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1 Monte Carlo settings and estimation results

The data generating process is the SARAR model (2.1). There are two variables in Xn: an intercept term

and a variable randomly drawn from the standard normal distribution. The spatial weights matrix Wn is

the circular world matrix as in Arraiz et al. (2010). For this matrix, the spatial units are equally spaced

on a circle, one third of spatial units are connected to 4 nearest neighbors and the rest are connected

to 10 nearest neighbors. If spatial unit i is connected to spatial unit j, then the (i, j)th element of the

connectivity matrix is 1, and it is zero otherwise. The spatial weights matrix Wn is derived by normalizing

the connectivity matrix to have row sums equal to one. We set Mn = Wn. The disturbances are normally

distributed. In the homoskedastic case, σ2
0 = 1; in the heteroskedastic case, each σ2

ni is proportional to

the number of nonzero elements in the ith row of Wn, and the mean of σ2
ni’s is 1. The true value of

β = [β1, β2]′ is [1, 1]′. The true values of λ and ρ are either 0.2 or 0.5. The sample size is either 200 or

400, and the number of Monte Carlo repetitions is 5, 000. For our root estimators, the initial consistent

estimate of [λ0, β
′
0]′ is a 2SLSE with the IV matrix [Xn,WnX1n,W

2
nX1n], where X1n is the non-constant

variable in Xn, and the initial estimator of ρ0 is a consistent root estimator for which we use the quadratic

matrices Mn + κM2
n + κ2M3

n − diag(Mn + κM2
n + κM3

n) with κ = 0.2 or 0.6.

We report the following robust measures of central tendency and dispersions: median bias (MB),

median absolute deviation (MAD) and interdecile range (IDR), where the IDR is the difference between

the 0.9 and 0.1 quantiles in the empirical distribution.1 We also report coverage probabilities of 95%

confidence intervals. The estimation results are reported in Table S.1. RE is the root estimator with the

quadratic matrices G̃nd and T̃nd defined above (3.7), and RE5 is the root estimator with the quadratic

∗Corresponding author. E-mail addresses: jin.fei@live.com (F. Jin), lee.1777@osu.edu (L.-F. Lee).
1There is a small proportion of outliers for the MME, so we report robust measures.

1



Table S.1: MBs, MADs, IDRs and CPs of various estimates

λ ρ β1 β2

Homoskedastic case

n = 200, λ0 = 0.2, ρ0 = 0.2 MLE 0.000(0.118)0.449[0.907] -0.036(0.145)0.550[0.905] -0.002(0.157)0.612[0.912] -0.004(0.049)0.182[0.956]

RE 0.008(0.108)0.419[0.918] -0.038(0.131)0.521[0.930] -0.010(0.147)0.582[0.925] -0.003(0.048)0.183[0.955]

RE5 0.008(0.109)0.419[0.918] -0.038(0.131)0.521[0.929] -0.010(0.147)0.583[0.924] -0.003(0.048)0.182[0.955]

n = 200, λ0 = 0.5, ρ0 = 0.5 MLE 0.003(0.114)0.441[0.873] -0.030(0.133)0.496[0.875] -0.014(0.242)0.963[0.885] -0.006(0.047)0.181[0.954]

RE 0.023(0.105)0.445[0.887] -0.042(0.125)0.506[0.903] -0.056(0.232)0.961[0.898] -0.005(0.047)0.184[0.952]

RE5 0.024(0.106)0.450[0.872] -0.045(0.129)0.516[0.889] -0.056(0.233)0.973[0.884] -0.005(0.047)0.185[0.945]

n = 400, λ0 = 0.2, ρ0 = 0.2 MLE 0.003(0.086)0.330[0.917] -0.016(0.104)0.390[0.919] -0.004(0.117)0.437[0.922] -0.003(0.033)0.127[0.951]

RE 0.007(0.081)0.317[0.927] -0.019(0.099)0.374[0.936] -0.008(0.111)0.423[0.932] -0.003(0.033)0.127[0.950]

RE5 0.007(0.081)0.317[0.927] -0.019(0.099)0.374[0.935] -0.008(0.111)0.423[0.932] -0.003(0.033)0.127[0.950]

n = 400, λ0 = 0.5, ρ0 = 0.5 MLE -0.004(0.087)0.334[0.903] -0.008(0.095)0.362[0.898] 0.005(0.185)0.712[0.915] -0.004(0.034)0.129[0.947]

RE 0.011(0.078)0.317[0.914] -0.017(0.090)0.354[0.922] -0.021(0.171)0.693[0.922] -0.003(0.034)0.130[0.944]

RE5 0.011(0.078)0.318[0.911] -0.017(0.092)0.355[0.916] -0.022(0.172)0.695[0.921] -0.003(0.034)0.130[0.941]

Heteroskedastic case

n = 200, λ0 = 0.2, ρ0 = 0.2 MME -0.005(0.107)0.421[0.917] -0.035(0.142)0.530[0.915] 0.000(0.145)0.579[0.926] -0.003(0.048)0.185[0.946]

RE 0.000(0.102)0.406[0.930] -0.038(0.132)0.504[0.934] -0.005(0.141)0.556[0.933] -0.002(0.049)0.185[0.946]

RE5 0.000(0.102)0.405[0.929] -0.038(0.132)0.504[0.933] -0.005(0.141)0.556[0.933] -0.002(0.049)0.185[0.946]

n = 200, λ0 = 0.5, ρ0 = 0.5 MME -0.000(0.102)0.408[0.895] -0.031(0.125)0.486[0.898] -0.001(0.222)0.879[0.909] -0.004(0.049)0.187[0.941]

RE 0.016(0.097)0.427[0.900] -0.040(0.120)0.499[0.915] -0.040(0.215)0.926[0.913] -0.003(0.050)0.193[0.937]

RE5 0.016(0.099)0.429[0.887] -0.044(0.122)0.507[0.900] -0.041(0.216)0.926[0.903] -0.003(0.050)0.193[0.932]

n = 400, λ0 = 0.2, ρ0 = 0.2 MME -0.003(0.082)0.304[0.928] -0.016(0.102)0.380[0.931] 0.004(0.110)0.421[0.930] -0.002(0.033)0.127[0.948]

RE -0.001(0.078)0.293[0.937] -0.018(0.097)0.369[0.943] -0.000(0.108)0.407[0.938] -0.002(0.033)0.127[0.947]

RE5 -0.001(0.078)0.293[0.937] -0.018(0.097)0.369[0.943] -0.001(0.108)0.407[0.938] -0.002(0.033)0.127[0.947]

n = 400, λ0 = 0.5, ρ0 = 0.5 MME 0.002(0.075)0.293[0.907] -0.018(0.090)0.347[0.912] -0.008(0.164)0.639[0.914] -0.003(0.033)0.127[0.951]

RE 0.012(0.070)0.281[0.919] -0.025(0.086)0.337[0.925] -0.027(0.156)0.615[0.923] -0.002(0.033)0.127[0.950]

RE5 0.012(0.071)0.283[0.917] -0.025(0.087)0.339[0.922] -0.028(0.157)0.615[0.920] -0.002(0.033)0.128[0.948]

(i) RE is the root estimator with the quadratic matrices G̃nd and T̃nd, and RE5 is the root estimator with the quadratic matrices G̃nd,5 and T̃nd,5.

(ii) The four numbers in each entry of the table are MB(MAD)IDR[CP], where MB is the median bias, MAD is the median absolute deviation, IDR

is the interdecile range, i.e., the difference between the 0.9 and 0.1 quantiles in an empirical distribution, and CP is the coverage probability of

a 95% confidence interval.

(iii) The true value of β = [β1, β2]′ is [1, 1]′. The mean of εni’s variances is 1.

matrices G̃nd,5 and T̃nd,5 defined below (3.8). RE and RE5 have similar performance, and RE has slightly

smaller MADs and IDRs in some cases. MLE and MME have smaller MBs than those of RE and RE5 in

most cases, but they have larger MADs and IDRs in most cases. The CPs of all estimates for β2 are close

to 95%, but the CPs of estimates of other parameters are smaller than 95%. MLE and MME have lower

CPs than those of RE and RE5 for parameters other than β2. As the sample size increases from 200 to

400, the CPs are closer to the nominal 95%.

2 Regularity conditions for the QMLE and MME

Assumption S.1. (a) The true φ0 is in the interior of a compact parameter space of φ. (b) {S−1
n (λ)}

is bounded in either row or column sum norm uniformly on the parameter space Λ of λ, and the same
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holds for {R−1
n (ρ)} on the parameter space % of ρ. (c) limn→∞

1
nX
′
nR
′
n(ρ)Rn(ρ)Xn exists and is nonsin-

gular for any ρ ∈ %, and the sequence of smallest eigenvalues of R′n(ρ)Rn(ρ) is bounded away from

zero uniformly on %. (d) For the QMLE, either (i) limn→∞
1
n [ln |σ2

0ΥnΥ′n| − ln |σ2(γ)Υn(γ)Υ′n(γ)|]
exists and is nonzero for any γ 6= γ0, where Υn = S−1

n R−1
n , Υn(γ) = S−1

n (λ)R−1
n (ρ) and σ2(γ) =

σ2
0
n tr[Υ′nS

′
n(λ)R′n(ρ)Rn(ρ)Sn(λ)Υn], or (ii) limn→∞

1
n(WnS

−1
n Xnβ0, Xn)′(WnS

−1
n Xnβ0, Xn) exists and is

nonsingular, and limn→∞
1
n [ln |σ2

0ΥnΥ′n| − ln |σ2(λ0, ρ)S−1
n R−1

n (ρ)R′−1
n (ρ)S′−1

n |] exists and is nonzero for

any ρ 6= ρ0; for the MME, φ0 is the unique root of limn→∞
1
n E[hn(φ)] = 0 on the parameter space of φ.

Assumptions S.1(a)–(c) and the identification condition for the QMLE in (d) are from Jin and Lee

(2012). For the MME, as hn(φ) is nonlinear in φ, a primitive identification condition is not obvious. So

we maintain the relatively high level identification condition in Assumption S.1(d).

3 Proofs of theorems

This section provides proofs of the two theorems in the main paper. In the following, “MVT” will denote

the mean value theorem, and “UB” will denote “uniformly bounded in both row and column sum norms”.

Proof of Theorem 1. As yn = Znη0 + un ,

η̃ = [Z ′nQn(Q′nQn)−1Q′nZn]−1Z ′nQn(Q′nQn)−1Q′n(Znη0 + un)

= η0 + [Z ′nQn(Q′nQn)−1Q′nZn]−1Z ′nQn(Q′nQn)−1Q′nR
−1
n εn.

For any k × 1 vector α, where k is the column dimension of Qn,

var
( 1√

n
α′Q′nR

−1
n εn

)
=

1

n
α′Q′nR

−1
n ΣnR

′−1
n Qnα ≤

c

n
α′Q′nR

−1
n R′−1

n Qnα = O(1),

for some constant c, under Assumptions 1(a)–(b) and 2(a)–(b). Then 1√
n
Q′nR

−1
n εn = Op(1). As limn→∞

1
nQ
′
nZn

has full column rank, η̃ = η0 +Op(n
−1/2).

Let ε̄n = (In − ρ0Mn)ũn. Then ũn = ρ0Mnũn + ε̄n is an estimated SAR process. Using this equation,

bn = −(ρ0Mnũn+ ε̄n)′P
(s)
n Mnũn = −2ρ0an−dn and cn = (ρ0Mnũn+ ε̄n)′Pn(ρ0Mnũn+ ε̄n) = ρ2

0an+ρ0dn+

en, where dn = ε̄′nP
(s)
n Mnũn and en = ε̄′nPnε̄n. Note that ũn = [Sn+(λ0− λ̃)Wn]yn−Xnβ0 +Xn(β0− β̃) =

un + (λ0 − λ̃)Wnyn +Xn(β0 − β̃). Then, with Pn = P ∗n ,

a∗n = [un + (λ0 − λ̃)Wnyn +Xn(β0 − β̃)]′M ′nP
∗
nMn[un + (λ0 − λ̃)Wnyn +Xn(β0 − β̃)]

= u′nM
′
nP
∗
nMnun + (λ0 − λ̃)2(Wnyn)′M ′nP

∗
nMnWnyn + (β0 − β̃)′X ′nM

′
nP
∗
nMnXn(β0 − β̃)

+ (λ0 − λ̃)u′nM
′
nP
∗(s)
n MnWnyn + u′nM

′
nP
∗(s)
n MnXn(β0 − β̃)

+ (λ0 − λ̃)(Wnyn)′M ′nP
∗(s)
n MnXn(β0 − β̃).

Using un = R−1
n εn and the reduced form yn = S−1

n Xnβ0 +S−1
n R−1

n εn, we have 1
n(Wnyn)′M ′nP

∗
nMnWnyn =

Op(1), 1
nu
′
nM

′
nP
∗(s)
n MnWnyn = Op(1), 1

nu
′
nM

′
nP
∗(s)
n MnXn = op(1) and 1

n(Wnyn)′M ′nP
∗(s)
n MnXn = Op(1).

Thus, 1
na
∗
n = 1

nu
′
nM

′
nP
∗
nMnun + op(1) = 1

n tr(R′−1
n M ′nP

∗
nMnR

−1
n Σn) + op(1), where the second equality

follows by Lemma A.3 in Lin and Lee (2010). Similarly, 1
nd
∗
n = 1

n tr(P
∗(s)
n MnR

−1
n Σn) + op(1), and 1

ne
∗
n =
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1
n tr(P ∗nΣn) + op(1) = op(1) because P ∗n has a zero diagonal. Hence, 1

n2 b
∗2
n − 4

n2a
∗
nc
∗
n = (d

∗
n
n )2 + op(1).

Since limn→∞
1
n tr(R′−1

n M ′nP
∗
nMnR

−1
n Σn) 6= 0, (2.2) is quadratic in the limit. Then the consistent root is

(−b∗n−
√
b∗2n − 4a∗nc

∗
n)/(2a∗n) if plimn→∞

1
nd
∗
n ≥ 0, and is (−b∗n+

√
b∗2n − 4a∗nc

∗
n)/(2a∗n) if plimn→∞

1
nd
∗
n < 0.

Denote the consistent root by ρ̃∗. By the MVT,

0 = ũ′nR
′
n(ρ̃∗)P ∗nRn(ρ̃∗)ũn = ũ′nR

′
nP
∗
nRnũn − ũ′nR′n(ρ̄)P ∗(s)n Mnũn(ρ̃∗ − ρ0),

where ρ̄ lies between ρ̃∗ and ρ0. Thus,
√
n(ρ̃∗ − ρ0) = ( 1

n ũ
′
nR
′
n(ρ̄)P

∗(s)
n Mnũn)−1 1√

n
ũ′nR

′
nP
∗
nRnũn, where

1
n ũ
′
nR
′
n(ρ̄)P

∗(s)
n Mnũn = 1

nu
′
nR
′
n(ρ̄)P

∗(s)
n Mnun + op(1) = 1

n tr(P
∗(s)
n MnR

−1
n Σn) + op(1) and

1√
n
ũ′nR

′
nP
∗
nRnũn =

1√
n
u′nR

′
nP
∗
nRnun +

1

n
u′nR

′
nP
∗(s)
n Rn[

√
n(λ0 − λ̃)Wnyn +Xn

√
n(β0 − β̃)]

+
1

n
[(λ0 − λ̃)Wnyn +Xn(β0 − β̃)]′R′nP

∗
nRn[

√
n(λ0 − λ̃)Wnyn +Xn

√
n(β0 − β̃)]

=
1√
n
ε′nP

∗
nεn +Op(1) + op(1) = Op(1).

As limn→∞
1
n tr(P

∗(s)
n MnR

−1
n Σn) 6= 0 under Assumption 2,

√
n(ρ̃∗−ρ0) = Op(1). We have a similar result

for the consistent root ρ̃∗∗ of the moment equation with P ∗∗n . Thus the method described in the main

text will locate a
√
n-consistent root estimator ρ̃ of ρ0, since ρ̃ = ρ0 +Op(n

−1/2).

Proof of Theorem 2. We first prove the consistency of ρ̂. For that purpose, we now investigate the order

of a1n in (3.9). As ũn = un + (λ0 − λ̃)Wnyn +Xn(β0 − β̃),

1

n
ũ′nM

′
nT̃nd,kMnũn =

1

n
u′nM

′
nT̃nd,kMnun +

1

n
(λ0 − λ̃)2y′nW

′
nM

′
nT̃nd,kMnWnyn

+
1

n
(β0 − β̃)′X ′nM

′
nT̃nd,kMnXn(β0 − β̃) +

1

n
(λ0 − λ̃)u′nM

′
nT̃

(s)
nd,kMnWnyn

+
1

n
u′nM

′
nT̃

(s)
nd,kMnXn(β0 − β̃) +

1

n
(λ0 − λ̃)y′nW

′
nM

′
nT̃

(s)
nd,kMnXn(β0 − β̃).

Since ρ̃ = ρ0 + op(1), in a neighborhood of ρ0,
∑k

i=0 ρ̃
iM i

n is UB for any natural number k, and∑∞
i=0 ρ̃

iM i
n = R̃−1

n is UB by Lemma A.3 in Lee (2004). It follows that T̃nd,k is UB in a neighborhood of

ρ0, by the sub-multiplicability of the row and column sum matrix norms. Then 1
nX
′
nM

′
nT̃nd,kMnXn =

Op(1) and 1
nu
′
nM

′
nT̃

(s)
nd,kMnXn = op(1). Using un = R−1

n εn and yn = S−1
n Xnβ0 + S−1

n R−1
n εn, we have

1
ny
′
nW

′
nM

′
nT̃nd,kMnWnyn = Op(1), 1

nu
′
nM

′
nT̃

(s)
nd,kMnWnyn = Op(1), and 1

ny
′
nW

′
nM

′
nT̃

(s)
nd,kMnXn = Op(1).

Thus,

1

n
ũ′nM

′
nT̃nd,kMnũn =

1

n
u′nM

′
nT̃nd,kMnun + op(1)

=
1

n
u′nM

′
nTnd,kMnun + op(1)

=
1

n
tr(R′−1

n M ′nTnd,kMnR
−1
n Σn) + op(1),

where the second equality follows by the MVT and the third equality follows by Lemma A.3 in Lin

and Lee (2010). Similarly, 1
n ũ
′
nM

′
nG̃nd,kMnũn = 1

n tr(R′−1
n M ′nGnd,kMnR

−1
n Σn) + op(1). Since ∂εn(φ)

∂η′ =

−Rn(ρ)[Wnyn, Xn], as in the above proof,

1

n

∂g1n(ρ̃, η̃)

∂η′
= − 1

n
ε̃′nT̃

(s)
nd,kR̃n[Wnyn, Xn]
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= −
[ 1

n
tr(T

(s)
nd,kRnWnS

−1
n R−1

n Σn), 0
]

+ op(1)

= −[
1

n
tr(T

(s)
nd,kGndΣn), 0] + op(1),

by recalling that ε̃n = R̃nũn and Gnd = RnWnS
−1
n R−1

n − 1
n tr(WnS

−1
n )In for the homogeneous variance

case, but Gnd = RnWnS
−1
n R−1

n − diag(RnWnS
−1
n R−1

n ) for the heterogeneous variances case, where the

last equality holds because T
(s)
nd,k has a zero trace and Σn = σ2

0In in the homoskedastic case, and T
(s)
nd,k has

a zero diagonal and Σn is a diagonal matrix in the heteroskedastic case; and

1

n

∂g2n(ρ̃, η̃)

∂η′
=

(
− 1
n ε̃
′
nG̃

(s)
nd,kR̃n[Wnyn, Xn]− 1

n(R̃nWnS̃
−1
n Xnβ̃)′R̃n[Wnyn, Xn]

− 1
nX
′
nR̃
′
nR̃n[Wnyn, Xn]

)

= −

(
Fn

1
n(RnWnS

−1
n Xnβ0)′RnXn

1
nX
′
nR
′
nRnWnS

−1
n Xnβ0

1
nX
′
nR
′
nRnXn

)
+ op(1),

where Fn = 1
n tr(G

(s)
nd,kGndΣn) + 1

n(RnWnS
−1
n Xnβ0)′(RnWnS

−1
n Xnβ0). For a block matrix E =

(
A B
C D

)
,

where A and D are square matrices and D is invertible, since(
I −BD−1

0 I

)(
A B

C D

)(
I 0

−D−1C I

)
=

(
A−BD−1C 0

0 D

)
, (S.1)

E has full rank if A−BD−1C has full rank. Thus, plimn→∞
1
n
∂g2n(ρ̃,η̃)

∂η′ has full rank under the conditions

that limn→∞
1
nX
′
nR
′
nRnXn is nonsingular and limn→∞

1
nΞn 6= 0 in Assumption 3(b). It follows that C̃nρ

exists for large enough n and C̃nρ = Op(1). Hence, 1
na1n = 1

na
∗
1n + op(1), where a∗1n is given in (3.13) and

is derived by the block matrix inverse formula. It follows that plimn→∞
1
na1n 6= 0 if limn→∞

1
na
∗
1n 6= 0.

With plimn→∞
1
na1n 6= 0, (3.9) is a quadratic equation of ρ for a large enough n.

Using ũn = ρ0Mnũn + ε̄n, which defines ε̄n = (In − ρ0Mn)ũn, we have

b1n = −ũ′nM ′nT̃
(s)
nd,k(ρ0Mnũn + ε̄n) + C̃nρ

(
ũ′nM

′
nG̃

(s)
nd,k(ρ0Mnũn+ε̄n)+ũ′nM

′
nR̃nWnS̃

−1
n Xnβ̃

X′nR̃
′
nMnũn

)
= −2ρ0a1n − d∗1n + e1n,

and

c1n = (ρ0Mnũn + ε̄n)′T̃nd,k(ρ0Mnũn + ε̄n)− C̃nρ
(

(ρ0Mnũn+ε̄n)′G̃nd,k(ρ0Mnũn+ε̄n)+ũ′nR̃nWnS̃
−1
n Xnβ̃

X′nR̃
′
nũn

)
= ρ2

0a1n + ρ0d
∗
1n + f1n,

where d∗1n = ũ′nM
′
nT̃

(s)
nd,k ε̄n − C̃nρ

(
ũ′nM

′
nG̃

(s)
nd,k ε̄n

0

)
, e1n = C̃nρ

(
ũ′nM

′
nR̃nWnS̃

−1
n Xnβ̃

X′nR̃
′
nMnũn

)
, and f1n = ε̄′nT̃nd,k ε̄n −

C̃nρ

(
ε̄′nG̃nd,k ε̄n+ũ′nR̃nWnS̃

−1
n Xnβ̃

X′nR̃
′
nũn

)
. We have 1

n ε̄
′
nT̃nd,k ε̄n = 1

n ũ
′
nR
′
nT̃nd,kRnũn = 1

nu
′
nR
′
nT̃nd,kRnun + op(1) =

1
nε
′
nTnd,kεn+op(1) = op(1), where the last equality holds since 1

n E(ε′nTnd,kεn) = 0. Similarly, 1
n ε̄
′
nG̃nd,k ε̄n =

op(1). Then 1
nd
∗
1n = Op(1), 1

ne1n = op(1) and 1
nf1n = op(1), by arguments as that for the order of a1n.

Thus, 1
nb1n = −2ρ0

n a1n − 1
nd
∗
1n + op(1), and 1

nc1n =
ρ20
n a1n + ρ0

n d
∗
1n + op(1). It follows that the roots of

(3.9) are
−b1n±

√
b21n−4a1nc1n
2a1n

= ρ0 +
d∗1n/n±

√
(d∗1n/n)2

2a1n/n
+ op(1). Hence, the consistent root estimator ρ̂ of ρ0

is ρ̂ =
−b1n−

√
b21n−4a1nc1n
2a1n

if plimn→∞
1
nd
∗
1n ≥ 0, and it is ρ̂ =

−b1n+
√
b21n−4a1nc1n
2a1n

if plimn→∞
1
nd
∗
1n < 0.
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The d1n in (3.10) differs from d∗1n only in that R̃n replaces Rn in d∗1n, thus d1n and d∗1n have the same

probability limit.

We next prove the consistency of λ̂. Let ūn = yn − λ0Wnyn −Xnβ̃. Then, yn −Xnβ̃ = λ0Wnyn + ūn.

Using this equation, we have

b2n = −(Wnyn)′R̃′nG̃
(s)
nd,kR̃n(λ0Wnyn + ūn)− (Wnyn)′R̃′nR̃nWnS̃

−1
n Xnβ̃

+ C̃nλ

(
(Wnyn)′R̃′nT̃

(s)
nd,kR̃n(λ0Wnyn+ūn)

X′nR̃
′
nR̃nWnyn

)
= −2λ0a2n − d∗2n,

and

c2n = (λ0Wnyn + ūn)′R̃′nG̃nd,kR̃n(λ0Wnyn + ūn) + (λ0Wnyn + ūn)′R̃′nR̃nWnS̃
−1
n Xnβ̃

− C̃nλ
(

(λ0Wnyn+ūn)′R̃′nT̃nd,kR̃n(λ0Wnyn+ūn)

X′nR̃
′
nR̃n(λ0Wnyn+ūn)

)
= λ2

0a2n + λ0d
∗
2n + e2n,

where d∗2n = (Wnyn)′R̃′nG̃
(s)
nd,kR̃nūn + (Wnyn)′R̃′nR̃nWnS̃

−1
n Xnβ̃ − C̃nλ

(
(Wnyn)′R̃′nT̃

(s)
nd,kR̃nūn

X′nR̃
′
nR̃nWnyn

)
, and e2n =

ū′nR̃
′
nG̃nd,kR̃nūn+ū′nR̃

′
nR̃nWnS̃

−1
n Xnβ̃−C̃nλ

(
ū′nR̃

′
nT̃nd,kR̃nūn

X′nR̃
′
nR̃nūn

)
. We may prove that 1

na2n = 1
na
∗
2n+op(1) =

Op(1), where 1
na
∗
2n is in (3.14), 1

nd
∗
2n = Op(1) and 1

ne2n = op(1). Then the consistency of λ̂ can be proved

similarly as that of ρ̂. By (3.5), β̂ can be explicitly expressed as a function of ρ̂ and λ̂, so its consistency

follows by the MVT.

By the MVT, 0 = g1n(ρ̂, η̃)− C̃nρg2n(ρ̂, η̃) = g1n(ρ0, η0)− C̃nρg2n(ρ0, η0)+(∂g1n(ρ̄,η̄)
∂ρ − C̃nρ ∂g2n(ρ̄,η̄)

∂ρ )(ρ̂−
ρ0) + (∂g1n(ρ̄,η̄)

∂η′ − C̃nρ ∂g2n(ρ̄,η̄)
∂η′ )(η̃ − η0), where (ρ̄, η̄′)′ lies between (ρ̂, η̃′)′ and φ0. Then,

√
n(ρ̂ − ρ0) =

−( 1
n
∂g1n(ρ̄,η̄)

∂ρ − 1
n C̃nρ

∂g2n(ρ̄,η̄)
∂ρ )−1[ 1√

n
g1n(ρ0, η0)− 1√

n
C̃nρg2n(ρ0, η0)+( 1

n
∂g1n(ρ̄,η̄)

∂η′ − 1
n C̃nρ

∂g2n(ρ̄,η̄)
∂η′ )

√
n(η̃−η0)].

As C̃nρ = ∂g1n(ρ̃,η̃)
∂η′ (∂g2n(ρ̃,η̃)

∂η′ )−1, 1
n
∂g1n(ρ̄,η̄)

∂η′ − 1
n C̃nρ

∂g2n(ρ̄,η̄)
∂η′ = op(1) by the MVT. Hence,

√
n(ρ̂ − ρ0) =

−( 1
n
∂g1n(ρ̄,η̄)

∂ρ − 1
n C̃nρ

∂g2n(ρ̄,η̄)
∂ρ )−1[ 1√

n
g1n(ρ0, η0)− 1√

n
C̃nρg2n(ρ0, η0)]+op(1). Let g∗n(φ) be the vector derived

by replacing G̃nd,k, T̃nd,k, R̃n, S̃n and β̃ in gn(φ), which is in (3.8), with, respectively, Gnd,k, Tnd,k, Rn, Sn

and β0. By the the block matrix inverse formula, the second element of −( 1
n
∂g∗n(φ0)
∂φ′ )−1 1√

n
g∗n(φ0) has the

same leading order term as that of
√
n(ρ̂−ρ0). Similarly, the first element of −( 1

n
∂g∗n(φ0)
∂φ′ )−1 1√

n
g∗n(φ0) has

the same leading order term as that of
√
n(λ̂−λ0), and the last kx elements of −( 1

n
∂g∗n(φ0)
∂φ′ )−1 1√

n
g∗n(φ0) have

the same leading order term as that of
√
n(β̂−β0). Note that 1

n E ∂g∗n(φ0)
∂φ′ = −Γnd,k, and var[ 1√

n
g∗n(φ0)] =

Ωnd,k + ∆nd,k can be derived by using, e.g., Lemma 2 in Jin and Lee (2012). Using (S.1) twice, we see

that limn→∞ Γnd,k has full rank under Assumption 3(d). Then,
√
n(φ̂−φ0)

d−→ N(0, limn→∞ Γ−1
nd,k(Ωnd,k +

∆nd,k)Γ
′−1
nd,k), by Theorem 1 in Kelejian and Prucha (2001).

When εni’s are homoskedastic, the consistency of the QMLE φ∗ can be seen from Jin and Lee (2013).

The φ∗ is characterized by mn(φ∗) = 0, where mn(φ) is defined above (3.7). When k = ∞, since

mn(φ0) = g∗n(φ0), an MVT expansion show that
√
n(φ∗−φ0) is asymptotically equivalent to

√
n(φg∗−φ0).

When εni’s are heteroskedastic, denote the MME of φ0 from solving hn(φ) = 0 by φh. As εn(φ) is linear

in λ, ρ and β, using the reduced form of yn, it is straightforward to prove that 1
nhn(φ) − 1

n E[hn(φ)] =

op(1). Under Assumption S.1(b), we may prove by the MVT that 1
nhn(φ) − 1

n E[hn(φ)] is stochastically

6



equicontinuous. Then 1
nhn(φ) − 1

n E[hn(φ)] = op(1) uniformly on the parameter space of φ. With a

compact parameter space of φ and the identification condition in Assumption S.1(d), the consistency of

φh follows. When k =∞, an MVT expansion shows that 1√
n
hn(φ0)− 1√

n
g∗n(φ0) = op(1), thus

√
n(φh−φ0)

is asymptotically equivalent to
√
n(φ̂− φ0).
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