2

n Ḡnφ(Ḡ′nφΩ̄−1
n Ḡnφ)−1Ḡ′nφΩ̄−1/2

n

= MnΩ̄−1/2
n Ḡnα(Ḡ′nαΩ̄−1/2

n MnΩ̄−1/2
n Ḡnα)−1Ḡ′nαΩ̄−1/2

n Mn

is a projection matrix with rank kα, where Mn = Ikg − Ω̄
−1/2
n Ḡnφ(Ḡ′nφΩ̄−1

n Ḡnφ)−1Ḡ′nφΩ̄
−1/2
n (Ruud, 2000, p. 60,

(3.13)). Hence the theorem follows.

Proof of Theorem 4.2. With the Pitman drift in the theorem, we still have the consistency that θ̂n = θ0 +op(1) and

θ̇n = θ0 + op(1). This is because Vn(θ) is quadratic in θ and linear in Vn by the reduced form of Yn, which implies

that gn(θ) can be expanded as a polynomial of θn = (α′n, φ0)′. Then under the Pitman drift, Lemmas 3–7 and 10–12

all hold by similar arguments. Hence, as in the proof of Theorem 4.1, we have (26). By the mean value theorem,
√
ngn(θ0) =

√
ngn(θn)+ ∂gn(θ̌n)

∂α′
√
n(α0−αn) =

√
ngn(θn)− Ḡnαdα+op(1), where θ̌n lies between θ0 and θn elemen-

twise. Under the Pitman drift,
√
ngn(θn) = 1√

n
[V ′nP1nVn − E(V ′nP1nVn), . . . , V ′nPkpnVn − E(V ′nPkpnVn), V ′nQn]′

d−→

N(0, limn→∞ Ω̄n). Since D̄nḠnα = 0 and (Ḡnαdα)′(D̄nφ− D̄n)Ḡnαdα = (Ḡnαdα)′D̄nφḠnαdα, the theorem holds by

(26).

Proof of Theorem 4.3. The asymptotic distribution follows by (24) in the proof of Theorem 4.1. Because Ω̄
1/2
n D̄nΩ̄

1/2
n

is a projection matrix with rank (kg − kθ) and Ω̄
−1/2
n
√
ngn(θ0) is asymptotically standard multivariate normal,

−2n[ρ(0)− 1
n

∑n
i=1 ρ(λ̂′ngni(θ̂n))]

d−→ χ2(kg − kθ).

Proof of Theorem 4.4. Explicitly, 1
n V̂
′
nMjnV̂n = 1

nV
′
nMjnVn − 1

nV
′
n(Mjn + M ′jn)PnVn + 1

nV
′
nPnMjnPnVn, where

Pn = Xn(X ′nXn)−1X ′n. Note that 1
nV
′
n(Mjn+M ′jn)PnVn = 1

n
√
n
V ′n(Mjn+M ′jn)Xn( 1

nX
′
nXn)−1 1√

n
X ′nVn = Op(n

−1).

Similarly, 1
nV
′
nPnMjnPnVn = Op(n

−1). As 1
nV
′
nMjnVn has mean zero under both homoskedasticity and unknown

heteroskedasticity, 1
n V̂
′
nMjnV̂n = 1

nV
′
nMjnVn + Op(n

−1) = Op(n
−1/2). It follows that ĝn = gn + Op(n

−1) =

Op(n
−1/2). Then by Lemma 11, λ̂n = arg maxλ∈Λ̂n

∑n
i=1 ρ(λ′ĝni) exists w.p.a.1, and its first order condition

is
∑n
i=1 ρ1(λ̂′nĝni)ĝni = 0. Applying the mean value theorem to this first order condition at λ = 0, we have

0 =
∑n
i=1 ρ1(0)ĝni +

∑n
i=1 ρ2(λ̌′nĝni)ĝniĝ

′
niλ̂n, where λ̌n lies between 0 and λ̂n elementwise. Then, because

√
nĝn =

√
ngn +Op(n

−1/2),

√
nλ̂n =

[ 1

n

n∑
i=1

ρ2(λ̌′nĝni)ĝniĝ
′
ni

]−1 1√
n

n∑
i=1

ĝni = −
[ 1

n

n∑
i=1

E(gnig
′
ni)
]−1 1√

n

n∑
i=1

gni + op(1)

d−→ N
(

0, lim
n→∞

[ 1

n

n∑
i=1

E(gnig
′
ni)
]−1)

,
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where the second equality holds because 1
n

∑n
i=1 ρ2(λ̌′nĝni)ĝniĝ

′
ni = − 1

n

∑n
i=1 ĝniĝ

′
ni + op(1) as in the proof of

Theorem 3.2 and 1
n

∑n
i=1 ĝniĝ

′
ni = 1

n

∑n
i=1 E(gnig

′
ni) + op(1) by Lemma 3. Because ρ(0) = 1

n

∑n
i=1 ρ(0 · ĝni),

by a first order Taylor expansion of 1
n

∑n
i=1 ρ(0 · ĝni) at λ̂n and using the first order condition of λ̂n, ρ(0) =

1
n

∑n
i=1 ρ(λ̂′nĝni) + 1

2n

∑n
i=1 ρ2(λ̌′nĝni)λ̂

′
nĝniĝ

′
niλ̂n, where λ̌n lies between 0 and λ̂n. Hence,

2n
[ 1

n

n∑
i=1

ρ(λ̂′nĝni)−ρ(0)
]

= −(
√
nλ̂n)′

1

n

n∑
i=1

ρ2(λ̌′nĝni)ĝniĝ
′
ni

√
nλ̂n = (

√
nλ̂n)′

1

n

n∑
i=1

E(gnig
′
ni)
√
nλ̂n+op(1)

d−→ χ2(q).

(27)

Proof of Theorem 4.5. Let θ = (τ ′, β′)′, θ0 = (0, β′0)′, θn = (n−1/2d′τ , β
′
0)′, θ̂n = (0, β̂′n)′, and Vn(θ) = Rn(τ)(Yn −

Xnβ), where β̂n = (X ′nXn)−1X ′nYn is the OLS estimate. Then, as in the proof of Theorem 4.4,

√
nλ̂n =

[ 1

n

n∑
i=1

ρ1(λ̌′nĝni)ĝniĝ
′
ni

]−1 1√
n

n∑
i=1

ĝni

= −
[ 1

n

n∑
i=1

E(gnig
′
ni)
]−1 1√

n
[V ′n(θ0)M1nVn(θ0), . . . , V ′n(θ0)MqnVn(θ0)]′ + op(1).

By the mean value theorem,

1√
n
V ′n(θ0)MjnVn(θ0) =

1√
n
V ′n(θn)MjnVn(θn) +

1

n

∂[V ′n(θ̌n)MjnVn(θ̌n)]

∂τ ′
√
n(τ0 − τn),

where θ̌n lies between θ0 and θn. Since 1√
n
V ′n(θn)MjnVn(θn) = 1√

n
V ′nMjnVn, and 1

n
∂[V ′n(θ̌n)MjnVn(θ̌n)]

∂τ ′ = − 1
n E[V ′n(Mjn+

M ′jn)M1nVn, . . . , V
′
n(Mjn +M ′jn)MqnVn] + op(1), the result in the theorem follows by the expansion in (27).

Proof of Theorem 4.6. By the mean value theorem and Lemma 5,

√
ngn(θ̂n) =

√
ng1n(θ0)− ∂g1n(θ̂n)

∂φ′
(∂g2n(θ̂n)

∂φ′
)−1√

ng2n(θ0)

+
∂g1n(θ̌n)

∂φ′
√
n(φ̂n − φ0)− ∂g1n(θ̂n)

∂φ′
(∂g2n(θ̂n)

∂φ′
)−1 ∂g2n(θ̌n)

∂φ′
√
n(φ̂n − φ0)

=
√
ng1n(θ0)− ∂g1n(θ0)

∂φ′
(∂g2n(θ0)

∂φ′
)−1√

ng2n(θ0) + op(1),

where θ̌n lies between θ̂n and θ0 elementwise. Thus
√
ngn(θ̂n) has the same asymptotic distribution as

√
ngn(θ0).

The rest of the proof is similar to that for Theorem 4.4.

Proof of Theorem 4.7. We only prove the consistency of ϑ̂n, as the rest of the proof is similar to that of Theorem 4.1

on tests of parameter restrictions.

If Ŷn = S−1
n (κ̂n)Xnβ̂n, let Y ∗n = S−1

n (κ∗n)Xnβ∗n; if Ŷn =
∑p1
j=1 κ̂jnWjnYn+Xnβ̂n, let Y ∗n =

∑p1
j=1 κ

∗
jnWjnS

−1
n Xnβ0+

Xnβ∗n +
∑p1
j=1 κ

∗
jnWjnS

−1
n R−1

n Vn. Y ∗n is the leading order term of Ŷn. Then we have the following results: (i)

1
nC
′
n(Ŷn−Y ∗n ) = op(1), (ii) 1

nV
′
nAn(Ŷn−Y ∗n ) = op(1), and (iii) 1

n (Ŷn−Y ∗n )′An(Ŷn−Y ∗n ) = op(1), where Cn is an n×1

vector of uniformly bounded constants and An is an n×n nonstochastic matrix which is bounded in both row and col-

umn sum norms. If Ŷn = S−1
n (κ̂n)Xnβ̂n, by the mean value theorem, Ŷn−Y ∗n =

∑p1
j=1 S−1

n (κ̌n)WjnS−1
n (κ̌n)Xnβ̌n(κ̂jn−

κ∗jn) + S−1
n (κ̌n)Xn(β̂n − β∗n), where θ̌n lies between θ̂n and θ∗n elementwise. Since ‖S−1

n (κ)WjnS−1
n (κ)Xn‖∞
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and ‖S−1
n (κ)Xn‖∞ are Op(1) uniformly in κ of a neighborhood of κ∗n under Assumption 12(ii), ‖Ŷn − Y ∗n ‖∞ =

op(1). Then (i)–(iii) hold by the submultiplicity of the row sum norm. If Ŷn =
∑p1
j=1 κ̂jnWjnYn + Xnβ̂n, note

that Ŷn − Y ∗n =
∑p1
j=1(κ̂jn − κ∗jn)WjnS

−1
n Xnβ0 + Xn(β̂n − β∗n) +

∑p1
j=1(κ̂jn − κ∗jn)WjnS

−1
n R−1

n Vn. Substitut-

ing this expression into the terms in (i)–(iii), we can see that the results hold by Lemma 1(iii). In addition,

1
n (Qn − Q∗n)′Cn = op(1) and 1

n (Qn − Q∗n)′AnVn = op(1) by the mean value theorem, where Q∗n is the matrix ob-

tained by replacing S−1
n (κ̂n)Xnβ̂n with S−1

n (κ∗n)Xnβ∗n if Qn includes S−1
n (κ̂n)Xnβ̂n, and Q∗n = Qn otherwise. Thus,

supϑ∈Θ ‖gn(ϑ)−g∗n(ϑ)‖ = op(1) for g∗n(ϑ) defined in Appendix B. By Lemma 2, supϑ∈Θ ‖g∗n(ϑ)−E[g∗n(ϑ)]‖ = op(1).

It follows that supϑ∈Θ ‖gn(ϑ)− E[g∗n(ϑ)]‖ = op(1).

Next we can show that Lemmas 4 and 10–12 hold if gni(θ) and gn(θ) are replaced by, respectively, gni(ϑ) and

gn(ϑ). For Lemma 4, we first show the result when Qn = Q∗n so it is nonstochastic. If Ŷn = S−1
n (κ̂n)Xnβ̂n,

Vn(ϑ) = Vn(θ) − ηRn(τ)Y ∗n − ηRn(τ)(Ŷn − Y ∗n ), where ‖Y ∗n ‖∞ = O(1) and ‖ − ηRn(τ)(Ŷn − Y ∗n )‖∞ ≤ |η| ·

‖Rn(τ)‖∞‖Ŷn − Y ∗n ‖∞ = op(1). Y ∗n behaves like Xn. Then, if gni(θ) in Lemma 4 is replaced by gni(ϑ), we may

modify its proof by taking out any element of −ηRn(τ)(Ŷn−Y ∗n ) when expanding gni(ϑ) and applying Lemma 1(i).

Thus, the lemma still holds. If Ŷn =
∑p1
j=1 κ̂jnWjnYn + Xnβ̂n, then Vn(ϑ) = [Vn(θ) − ηRn(τ)Y ∗n ] −

∑p1
j=1(κ̂jn −

κ∗jn)ηRn(τ)WjnS
−1
n R−1

n Vn − ηRn(τ){
∑p1
j=1(κ̂jn − κ∗jn)WjnS

−1
n Xnβ0 + Xn(β̂n − β∗n)}. Thus elements of gni(ϑ)

can be expanded as polynomials of (κ̂jn − κ∗jn) and (β̂n − β∗n). Applying Lemma 1(i) to the coefficients of these

polynomials implies that Lemma 4 holds if gni(θ) is replaced by gni(ϑ). If Qn 6= Q∗n, then ‖Qn −Q∗n‖∞ = op(1) by

the mean value theorem. Then similar to the above argument for the case with Ŷn = S−1
n (κ̂n)Xnβ̂n, Lemma 4 still

holds if gni(θ) is replaced by gni(ϑ). With Lemma 4, Lemmas 10–12 also hold. By these lemmas, the consistency

of ϑ̂n follows as in the proof of Theorem 3.1.

With the consistency that ϑ̂n = ϑ0 + op(1), similar to the proof of Theorem 3.2, ϑ̂n and the estimated λ can be

shown to be asymptotically normal. Then the asymptotic distribution of the GEL ratio follows as in the proof of

Theorem 4.1.

Appendix B Identification condition for the spatial J test

In this appendix, we provide an identification condition of the augmented model (11) for the spatial J test. The

identification condition is in terms of pseudo-true values for an alternative model while the null model is the DGP. In

general, we expect that parameter estimates for the alternative model would converge to their pseudo true values.

For GS2SLS estimates of the alternative model, relevant studies are in Kelejian (2008) and Kelejian and Piras

(2011). We show the convergence result under regularity conditions if the alternative model is estimated by the

GEL in the second part of this section.

B.1 Identification condition

For the estimator θ̂n of an alternative model while the null model is the DGP, assume that {θ∗n} is a sequence

of nonstochastic pseudo-true values such that θ̂n − θ∗n = op(1). Since Ŷn is a generated regressor, we first give
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its leading order term Y ∗n . If Ŷn = S−1
n (κ̂n)Xnβ̂n, Y ∗n = S−1

n (κ∗n)Xnβ∗n; if Ŷn =
∑p1
j=1 κ̂jnWjnYn + Xnβ̂n, Y ∗n =∑p1

j=1 κ
∗
jnWjnS

−1
n Xnβ0 + Xnβ∗n +

∑p1
j=1 κ

∗
jnWjnS

−1
n R−1

n Vn. The first Ŷn is asymptotically exogenous since Y ∗n is

exogenous, but the second one is not due to the presence of
∑p1
j=1 κ

∗
jnWjnS

−1
n R−1

n Vn in Y ∗n . Since the first Ŷn can

be directly used as an IV, if Qn includes the first Ŷn, we define Q∗n to be the matrix obtained by replacing this Ŷn

by its leading order term S−1
n (κ∗n)Xnβ∗n. If Qn does not include the first Ŷn, define Q∗n = Qn. Let g∗n(ϑ) be the

vector obtained by replacing every Ŷn in gn(ϑ) by Y ∗n and Qn by Q∗n. Then we may prove that gn(ϑ) converges in

probability to limn→∞ E[g∗n(ϑ)] uniformly in ϑ. The identification of ϑ0 requires ϑ0 to be the unique solution to

limn→∞ E[g∗n(ϑ)] = 0. Lower level conditions are provided in the supplementary file.

Assumption 12. (i) θ̂n − θ∗n = op(1); (ii) if Ŷn = S−1
n (κ̂n)Xnβ̂n, {Sn(κ∗n)} are invertible and {S−1

n (κ∗n)} are

bounded in both row and column sum norms; (iii) ϑ0 ∈ int(Θ) is the unique solution to limn→∞ E[g∗n(ϑ)] = 0.

B.2 GEL estimation of the alternative model

For the alternative model (10), let Vn(θ) = Rn(τ )[Sn(κ)Yn−Xnβ], where Rn(τ ) = In−
∑q1
k=1 τkMkn. If elements

of Vn were assumed to be i.i.d., the moment vector can be

gn(θ) =
1

n
[V ′n(θ)P1nVn(θ)− σ2 tr(P1n), . . . ,V ′n(θ)PkpnVn(θ)− σ2 tr(Pkpn),Q′nVn(θ)],

where P1n, . . . , Pkpn are n × n spatial weights matrices and Qn is an n × kq IV matrix. On the other hand, if

elements of Vn were independent but heteroskedastic, the moment vector for consistent estimation would be

gn(θ) =
1

n
[V ′n(θ)P1nVn(θ), . . . ,V ′n(θ)PkpnVn(θ),Q′nVn(θ)],

where Pjn’s now have zero diagonals. With the moment vector gn(θ), define gni(θ) in a way similar to gni(θ) in

Section 2 with the intension to capture the martingale difference property. The GEL estimators are

θ̂n = arg minθ∈Θmaxλ∈Λ

n∑
i=1

ρ(λ′gni(θ)), and λ̂n = arg maxλ∈Λ

n∑
i=1

ρ(λ′gni(θ̂n)),

where Θ and Λ are compact.29 Suppose that there exist pseudo-true values θ∗n ∈ Θ and λ∗n ∈ Λ such that

E
n∑
i=1

ρ(λ∗
′

n gni(θ
∗
n)) = minθ∈Θmaxλ∈Λ E

n∑
i=1

ρ(λ′gni(θ)).

Under regularity conditions, the pseudo-true values would satisfy θ̂n − θ∗n = op(1) and λ̂n − λ∗n = op(1).

Assumption 13. (i) Θ and Λ are compact, and V includes all realizations of λ′gni(θ) for all 1 ≤ i ≤ n, λ ∈

Λ and θ ∈ Θ; (ii) supλ∈Λ,θ∈Θ
1
n |
∑n
i=1 ρ(λ′gni(θ)) − E

∑n
i=1 ρ(λ′gni(θ))| = op(1); (iii) 1

n E
∑n
i=1 ρ(λ′gni(θ))

is uniformly equicontinuous on (Θ,Λ); (iv) for each θ ∈ Θ, the identifiably unique maximizer λ∗n(θ) ∈ Λ of

maxλ∈Λ E
∑n
i=1 ρ(λ′gni(θ)) is equicontinuous in θ;30 (v) E

∑n
i=1 ρ(λ∗

′

n (θ)gni(θ)) has identifiably unique minimizer

θ∗n ∈ Θ.

29For analytical convenience, the parameter space of λ for the alternative model is assumed to be compact, unlike the case of the null

model where the compactness assumption can be avoided by the concavity of ρ(·).
30λ∗n(θ) is identifiably unique if for all ε > 0, lim supn→∞[maxλ∈Bcn(ε)

1
n

E
∑n
i=1 ρ(λ′gni(θ))− 1

n
E
∑n
i=1 ρ(λ∗

′
n (θ)gni(θ))] < 0, where

Bcn(ε) is the complement in Λ of an open ball Bn(ε) centered at λ∗n(θ) with radius ε (White, 1994).
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The above assumption gives high level conditions similar to those in Hong et al. (2003).31 Some conditions

might be relaxed, e.g., the uniform convergence condition in Assumption 13(ii) follows by pointwise convergence

and stochastic equicontinuity, while the latter holds if the first order derivative of ρ(·) is bounded on its domain. If

the null model is the DGP, Assumption 13 provides sufficient conditions for the convergence of the GEL estimates

for the alternative model to their pseudo-true values.

Theorem B.1. Under Assumption 13, θ̂n − θ∗n = op(1) and λ̂n − λ∗n = op(1).

Proof. Let λ̂n(θ) = arg maxλ∈Λ
∑n
i=1 ρ(λ′gni(θ)). Under Assumption 13, as in the proof of Lemma 1 in Hong et al.

(2003), supθ∈Θ ‖λ̂n(θ)−λ∗n(θ)‖ = op(1). Then supθ∈Θ
1
n |E

∑n
i=1 ρ(λ̂′n(θ)gni(θ))−E

∑n
i=1 ρ(λ∗

′

n (θ)gni(θ))| = op(1)

under Assumption 13(iii). By Assumption 13(ii), supθ∈Θ
1
n

∣∣∣∑n
i=1 ρ

(
λ̂′n(θ)gni(θ)

)
− E

∑n
i=1 ρ

(
λ̂′n(θ)gni(θ)

)∣∣∣ =

op(1). Thus, supθ∈Θ
1
n |
∑n
i=1 ρ(λ̂′n(θ)gni(θ)) − E

∑n
i=1 ρ((λ∗

′

n (θ)gni(θ))| = op(1). Hence, θ̂n − θ∗n = op(1) (White,

1994, Theorem 3.4 on p. 28). If follows that λ̂n = λ̂n(θ̂n) = λ∗n(θ̂n) + op(1) = λ∗n(θ∗n) + op(1) = λ∗n + op(1).

Appendix C Lemmas

C.1 General lemmas

The martingale differences generated by linear-quadratic forms can be seen as linear forms. The following lemma

on products of linear forms is useful in deriving relevant orders of products of martingale differences.

Lemma 1. For l = 1, . . . , s, let Dln(θ) = [dln,ij(θ)] be n×n matrices which are bounded in row sum norm uniformly

in θ ∈ Θ, and uln = [uln,i] be n× 1 vectors such that sup1≤l≤s sup1≤j≤n E |uln,j |al = O(1) for al > 1. Then,

(i) supθ∈Θ sup1≤i≤n |
∏s
l=1

∑n
j=1 dln,ij(θ)uln,j | = Op(n

∑s
l=1

1
al );

(ii) supθ∈Θ sup1≤i≤n E(|
∏s
l=1

∑n
j=1 dln,ij(θ)uln,j |

1/
∑s
l=1

1
al ) = O(1) if Dln(θ)’s are nonstochastic;

(iii) 1
n

∑n
i=1

∏s
l=1

∑n
j=1 dln,ij(θ)uln,j = Op(1) if

∑s
l=1

1
al
≤ 1, and supθ∈Θ

1
n |
∑n
i=1

∏s
l=1

∑n
j=1 dln,ij(θ)uln,j | =

Op(1) if
∑s
l=1

1
al
≤ 1 and Dln(θ)’s are also bounded in column sum norm uniformly in θ ∈ Θ.

The following lemma involves the specific forms related to the martingale differences of linear-quadratic forms

and is useful to show orders of terms in Nagar-type expansions of GMM and GEL estimators. In particular, it is

used to prove Lemma 7.

Lemma 2. Suppose that vni’s are independent with zero mean and E(v2
ni) = σ2

ni for i = 1, . . . , n, and [aln,ij ],

[bln,ij ], [cln,ij ], [dln,ij ], [eln,ij ], [fln,ij ], [gln,ij ] and [hln,ij ] for l = 1, 2 are n×n nonstochastic matrices with bounded

row sum norms. Then,

31Among the regularity conditions, uniform convergence of the GEL objective function is assumed. With a misspecified model, the

proof strategy of Theorem 3.1 for a correctly specified model might not be applicable and also the GEL objective function is not a sum

of martingale differences. Thus, other low level conditions for uniform convergence might be needed. We assume uniform convergence

for simplicity.
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(i) for r
(l)
ni = aln,ii(v

2
ni − σ2

ni) + bln,iivni + (cln,ii + dln,iivni)
∑i−1
j=1 eln,ijvnj +

∑i−1
j=1(gln,ijvnj

∑j−1
k=1 hln,ikvnk) with

l = 1 and 2, if supn sup1≤i≤n E(v4
ni) <∞, then 1

n

∑n
i=1 E(r

(1)
ni r

(2)
ni ) = O(1) and 1

n

∑n
i=1[r

(1)
ni r

(2)
ni −E(r

(1)
ni r

(2)
ni )] =

op(1);

(ii) for

r
(l)
ni = aln,ii(v

2
ni−σ2

ni)+bln,iivni+(cln,ii+dln,iivni)

i−1∑
j=1

eln,ijvnj+

i−1∑
j=1

fln,ij(v
2
nj−σ2

nj)+

i−1∑
j=1

(
gln,ijvnj

j−1∑
k=1

hln,ikvnk

)
with l = 1 and 2, if supn sup1≤i≤n E(v8

ni) <∞, then 1
n

∑n
i=1[r

(1)
ni r

(2)
ni − E(r

(1)
ni r

(2)
ni )] = Op(n

−1/2).

C.2 Lemmas for the SARAR(p,q) model

All lemmas below accommodate both the homoskedastic and heteroskedastic cases for the SARAR(p,q) model (1),

where θ = (τ, κ, β′, σ2)′ for the homoskedastic case, and θ = (τ, κ, β′)′ for the heteroskedastic case. Let kθ be the

dimension of θ. The next lemma shows the consistency of an estimator of the covariance of two linear-quadratic

forms, where the estimator is formed with estimated martingale differences.

Lemma 3. Suppose that Arn(θ) = [arn,ij(θ)] for r = 1, 2 are square matrices of dimension n, brn(θ) = [brn,i(θ)]

for r = 1, 2 are column vectors of dimension n, and their elements are nonstochastic functions of θ ∈ Θ. Assume

that elements of Arn(θ) and brn(θ) are differentiable with respect to θ, the sequences {Arn(θ)} and {∂Arn(θ)
∂θj

} for

r = 1, 2 and j = 1, . . . , kθ are bounded in both row and column sum norms, and {brn(θ)} and {∂brn(θ)
∂θj

} for r = 1, 2

and j = 1, . . . , kθ are bounded in row sum norm, uniformly in a neighborhood of θ0.

Let ξrn,i(θ) = arn,ii(θ)[v
2
ni(θ) − σ2] + 2vni(θ)

∑i−1
j=1 arn,ij(θ)vnj(θ) + brn,i(θ)vni(θ) for r = 1, 2 if the distur-

bances vni’s are homoskedastic, and ξrn,i(θ) = 2vni(θ)
∑i−1
j=1 arn,ij(θ)vnj(θ) + brn,i(θ)vni(θ) for r = 1, 2 if vni’s

are heteroskedastic. Assume that θ̂n = θ0 + op(1). Then, under Assumptions 1–4, 1
n

∑n
i=1 ξ1n,i(θ̂n)ξ2n,i(θ̂n) =

1
n

∑n
i=1 E[ξ1n,i(θ0)ξ2n,i(θ0)] + op(1).

Lemma 4. Under Assumptions 1–4, supθ∈Θ sup1≤i≤n ‖gni(θ)‖ = Op(n
2/(4+ι)), where ‖ · ‖ denotes the Euclidean

norm.

Let G
(j)
n (θ) = ∂Gn(θ)

∂θj
, G

(jk)
n (θ) = ∂2Gn(θ)

∂θj∂θk
, G

(jkl)
n (θ) = ∂3Gn(θ)

∂θj∂θk∂θl
and G

(j)
ni (θ) = ∂Gni(θ)

∂θj
, where Gni(θ) = ∂gni(θ)

∂θ′ .

Lemma 5. Under Assumptions 1–4, supθ∈Θ
1
n

∑n
i=1 ‖gni(θ)‖2, supθ∈Θ

1
n

∑n
i=1 ‖Gni(θ)‖, supθ∈Θ

1
n

∑n
i=1 ‖G

(j)
ni (θ)‖,

supθ∈Θ ‖gn(θ)‖, supθ∈Θ ‖Gn(θ)‖, supθ∈Θ ‖G
(j)
n (θ)‖, supθ∈Θ ‖G

(jk)
n (θ)‖, and supθ∈Θ ‖G

(jkl)
n (θ)‖ are all of order

Op(1).

Let g
(j)
ni (θ) = ∂gni(θ)

∂θj
, g

(jk)
ni (θ) = ∂2gni(θ)

∂θj∂θk
, g

(jkl)
ni (θ) = ∂3gni(θ)

∂θj∂θk∂θl
, and g

(jklr)
ni (θ) = ∂4gni(θ)

∂θj∂θk∂θl∂θr
.

Lemma 6. Under Assumptions 1–4, supθ∈Θ ‖ 1
n

∑n
i=1 gni(θ)g

′
ni(θ)‖, supθ∈Θ ‖ 1

n

∑n
i=1 g

(j)
ni (θ)g′ni(θ)‖,

supθ∈Θ ‖ 1
n

∑n
i=1 g

(jk)
ni (θ)g′ni(θ)‖, supθ∈Θ ‖ 1

n

∑n
i=1 g

(j)
ni (θ)g

(k)′

ni (θ)‖, supθ∈Θ ‖ 1
n

∑n
i=1 g

(jkl)
ni (θ)g′ni(θ)‖,

supθ∈Θ ‖ 1
n

∑n
i=1 g

(jk)
ni (θ)g

(l)′

ni (θ)‖, supθ∈Θ ‖ 1
n

∑n
i=1 g

(jklr)
ni (θ)g′ni(θ)‖, supθ∈Θ ‖ 1

n

∑n
i=1 g

(jkl)
ni (θ)g

(r)′

ni (θ)‖ and

supθ∈Θ ‖ 1
n

∑n
i=1 g

(jk)
ni (θ)g

(lr)′

ni (θ)‖ have order Op(1).
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Lemma 7. Under Assumptions 1–4, (i) 1
n

∑n
i=1 gni(θ0)g′ni(θ0) = Ω̄n + op(1), (ii) 1

n

∑n
i=1[E g

(j)
ni (θ0)]g′ni(θ0) =

Op(n
−1/2), and (iii) 1

n

∑n
i=1 E[g

(j)
ni (θ0)g′ni(θ0)] = O(1); under Assumptions 1–4 and 10, (iv) 1

n

∑n
i=1 gni(θ0)g′ni(θ0) =

Ω̄n +Op(n
−1/2), and (v) 1

n

∑n
i=1

{
g

(j)
ni (θ0)g′ni(θ0)− E[g

(j)
ni (θ0)g′ni(θ0)]

}
= Op(n

−1/2), for j = 1, . . . , kθ.

The first order condition for the initial GMM can be written as

0 = −
(

G′n(θ̃n)λ̃n

gn(θ̃n) + Ĵnλ̃n

)
, (28)

where λ̃n = −Ĵ−1
n gn(θ̃n). Let γ̃n = (θ̃′n, λ̃

′
n)′ and γ0 = (θ′0, 01×kg )′. Recall that in the following Lemma, Ḡn is the

expected value of Gn, J̄n is in Assumption 8, and ekg,j is the jth column of the kg × kg identity matrix.

Lemma 8. Under Assumptions 1–5 and 8–9,
√
n(γ̃n−γ0) = ξ̃n+n−1/2ψ̃n+Op(n

−1), where ξ̃n = −(K̄J
n )−1

(
0√

ngn(θ0)

)
=

Op(1) and ψ̃n = −(K̄J
n )−1

 0
√
n(G′n − Ḡ′n)

√
n(Gn − Ḡn) ξJn

 ξ̃n− 1
2 (K̄J

n )−1
∑kθ+kg
j=1 ξ̃njK̄nj ξ̃n = Op(1), where K̄J

n =

 0 Ḡ′n

Ḡn J̄n

, K̄nj =

 0 Ḡ
(j)′

n

Ḡ
(j)
n 0

 for 1 ≤ j ≤ kθ, and K̄nj =

[Ḡ
(1)′

n ekg,j−kθ , . . . , Ḡ
(kθ)′

n ekg,j−kθ ] 0

0 0

 for kθ +

1 ≤ j ≤ kθ + kg.

Lemma 9. Under Assumptions 1–5 and 8–9, Ωn(θ̃n) = Ω̄n + op(1); under the additional Assumption 10,

√
n[Ωn(θ̃n)− Ω̄n] = ξΩ

n +Op(n
−1/2),

where ξΩ
n =

√
n[ 1
n

∑n
i=1 gni(θ0)g′ni(θ0)− Ω̄n] +

∑kθ
j=1{

1
n

∑n
i=1 E[gni(θ0)g

(j)′

ni (θ0) + g
(j)
ni (θ0)g′ni(θ0)]}ξ̃nj = Op(1).

Lemma 10. Under Assumptions 1–4, for any ζ with ζ > 2
4+ι and Λn = {λ : ‖λ‖ ≤ n−ζ}, supθ∈Θ,λ∈Λn,1≤i≤n|λ

′gni(θ)|
p−→

0, and Λn ⊂ Λn(θ) for all θ ∈ Θ w.p.a.1.

Denote %n(θ, λ) = 1
n

∑n
i=1 ρ(λ′gni(θ)) for the next lemmas for simplicity.

Lemma 11. Under Assumptions 1–4, 6 and 7, if θ̄n
p−→ θ0, θ̄n ∈ Θ, and gn(θ̄n) = Op(n

−1/2), then λ̄n =

arg maxλ∈Λn(θ̄n)%n(θ̄n, λ) exists w.p.a.1, λ̄n = Op(n
−1/2), and supλ∈Λn(θ̄n) %n(θ̄n, λ) ≤ ρ(0) +Op(n

−1).

Lemma 12. Under Assumptions 1–4, 6 and 7, ‖gn(θ̂n,gel)‖ = Op(n
−1/2), where θ̂n,gel is the GEL estimator.
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Table 1: Biases, standard errors and RMSEs of estimators for the SARAR(2,0) model (12) in the homoskedastic
case

R2, κ10, κ20 κ1 κ2 β1 β2 β3 σ2

n = 144

0.8, 0.2, 0.2 GMM -0.001[0.067]0.067 -0.007[0.095]0.096 0.024[0.209]0.211 -0.003[0.033]0.033 -0.002[0.032]0.032 -0.019[0.015]0.024

EL -0.005[0.069]0.069 -0.013[0.096]0.097 0.043[0.208]0.213 -0.001[0.033]0.033 -0.001[0.033]0.033 -0.011[0.015]0.019

ET -0.005[0.069]0.069 -0.013[0.097]0.098 0.043[0.210]0.215 -0.001[0.034]0.034 -0.001[0.033]0.033 -0.017[0.015]0.022

0.8, 0.2, 0.4 GMM -0.002[0.068]0.068 -0.003[0.086]0.086 0.017[0.250]0.251 -0.002[0.033]0.033 -0.001[0.030]0.030 -0.018[0.015]0.023

EL -0.005[0.070]0.070 -0.010[0.086]0.087 0.051[0.250]0.255 -0.001[0.034]0.034 0.001[0.032]0.032 -0.010[0.015]0.018

ET -0.005[0.070]0.070 -0.009[0.087]0.087 0.049[0.251]0.256 -0.001[0.034]0.034 0.001[0.032]0.032 -0.016[0.015]0.022

0.8, 0.4, 0.2 GMM -0.002[0.060]0.060 -0.001[0.084]0.084 0.015[0.253]0.253 -0.003[0.032]0.032 -0.002[0.032]0.032 -0.017[0.015]0.023

EL -0.007[0.061]0.062 -0.007[0.087]0.087 0.049[0.261]0.266 -0.001[0.032]0.032 -0.000[0.033]0.033 -0.009[0.015]0.018

ET -0.007[0.062]0.062 -0.007[0.087]0.087 0.047[0.259]0.263 -0.001[0.033]0.033 -0.000[0.033]0.033 -0.015[0.015]0.021

0.8, 0.4, 0.4 GMM -0.001[0.058]0.058 -0.004[0.070]0.071 0.035[0.364]0.366 -0.002[0.032]0.032 -0.002[0.033]0.033 -0.017[0.014]0.023

EL -0.004[0.060]0.060 -0.008[0.072]0.073 0.080[0.368]0.377 -0.000[0.033]0.033 -0.001[0.033]0.033 -0.010[0.015]0.018

ET -0.004[0.059]0.060 -0.008[0.072]0.073 0.082[0.367]0.376 -0.000[0.033]0.033 -0.001[0.033]0.033 -0.015[0.015]0.021

0.4, 0.2, 0.2 GMM 0.000[0.104]0.104 -0.005[0.150]0.150 0.020[0.343]0.344 -0.004[0.079]0.079 -0.003[0.075]0.075 -0.113[0.089]0.144

EL -0.006[0.100]0.101 -0.020[0.148]0.150 0.067[0.330]0.337 -0.002[0.080]0.080 -0.001[0.077]0.077 -0.065[0.093]0.114

ET -0.006[0.101]0.101 -0.020[0.148]0.149 0.065[0.331]0.338 -0.002[0.080]0.080 -0.001[0.077]0.077 -0.097[0.092]0.134

0.4, 0.2, 0.4 GMM -0.004[0.105]0.105 0.002[0.136]0.136 0.010[0.408]0.408 -0.002[0.076]0.076 -0.002[0.076]0.076 -0.111[0.090]0.143

EL -0.010[0.105]0.106 -0.016[0.132]0.133 0.086[0.387]0.397 0.001[0.079]0.079 0.001[0.077]0.077 -0.062[0.093]0.112

ET -0.010[0.105]0.106 -0.016[0.132]0.133 0.088[0.387]0.397 0.001[0.079]0.079 0.001[0.077]0.077 -0.094[0.092]0.131

0.4, 0.4, 0.2 GMM -0.002[0.087]0.087 -0.009[0.128]0.128 0.049[0.413]0.416 -0.002[0.079]0.079 -0.004[0.080]0.081 -0.109[0.088]0.140

EL -0.013[0.087]0.087 -0.021[0.124]0.125 0.122[0.398]0.416 0.002[0.081]0.081 -0.002[0.083]0.083 -0.060[0.092]0.110

ET -0.013[0.087]0.088 -0.022[0.124]0.126 0.123[0.398]0.417 0.001[0.082]0.082 -0.002[0.083]0.083 -0.091[0.091]0.128

0.4, 0.4, 0.4 GMM -0.001[0.086]0.086 0.001[0.115]0.115 -0.001[0.677]0.677 -0.006[0.081]0.081 0.001[0.081]0.081 -0.107[0.091]0.140

EL -0.011[0.088]0.089 -0.008[0.120]0.120 0.123[0.717]0.728 -0.002[0.084]0.084 0.003[0.083]0.083 -0.056[0.094]0.110

ET -0.011[0.088]0.089 -0.007[0.119]0.120 0.121[0.718]0.729 -0.002[0.084]0.084 0.003[0.084]0.084 -0.088[0.093]0.128

n = 400

0.8, 0.2, 0.2 GMM -0.002[0.036]0.037 -0.006[0.055]0.055 0.020[0.115]0.117 -0.001[0.019]0.019 -0.000[0.018]0.018 -0.008[0.009]0.012

EL -0.003[0.036]0.036 -0.007[0.055]0.055 0.022[0.114]0.116 -0.000[0.019]0.019 0.000[0.018]0.018 -0.003[0.009]0.009

ET -0.003[0.036]0.036 -0.007[0.055]0.055 0.022[0.114]0.116 -0.000[0.019]0.019 0.000[0.018]0.018 -0.006[0.009]0.010

0.8, 0.2, 0.4 GMM 0.000[0.037]0.037 -0.003[0.048]0.048 0.010[0.138]0.138 -0.001[0.019]0.019 -0.001[0.018]0.018 -0.008[0.009]0.012

EL -0.000[0.037]0.037 -0.004[0.048]0.048 0.016[0.139]0.140 -0.000[0.019]0.019 0.000[0.018]0.018 -0.003[0.009]0.010

ET -0.000[0.037]0.037 -0.004[0.048]0.048 0.016[0.139]0.139 -0.000[0.019]0.019 0.000[0.018]0.018 -0.005[0.009]0.011

0.8, 0.4, 0.2 GMM 0.001[0.033]0.033 -0.004[0.044]0.044 0.008[0.131]0.131 -0.001[0.018]0.018 -0.001[0.019]0.019 -0.008[0.009]0.012

EL -0.000[0.033]0.033 -0.004[0.044]0.044 0.014[0.130]0.131 -0.001[0.018]0.018 0.000[0.019]0.019 -0.003[0.009]0.010

ET -0.000[0.033]0.033 -0.004[0.044]0.044 0.013[0.130]0.131 -0.001[0.018]0.018 0.000[0.019]0.019 -0.005[0.009]0.011

0.8, 0.4, 0.4 GMM -0.000[0.033]0.033 -0.002[0.040]0.040 0.017[0.188]0.189 -0.002[0.018]0.018 -0.001[0.018]0.018 -0.007[0.009]0.012

EL -0.002[0.032]0.032 -0.002[0.039]0.040 0.027[0.187]0.189 -0.001[0.018]0.018 0.000[0.018]0.018 -0.002[0.010]0.010

ET -0.002[0.032]0.033 -0.002[0.039]0.039 0.027[0.187]0.189 -0.001[0.018]0.018 0.000[0.018]0.018 -0.005[0.009]0.011

0.4, 0.2, 0.2 GMM -0.001[0.057]0.057 -0.005[0.082]0.082 0.014[0.184]0.185 -0.002[0.043]0.043 -0.001[0.045]0.045 -0.048[0.053]0.071

EL -0.003[0.057]0.057 -0.008[0.082]0.082 0.024[0.184]0.185 -0.001[0.043]0.043 0.000[0.045]0.045 -0.019[0.053]0.057

ET -0.003[0.056]0.056 -0.008[0.082]0.082 0.024[0.183]0.185 -0.001[0.043]0.043 -0.000[0.045]0.045 -0.034[0.053]0.063

0.4, 0.2, 0.4 GMM -0.003[0.057]0.057 -0.005[0.070]0.070 0.032[0.214]0.217 -0.004[0.045]0.045 -0.002[0.044]0.044 -0.042[0.056]0.070

EL -0.005[0.057]0.057 -0.008[0.070]0.071 0.047[0.214]0.220 -0.003[0.045]0.045 -0.000[0.045]0.045 -0.012[0.057]0.058

ET -0.005[0.057]0.057 -0.008[0.070]0.070 0.048[0.214]0.219 -0.003[0.045]0.045 -0.000[0.045]0.045 -0.028[0.056]0.063

0.4, 0.4, 0.2 GMM -0.000[0.051]0.051 -0.010[0.071]0.072 0.037[0.216]0.219 -0.000[0.044]0.044 -0.000[0.044]0.044 -0.042[0.055]0.069

EL -0.004[0.051]0.052 -0.012[0.071]0.072 0.053[0.218]0.224 0.002[0.045]0.045 0.001[0.044]0.044 -0.011[0.055]0.056

ET -0.004[0.051]0.051 -0.012[0.071]0.072 0.053[0.217]0.223 0.001[0.044]0.044 0.001[0.044]0.044 -0.027[0.055]0.061

0.4, 0.4, 0.4 GMM -0.001[0.051]0.051 -0.003[0.061]0.061 0.028[0.303]0.304 -0.003[0.045]0.045 -0.001[0.045]0.045 -0.042[0.060]0.073

EL -0.005[0.051]0.051 -0.004[0.060]0.060 0.056[0.297]0.303 -0.002[0.046]0.046 0.000[0.046]0.046 -0.012[0.061]0.062

ET -0.004[0.051]0.051 -0.004[0.060]0.060 0.057[0.297]0.302 -0.001[0.045]0.045 0.000[0.045]0.045 -0.027[0.060]0.066

β0 = [0.5, 0.5, 0.5]′.
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Table 2: Biases, standard errors and RMSEs of estimators for the SARAR(2,0) model (12) in the heteroskedastic
case

R2, κ10, κ20 κ1 κ2 β1 β2 β3

n = 144

0.8, 0.2, 0.2 GMM 0.000[0.046]0.046 -0.000[0.093]0.093 0.002[0.177]0.177 -0.001[0.020]0.020 -0.000[0.020]0.020

EL 0.001[0.053]0.053 -0.009[0.111]0.111 0.018[0.206]0.207 -0.001[0.021]0.021 0.001[0.022]0.022

ET 0.001[0.048]0.048 -0.007[0.102]0.103 0.016[0.191]0.192 -0.001[0.020]0.020 0.000[0.020]0.020

0.8, 0.2, 0.4 GMM -0.000[0.048]0.048 0.001[0.084]0.084 -0.002[0.213]0.213 -0.001[0.021]0.021 -0.000[0.019]0.019

EL 0.001[0.054]0.054 -0.006[0.098]0.098 0.019[0.248]0.249 -0.001[0.023]0.023 0.000[0.021]0.021

ET 0.001[0.051]0.051 -0.005[0.091]0.091 0.015[0.231]0.231 -0.001[0.021]0.021 0.000[0.019]0.019

0.8, 0.4, 0.2 GMM 0.001[0.043]0.043 -0.001[0.084]0.084 0.001[0.223]0.223 -0.001[0.020]0.020 -0.001[0.020]0.020

EL 0.002[0.050]0.050 -0.009[0.102]0.102 0.022[0.270]0.271 -0.001[0.022]0.022 -0.000[0.022]0.022

ET 0.002[0.046]0.046 -0.008[0.095]0.095 0.019[0.250]0.250 -0.001[0.021]0.021 -0.000[0.021]0.021

0.8, 0.4, 0.4 GMM 0.002[0.045]0.045 -0.002[0.070]0.070 0.003[0.317]0.317 -0.001[0.019]0.019 -0.001[0.020]0.020

EL 0.003[0.050]0.050 -0.010[0.082]0.083 0.046[0.375]0.378 -0.000[0.021]0.021 -0.000[0.022]0.022

ET 0.003[0.047]0.047 -0.009[0.077]0.077 0.040[0.346]0.348 -0.000[0.020]0.020 -0.000[0.021]0.021

0.4, 0.2, 0.2 GMM 0.011[0.100]0.100 -0.004[0.183]0.183 -0.014[0.365]0.365 -0.001[0.048]0.048 -0.001[0.049]0.049

EL 0.009[0.109]0.109 -0.022[0.198]0.199 0.033[0.391]0.393 0.001[0.052]0.052 0.000[0.054]0.054

ET 0.008[0.102]0.102 -0.018[0.187]0.188 0.025[0.369]0.370 0.001[0.050]0.050 0.000[0.051]0.051

0.4, 0.2, 0.4 GMM 0.003[0.102]0.102 0.009[0.164]0.165 -0.039[0.449]0.450 0.000[0.047]0.047 -0.002[0.047]0.047

EL 0.001[0.113]0.113 -0.016[0.182]0.183 0.050[0.487]0.490 0.002[0.051]0.051 -0.001[0.052]0.052

ET 0.003[0.106]0.106 -0.015[0.172]0.173 0.042[0.454]0.456 0.001[0.048]0.048 -0.001[0.048]0.048

0.4, 0.4, 0.2 GMM 0.002[0.096]0.096 0.002[0.166]0.166 -0.010[0.464]0.464 0.000[0.048]0.048 -0.002[0.047]0.047

EL -0.003[0.104]0.104 -0.019[0.180]0.181 0.079[0.492]0.498 0.000[0.053]0.053 -0.001[0.052]0.052

ET -0.001[0.098]0.098 -0.018[0.171]0.172 0.068[0.461]0.466 0.000[0.049]0.049 -0.001[0.048]0.048

0.4, 0.4, 0.4 GMM 0.005[0.091]0.091 -0.003[0.138]0.138 -0.019[0.671]0.672 -0.002[0.049]0.049 -0.001[0.049]0.049

EL 0.003[0.101]0.101 -0.020[0.157]0.159 0.117[0.799]0.807 -0.000[0.054]0.054 0.001[0.055]0.055

ET 0.003[0.095]0.095 -0.019[0.150]0.152 0.108[0.755]0.763 -0.000[0.051]0.051 0.001[0.052]0.052

n = 400

0.8, 0.2, 0.2 GMM 0.000[0.028]0.028 -0.003[0.059]0.059 0.007[0.107]0.107 -0.000[0.011]0.011 0.000[0.012]0.012

EL 0.000[0.030]0.030 -0.006[0.063]0.063 0.012[0.114]0.114 -0.000[0.012]0.012 0.000[0.013]0.013

ET 0.000[0.028]0.028 -0.005[0.060]0.061 0.012[0.109]0.110 -0.000[0.012]0.012 0.000[0.012]0.012

0.8, 0.2, 0.4 GMM 0.001[0.029]0.029 -0.002[0.053]0.053 0.005[0.132]0.132 -0.001[0.012]0.012 -0.000[0.011]0.011

EL 0.002[0.031]0.031 -0.007[0.057]0.058 0.017[0.143]0.144 -0.000[0.012]0.012 -0.000[0.012]0.012

ET 0.002[0.030]0.030 -0.006[0.054]0.055 0.015[0.135]0.136 -0.000[0.012]0.012 -0.000[0.012]0.012

0.8, 0.4, 0.2 GMM 0.001[0.026]0.026 -0.002[0.051]0.051 0.007[0.129]0.129 0.000[0.012]0.012 -0.001[0.011]0.011

EL 0.001[0.028]0.028 -0.004[0.054]0.055 0.013[0.138]0.139 0.001[0.012]0.012 -0.001[0.012]0.012

ET 0.001[0.027]0.027 -0.004[0.052]0.052 0.012[0.132]0.132 0.000[0.012]0.012 -0.001[0.011]0.011

0.8, 0.4, 0.4 GMM 0.001[0.027]0.027 -0.001[0.042]0.042 0.002[0.176]0.176 -0.001[0.012]0.012 -0.001[0.012]0.012

EL 0.001[0.029]0.029 -0.003[0.045]0.045 0.012[0.189]0.189 -0.000[0.013]0.013 -0.000[0.012]0.012

ET 0.001[0.028]0.028 -0.003[0.043]0.043 0.012[0.181]0.181 -0.000[0.012]0.012 -0.000[0.012]0.012

0.4, 0.2, 0.2 GMM 0.002[0.061]0.061 -0.001[0.104]0.104 -0.001[0.217]0.217 -0.002[0.027]0.027 -0.001[0.029]0.029

EL 0.000[0.064]0.064 -0.008[0.107]0.107 0.021[0.225]0.226 -0.003[0.029]0.029 -0.001[0.030]0.030

ET 0.000[0.061]0.061 -0.008[0.104]0.104 0.020[0.218]0.218 -0.002[0.028]0.028 -0.001[0.029]0.029

0.4, 0.2, 0.4 GMM 0.001[0.061]0.061 -0.003[0.100]0.100 0.004[0.264]0.264 -0.001[0.028]0.028 -0.001[0.028]0.028

EL 0.002[0.063]0.063 -0.015[0.103]0.104 0.043[0.275]0.279 -0.001[0.030]0.030 -0.001[0.030]0.030

ET 0.002[0.061]0.061 -0.014[0.100]0.101 0.039[0.266]0.269 -0.001[0.029]0.029 -0.001[0.029]0.029

0.4, 0.4, 0.2 GMM 0.002[0.054]0.054 0.001[0.095]0.095 -0.011[0.262]0.262 -0.001[0.029]0.029 -0.001[0.028]0.028

EL -0.001[0.056]0.056 -0.005[0.099]0.099 0.022[0.272]0.273 -0.001[0.030]0.030 -0.001[0.029]0.029

ET -0.001[0.055]0.055 -0.005[0.096]0.096 0.020[0.263]0.264 -0.001[0.029]0.029 -0.001[0.028]0.028

0.4, 0.4, 0.4 GMM 0.001[0.055]0.055 -0.000[0.082]0.082 -0.005[0.372]0.372 -0.000[0.029]0.029 -0.002[0.029]0.029

EL 0.001[0.058]0.058 -0.009[0.086]0.087 0.055[0.390]0.394 0.001[0.030]0.030 -0.001[0.030]0.030

ET 0.001[0.056]0.056 -0.008[0.083]0.084 0.052[0.375]0.379 0.000[0.029]0.029 -0.001[0.029]0.029

β0 = [0.5, 0.5, 0.5]′.
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Table 3: Coverage probabilities of 95% confidence intervals for the SARAR(2,0) model (12)

Homoskedastic case Heteroskedastic case

R2, κ10, κ20 κ1 κ2 β1 β2 β3 σ2 κ1 κ2 β1 β2 β3

n = 144
0.8, 0.2, 0.2 GMM 0.899 0.902 0.885 0.886 0.907 0.586 0.914 0.864 0.866 0.903 0.925

EL 0.931 0.946 0.926 0.926 0.927 0.812 0.943 0.916 0.914 0.948 0.945
ET 0.949 0.956 0.946 0.936 0.951 0.698 0.957 0.935 0.934 0.957 0.958

0.8, 0.2, 0.4 GMM 0.881 0.901 0.888 0.887 0.913 0.621 0.913 0.864 0.891 0.906 0.929
EL 0.920 0.941 0.940 0.928 0.930 0.833 0.937 0.910 0.925 0.942 0.942
ET 0.942 0.953 0.956 0.935 0.946 0.735 0.949 0.927 0.941 0.954 0.959

0.8, 0.4, 0.2 GMM 0.888 0.877 0.879 0.898 0.907 0.616 0.898 0.864 0.859 0.921 0.929
EL 0.932 0.923 0.932 0.934 0.934 0.856 0.925 0.919 0.915 0.950 0.956
ET 0.955 0.938 0.947 0.949 0.952 0.750 0.947 0.932 0.940 0.960 0.969

0.8, 0.4, 0.4 GMM 0.884 0.877 0.866 0.905 0.909 0.624 0.899 0.872 0.871 0.933 0.915
EL 0.929 0.922 0.923 0.930 0.929 0.847 0.930 0.922 0.916 0.949 0.949
ET 0.949 0.934 0.942 0.941 0.946 0.741 0.947 0.942 0.935 0.957 0.952

0.4, 0.2, 0.2 GMM 0.889 0.879 0.878 0.897 0.917 0.591 0.876 0.812 0.850 0.919 0.916
EL 0.928 0.922 0.933 0.919 0.942 0.827 0.937 0.900 0.926 0.940 0.939
ET 0.940 0.938 0.948 0.937 0.959 0.722 0.959 0.929 0.941 0.954 0.953

0.4, 0.2, 0.4 GMM 0.874 0.887 0.888 0.905 0.913 0.589 0.879 0.833 0.852 0.942 0.930
EL 0.913 0.926 0.936 0.931 0.940 0.844 0.932 0.928 0.927 0.955 0.949
ET 0.931 0.946 0.953 0.939 0.944 0.710 0.951 0.950 0.945 0.964 0.964

0.4, 0.4, 0.2 GMM 0.889 0.862 0.878 0.885 0.906 0.601 0.866 0.837 0.864 0.911 0.920
EL 0.940 0.917 0.922 0.917 0.931 0.841 0.917 0.920 0.941 0.945 0.950
ET 0.947 0.934 0.940 0.933 0.947 0.750 0.931 0.945 0.958 0.956 0.963

0.4, 0.4, 0.4 GMM 0.889 0.876 0.873 0.887 0.887 0.629 0.862 0.837 0.851 0.922 0.913
EL 0.918 0.918 0.920 0.917 0.915 0.840 0.941 0.914 0.914 0.954 0.947
ET 0.941 0.939 0.936 0.929 0.932 0.758 0.950 0.936 0.938 0.962 0.956

n = 400
0.8, 0.2, 0.2 GMM 0.938 0.931 0.930 0.938 0.942 0.796 0.933 0.914 0.908 0.942 0.949

EL 0.954 0.942 0.945 0.948 0.946 0.919 0.943 0.918 0.916 0.939 0.953
ET 0.962 0.949 0.953 0.955 0.956 0.868 0.947 0.935 0.929 0.947 0.955

0.8, 0.2, 0.4 GMM 0.940 0.932 0.937 0.944 0.936 0.785 0.941 0.919 0.900 0.928 0.943
EL 0.951 0.947 0.951 0.946 0.944 0.903 0.946 0.928 0.909 0.929 0.938
ET 0.956 0.951 0.958 0.953 0.952 0.859 0.950 0.938 0.924 0.933 0.947

0.8, 0.4, 0.2 GMM 0.914 0.952 0.936 0.929 0.941 0.791 0.927 0.928 0.911 0.939 0.945
EL 0.923 0.955 0.949 0.935 0.939 0.922 0.929 0.938 0.921 0.935 0.944
ET 0.931 0.957 0.956 0.947 0.949 0.878 0.939 0.950 0.931 0.942 0.948

0.8, 0.4, 0.4 GMM 0.926 0.924 0.911 0.951 0.920 0.802 0.921 0.921 0.915 0.933 0.940
EL 0.935 0.937 0.928 0.952 0.934 0.922 0.924 0.918 0.915 0.930 0.943
ET 0.943 0.945 0.939 0.954 0.943 0.869 0.931 0.937 0.930 0.940 0.947

0.4, 0.2, 0.2 GMM 0.928 0.928 0.927 0.941 0.915 0.781 0.935 0.899 0.903 0.941 0.944
EL 0.941 0.932 0.936 0.948 0.921 0.912 0.945 0.932 0.929 0.941 0.948
ET 0.946 0.944 0.947 0.952 0.932 0.860 0.949 0.942 0.939 0.947 0.951

0.4, 0.2, 0.4 GMM 0.928 0.929 0.938 0.934 0.940 0.789 0.919 0.899 0.914 0.939 0.921
EL 0.936 0.938 0.949 0.930 0.940 0.906 0.926 0.917 0.933 0.939 0.914
ET 0.943 0.944 0.952 0.944 0.947 0.863 0.939 0.922 0.943 0.948 0.924

0.4, 0.4, 0.2 GMM 0.933 0.924 0.923 0.932 0.932 0.824 0.933 0.917 0.914 0.949 0.947
EL 0.938 0.933 0.926 0.936 0.936 0.930 0.935 0.939 0.931 0.950 0.940
ET 0.944 0.941 0.934 0.944 0.943 0.883 0.948 0.954 0.945 0.955 0.954

0.4, 0.4, 0.4 GMM 0.933 0.929 0.915 0.933 0.941 0.807 0.938 0.906 0.910 0.931 0.938
EL 0.941 0.937 0.929 0.936 0.944 0.906 0.942 0.942 0.930 0.929 0.939
ET 0.947 0.951 0.938 0.950 0.956 0.866 0.959 0.953 0.942 0.941 0.944

The variance matrix of a GMM estimator θ̂n is computed as 1
n

[G′n(θ̂n)Ω−1
n (θ̂n)Gn(θ̂n)]−1, and that of a GEL

estimator γ̇n = (θ̇′n, λ̇
′
n)′ is computed as 1

n
∆−1
n (γ̇n)

(
0 0

0 Ωn(θ̇n)

)
∆−1
n (γ̇n), where ∆n(γ) is the second order

derivative matrix of the GEL objective function given in the proof of Theorem 3.2.
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Table 4: Empirical sizes of tests for τ01 = τ02 = 0 in the SARAR(0,2) model (13)

Homoskedastic case Heteroskedastic case

n = 144 n = 400 n = 900 n = 144 n = 400 n = 900

R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4 R2 = 0.8 R2 = 0.4

PTgmm 0.056 0.039 0.037 0.035 0.043 0.048 0.073 0.056 0.061 0.067 0.047 0.063
PTel 0.138 0.144 0.059 0.062 0.055 0.056 0.302 0.301 0.142 0.147 0.075 0.091
PTet 0.116 0.102 0.055 0.057 0.052 0.058 0.201 0.204 0.117 0.126 0.066 0.085
OTgmm 0.049 0.036 0.042 0.035 0.046 0.047 0.040 0.048 0.053 0.050 0.047 0.058
OTel 0.062 0.049 0.047 0.041 0.047 0.053 0.094 0.095 0.068 0.066 0.055 0.062
OTet 0.064 0.048 0.044 0.038 0.046 0.052 0.078 0.088 0.071 0.066 0.054 0.062
Moran 0.052 0.040 0.041 0.032 0.044 0.047 0.046 0.053 0.054 0.047 0.047 0.058
Moranel 0.063 0.051 0.047 0.037 0.045 0.052 0.086 0.091 0.070 0.065 0.055 0.061
Moranet 0.065 0.048 0.047 0.038 0.045 0.052 0.076 0.086 0.071 0.066 0.055 0.062
PT∗gmm 0.080 0.085 0.115 0.126 0.185 0.215
Moran∗ 0.000 0.052 0.001 0.085 0.001 0.099

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction tests; “OTgmm”, “OTel” and
“OTet” denote, respectively, the GMM, EL and ET overidentification tests; “Moran”, “Moranel ” and “Moranet ” denote,
respectively, the robust, EL and ET Moran’s I tests; “PT∗gmm” denotes the GMM parameter restriction test without taking
into account unknown heteroskedasticity; and “Moran∗” denotes Moran’s I test that does not take into account unknown
heteroskedasticity. The nominal size is 5%.
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Table 5: Powers of tests for τ01 = τ02 = 0 in the SARAR(0,2) model (13) in the homoskedastic case

τ01 = 0 τ01 = 0.2 τ01 = 0.4

τ02 = 0.2 τ02 = 0.4 τ02 = 0 τ02 = 0.2 τ02 = 0.4 τ02 = 0 τ02 = 0.2 τ02 = 0.4

n = 144, R2 = 0.8 PTgmm 0.149 0.580 0.326 0.592 0.918 0.883 0.961 0.995
PTel 0.299 0.741 0.553 0.778 0.977 0.978 0.995 1.000
PTet 0.255 0.702 0.501 0.742 0.968 0.965 0.993 1.000
OTgmm 0.158 0.631 0.356 0.673 0.972 0.953 0.992 1.000
OTel 0.197 0.665 0.423 0.716 0.979 0.964 0.993 1.000
OTet 0.186 0.661 0.419 0.714 0.978 0.966 0.993 1.000
Moran 0.152 0.631 0.357 0.669 0.970 0.946 0.990 1.000
Moranel 0.191 0.664 0.418 0.707 0.977 0.966 0.993 1.000
Moranet 0.182 0.664 0.419 0.708 0.977 0.967 0.993 1.000

n = 144, R2 = 0.4 PTgmm 0.153 0.550 0.336 0.604 0.910 0.898 0.960 0.998
PTel 0.305 0.733 0.558 0.805 0.982 0.980 0.994 0.999
PTet 0.261 0.706 0.511 0.771 0.968 0.969 0.991 1.000
OTgmm 0.151 0.623 0.371 0.692 0.963 0.952 0.988 1.000
OTel 0.186 0.665 0.436 0.743 0.971 0.970 0.991 1.000
OTet 0.183 0.657 0.430 0.737 0.973 0.968 0.992 1.000
Moran 0.150 0.624 0.371 0.693 0.963 0.950 0.989 1.000
Moranel 0.181 0.669 0.440 0.745 0.972 0.971 0.992 1.000
Moranet 0.181 0.663 0.437 0.741 0.974 0.967 0.992 1.000

n = 400, R2 = 0.8 PTgmm 0.420 0.981 0.822 0.990 1.000 1.000 1.000 1.000
PTel 0.488 0.988 0.876 0.995 1.000 1.000 1.000 1.000
PTet 0.490 0.988 0.882 0.994 1.000 1.000 1.000 1.000
OTgmm 0.428 0.985 0.861 0.994 1.000 1.000 1.000 1.000
OTel 0.448 0.987 0.866 0.996 1.000 1.000 1.000 1.000
OTet 0.447 0.986 0.870 0.996 1.000 1.000 1.000 1.000
Moran 0.425 0.985 0.862 0.995 1.000 1.000 1.000 1.000
Moranel 0.447 0.987 0.867 0.996 1.000 1.000 1.000 1.000
Moranet 0.446 0.987 0.875 0.996 1.000 1.000 1.000 1.000

n = 400, R2 = 0.4 PTgmm 0.427 0.981 0.842 0.990 1.000 1.000 1.000 1.000
PTel 0.509 0.991 0.881 0.992 1.000 1.000 1.000 1.000
PTet 0.497 0.991 0.885 0.994 1.000 1.000 1.000 1.000
OTgmm 0.443 0.987 0.864 0.993 1.000 1.000 1.000 1.000
OTel 0.463 0.988 0.870 0.994 1.000 1.000 1.000 1.000
OTet 0.466 0.990 0.875 0.995 1.000 1.000 1.000 1.000
Moran 0.444 0.988 0.861 0.993 1.000 1.000 1.000 1.000
Moranel 0.457 0.990 0.871 0.994 1.000 1.000 1.000 1.000
Moranet 0.463 0.990 0.874 0.995 1.000 1.000 1.000 1.000

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction tests;
“OTgmm”, “OTel” and “OTet” denote, respectively, the GMM, EL and ET overidentification tests; “Moran”,
“Moranel ” and “Moranet ” denote, respectively, the robust, EL and ET Moran’s I tests. The nominal size
is 5%.
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Table 6: Powers of tests for τ01 = τ02 = 0 in the SARAR(0,2) model (13) in the heteroskedastic case

τ01 = 0 τ01 = 0.2 τ01 = 0.4

τ02 = 0.2 τ02 = 0.4 τ02 = 0 τ02 = 0.2 τ02 = 0.4 τ02 = 0 τ02 = 0.2 τ02 = 0.4

n = 144, R2 = 0.8 PTgmm 0.139 0.348 0.156 0.314 0.669 0.509 0.701 0.953
PTel 0.392 0.653 0.445 0.564 0.837 0.725 0.846 0.981
PTet 0.291 0.573 0.371 0.506 0.807 0.688 0.830 0.983
OTgmm 0.091 0.359 0.105 0.220 0.623 0.400 0.607 0.943
OTel 0.153 0.417 0.149 0.267 0.651 0.418 0.640 0.937
OTet 0.137 0.407 0.143 0.265 0.666 0.431 0.648 0.946
Moran 0.084 0.336 0.096 0.196 0.595 0.376 0.595 0.936
Moranel 0.149 0.409 0.147 0.256 0.648 0.414 0.627 0.933
Moranet 0.141 0.410 0.145 0.260 0.665 0.427 0.648 0.944

n = 144, R2 = 0.4 PTgmm 0.129 0.394 0.158 0.294 0.629 0.459 0.695 0.954
PTel 0.418 0.664 0.434 0.566 0.825 0.688 0.859 0.986
PTet 0.328 0.598 0.331 0.492 0.787 0.649 0.836 0.990
OTgmm 0.099 0.394 0.101 0.227 0.597 0.376 0.601 0.949
OTel 0.155 0.446 0.138 0.269 0.624 0.421 0.632 0.944
OTet 0.145 0.447 0.133 0.256 0.632 0.420 0.637 0.952
Moran 0.090 0.363 0.090 0.209 0.577 0.354 0.571 0.943
Moranel 0.152 0.436 0.134 0.258 0.612 0.410 0.622 0.941
Moranet 0.145 0.444 0.132 0.259 0.626 0.415 0.642 0.950

n = 400, R2 = 0.8 PTgmm 0.209 0.729 0.303 0.639 0.970 0.887 0.977 1.000
PTel 0.341 0.823 0.418 0.723 0.979 0.909 0.978 1.000
PTet 0.301 0.822 0.398 0.710 0.979 0.918 0.985 1.000
OTgmm 0.205 0.754 0.236 0.573 0.962 0.813 0.967 1.000
OTel 0.236 0.788 0.248 0.590 0.963 0.809 0.962 1.000
OTet 0.244 0.789 0.254 0.604 0.963 0.826 0.968 1.000
Moran 0.200 0.746 0.230 0.565 0.962 0.810 0.964 1.000
Moranel 0.232 0.778 0.246 0.586 0.962 0.811 0.959 1.000
Moranet 0.241 0.787 0.254 0.602 0.963 0.827 0.967 1.000

n = 400, R2 = 0.4 PTgmm 0.204 0.725 0.282 0.631 0.957 0.872 0.980 1.000
PTel 0.334 0.837 0.372 0.722 0.972 0.906 0.989 1.000
PTet 0.301 0.832 0.362 0.716 0.975 0.910 0.990 1.000
OTgmm 0.195 0.764 0.199 0.572 0.956 0.808 0.966 1.000
OTel 0.221 0.786 0.221 0.574 0.953 0.804 0.965 1.000
OTet 0.215 0.790 0.224 0.588 0.957 0.812 0.967 1.000
Moran 0.196 0.758 0.191 0.559 0.955 0.798 0.964 1.000
Moranel 0.216 0.783 0.221 0.571 0.952 0.797 0.963 1.000
Moranet 0.215 0.790 0.223 0.591 0.959 0.810 0.967 1.000

“PTgmm”, “PTel” and “PTet” denote, respectively, the GMM, EL and ET parameter restriction tests;
“OTgmm”, “OTel” and “OTet” denote, respectively, the GMM, EL and ET overidentification tests; “Moran”,
“Moranel ” and “Moranet ” denote, respectively, the robust, EL and ET Moran’s I tests. The nominal size
is 5%.
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Table 7: Empirical sizes of spatial J tests for the SARAR model (14)

n = 144 n = 400

GMM1 EL1 ET1 GMM2 EL2 ET2 GMM1 EL1 ET1 GMM2 EL2 ET2

Circular vs Queen: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.048 0.068 0.064 0.055 0.063 0.062 0.049 0.059 0.058 0.054 0.060 0.060

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.054 0.076 0.075 0.057 0.068 0.062 0.044 0.055 0.055 0.044 0.051 0.050

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.054 0.081 0.081 0.058 0.076 0.064 0.057 0.065 0.067 0.056 0.063 0.062

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.060 0.094 0.084 0.059 0.076 0.071 0.049 0.056 0.057 0.045 0.054 0.053

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.063 0.114 0.105 0.060 0.074 0.071 0.051 0.065 0.064 0.056 0.060 0.060

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.080 0.111 0.109 0.062 0.072 0.072 0.065 0.072 0.077 0.049 0.058 0.056

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.070 0.103 0.093 0.055 0.081 0.074 0.052 0.063 0.060 0.038 0.047 0.044

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.070 0.122 0.113 0.056 0.067 0.063 0.056 0.064 0.064 0.057 0.061 0.057

Circular vs Queen: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.052 0.129 0.104 0.051 0.106 0.084 0.057 0.086 0.077 0.053 0.079 0.073

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.046 0.108 0.085 0.047 0.089 0.076 0.060 0.084 0.080 0.053 0.074 0.065

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.052 0.147 0.117 0.063 0.122 0.100 0.056 0.087 0.082 0.056 0.082 0.079

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.056 0.117 0.098 0.063 0.095 0.084 0.050 0.078 0.066 0.056 0.074 0.071

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.069 0.140 0.115 0.066 0.101 0.089 0.054 0.078 0.076 0.058 0.075 0.077

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.060 0.142 0.121 0.068 0.113 0.096 0.051 0.081 0.069 0.052 0.071 0.068

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.064 0.151 0.123 0.061 0.110 0.100 0.053 0.079 0.071 0.061 0.076 0.069

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.076 0.155 0.120 0.066 0.115 0.092 0.067 0.102 0.092 0.061 0.069 0.066

Queen vs Circular: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.048 0.087 0.074 0.049 0.073 0.068 0.055 0.068 0.065 0.059 0.067 0.069

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.055 0.085 0.082 0.054 0.089 0.081 0.049 0.060 0.057 0.051 0.062 0.064

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.047 0.077 0.075 0.045 0.059 0.059 0.049 0.054 0.059 0.043 0.051 0.051

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.046 0.078 0.070 0.043 0.069 0.058 0.036 0.044 0.044 0.034 0.040 0.041

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.059 0.089 0.079 0.044 0.071 0.064 0.048 0.052 0.055 0.043 0.050 0.053

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.066 0.097 0.090 0.060 0.073 0.068 0.047 0.058 0.055 0.050 0.056 0.056

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.072 0.112 0.093 0.068 0.093 0.080 0.055 0.062 0.056 0.060 0.060 0.060

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.076 0.117 0.104 0.069 0.080 0.075 0.058 0.068 0.069 0.057 0.057 0.059

Queen vs Circular: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.050 0.081 0.075 0.054 0.082 0.074 0.045 0.050 0.051 0.043 0.047 0.048

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.063 0.094 0.087 0.064 0.090 0.090 0.050 0.062 0.063 0.054 0.062 0.060

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.047 0.082 0.073 0.041 0.067 0.062 0.046 0.054 0.055 0.049 0.056 0.056

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.046 0.076 0.069 0.044 0.072 0.067 0.042 0.055 0.051 0.053 0.061 0.060

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.059 0.092 0.082 0.043 0.069 0.064 0.059 0.075 0.072 0.062 0.068 0.068

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.052 0.081 0.076 0.056 0.059 0.056 0.049 0.055 0.054 0.055 0.058 0.060

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.063 0.103 0.090 0.061 0.091 0.082 0.054 0.060 0.061 0.049 0.064 0.063

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.066 0.101 0.096 0.062 0.073 0.071 0.062 0.064 0.067 0.066 0.070 0.071

”GMM1” denotes the spatial J test implemented with the GMM distance difference test using the predictor Ŷn = κ̂nWnYn + Xnβ̂n, and

”GMM2” uses Ŷn = (In − κ̂nWn)−1Xnβ̂n. Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET1” and “ET2”. “Circular vs
Queen” means that an SARAR model with the circular world matrix is tested against one with the queen matrix. “Queen vs Circular” has a
similar meaning. The nominal size is 5%.
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Table 8: Powers of spatial J tests for the SARAR model (14)

n = 144 n = 400

GMM1 EL1 ET1 GMM2 EL2 ET2 GMM1 EL1 ET1 GMM2 EL2 ET2

Circular vs Queen: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.361 0.449 0.431 0.367 0.426 0.413 0.731 0.760 0.755 0.732 0.745 0.747

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.334 0.426 0.403 0.330 0.391 0.370 0.680 0.710 0.713 0.669 0.693 0.696

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.840 0.898 0.890 0.853 0.893 0.882 1.000 1.000 1.000 0.998 0.999 0.999

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.758 0.823 0.812 0.728 0.786 0.771 0.990 0.993 0.992 0.987 0.989 0.990

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.127 0.188 0.176 0.126 0.146 0.135 0.210 0.223 0.224 0.200 0.216 0.214

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.173 0.237 0.225 0.168 0.191 0.180 0.244 0.265 0.261 0.230 0.232 0.235

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.363 0.421 0.411 0.325 0.382 0.369 0.586 0.608 0.608 0.570 0.572 0.573

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.331 0.418 0.398 0.286 0.325 0.314 0.555 0.591 0.589 0.520 0.526 0.528

Circular vs Queen: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.414 0.508 0.493 0.414 0.477 0.468 0.747 0.753 0.766 0.742 0.745 0.757

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.404 0.492 0.480 0.405 0.445 0.443 0.699 0.710 0.726 0.683 0.695 0.706

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.886 0.917 0.918 0.888 0.901 0.905 0.998 0.997 0.998 0.998 0.996 0.997

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.774 0.832 0.831 0.765 0.807 0.806 0.991 0.992 0.993 0.989 0.991 0.991

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.162 0.248 0.220 0.167 0.200 0.184 0.237 0.266 0.268 0.231 0.248 0.253

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.188 0.289 0.251 0.176 0.237 0.218 0.255 0.283 0.292 0.225 0.252 0.252

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.365 0.471 0.458 0.339 0.411 0.397 0.636 0.651 0.665 0.617 0.633 0.642

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.364 0.444 0.440 0.337 0.408 0.393 0.576 0.581 0.598 0.540 0.547 0.558

Queen vs Circular: Homoskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.634 0.736 0.712 0.632 0.711 0.694 0.981 0.984 0.984 0.969 0.976 0.976

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.579 0.670 0.654 0.538 0.614 0.599 0.955 0.964 0.966 0.930 0.936 0.940

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.975 0.986 0.987 0.965 0.979 0.978 1.000 1.000 1.000 1.000 1.000 1.000

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.945 0.974 0.963 0.903 0.944 0.940 1.000 1.000 1.000 0.997 1.000 1.000

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.243 0.290 0.276 0.219 0.270 0.261 0.498 0.520 0.518 0.410 0.441 0.444

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.251 0.293 0.278 0.211 0.237 0.231 0.539 0.565 0.571 0.376 0.412 0.403

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.539 0.605 0.591 0.461 0.528 0.521 0.932 0.934 0.936 0.806 0.829 0.831

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.536 0.578 0.554 0.385 0.448 0.435 0.882 0.878 0.877 0.636 0.689 0.683

Queen vs Circular: Heteroskedastic case

R2 = 0.8, κ0 = 0.2, τ0 = 0.2 0.696 0.757 0.757 0.675 0.711 0.717 0.977 0.978 0.979 0.964 0.968 0.972

R2 = 0.8, κ0 = 0.2, τ0 = 0.4 0.618 0.689 0.682 0.558 0.633 0.620 0.959 0.953 0.959 0.896 0.894 0.906

R2 = 0.8, κ0 = 0.4, τ0 = 0.2 0.983 0.987 0.990 0.972 0.980 0.982 1.000 1.000 1.000 1.000 1.000 1.000

R2 = 0.8, κ0 = 0.4, τ0 = 0.4 0.953 0.977 0.976 0.914 0.942 0.946 1.000 1.000 1.000 0.998 0.996 0.997

R2 = 0.4, κ0 = 0.2, τ0 = 0.2 0.297 0.348 0.341 0.252 0.322 0.300 0.540 0.555 0.560 0.456 0.476 0.484

R2 = 0.4, κ0 = 0.2, τ0 = 0.4 0.283 0.343 0.316 0.199 0.265 0.242 0.541 0.557 0.560 0.389 0.422 0.417

R2 = 0.4, κ0 = 0.4, τ0 = 0.2 0.600 0.634 0.627 0.507 0.576 0.573 0.909 0.901 0.911 0.779 0.796 0.811

R2 = 0.4, κ0 = 0.4, τ0 = 0.4 0.563 0.600 0.591 0.412 0.499 0.481 0.885 0.873 0.882 0.646 0.682 0.705

”GMM1” denotes the spatial J test implemented with the GMM distance difference test using the predictor Ŷn = κ̂nWnYn + Xnβ̂n, and

”GMM2” uses Ŷn = (In − κ̂nWn)−1Xnβ̂n. Correspondingly, we have EL and ET ratio tests “EL1”, “EL2”, “ET1” and “ET2”. “Circular vs
Queen” means that an SARAR model with the circular world matrix is tested against one with the queen matrix. “Queen vs Circular” has a
similar meaning.
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