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Abstract

This paper considers two-step generalized empirical likelihood (GEL) estimation and
tests with martingale differences when there is a computationally simple v/n-consistent es-
timator of nuisance parameters or the nuisance parameters can be eliminated with an es-
timating function of parameters of interest. As an initial estimate might have asymptotic
impact on final estimates, we propose general C(a)-type transformed moments to eliminate
the impact, and use them in the GEL framework to construct estimation and tests robust to
initial estimates. This two-step approach can save computational burden as the numbers of
moments and parameters are reduced. A properly constructed two-step GEL (TGEL) esti-
mator of parameters of interest is asymptotically as efficient as the corresponding joint GEL
estimator. TGEL removes several higher order bias terms of a corresponding two-step gener-
alized method of moments. Our moment functions at the true parameters are martingales,
thus they cover some spatial and time series models. We investigate tests for parameter re-
strictions in the TGEL framework, which are locally as powerful as those in the joint GEL

framework when the two-step estimator is efficient.
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1 Introduction

A two-step estimation method is often employed in empirical studies due to its computational
simplicity. In this method, we obtain a computationally simple estimator of nuisance param-
eters in a first step, and then use it to derive an estimator of parameters of interest. This is
helpful in computation, in particular when the number of nuisance parameters is large but
their estimates can be easily obtained, as we only need to estimate a relatively small number
of parameters in the second step. This can be the case if researchers include many covari-
ates in the model or estimating equations are rather complex. Famous two-step estimators in-
clude those for the sample selection model (Heckman, 1976), and the linear expectation model
(Barro, 1977). Properties of two-step estimators have been studied by Newey (1984) and Pagan
(1984, 1986), among others. However, it is understood that a first-step estimate might have
asymptotic impact on the variance of the second-step estimate, thus a properly constructed
asymptotic variance of the final estimate is needed. Furthermore, two-step estimators might be
less efficient than corresponding one-step ones.

This paper studies generalized empirical likelihood (GEL) estimation and tests of moment
condition models when a /n-consistent estimator of nuisance parameters is available or the
nuisance parameters can be eliminated by the method of elimination and substitution, which
results in an estimating function of parameters of interest. The first contribution of our paper
is the use of a C(a)-type moment vector (Neyman, 1959) to eliminate the asymptotic impact
of nuisance parameters in the GEL framework. The resulting two-step GEL (TGEL) estimator
has an asymptotic distribution with a variance of the usual sandwich form, is computation-
ally simple and can also be asymptotically as efficient as the original joint GEL estimator. The
C(a)-type moment vector is a transformed moment vector of the original one so that any /n-
consistent estimator of nuisance parameters will not have an impact on the asymptotic distri-

bution of a second-step estimate of parameters of interest. In forming the C(a)-type moment



vector, the number of moment conditions will be reduced by at least the number of nuisance
parameters. Since the number of Lagrangian multipliers in GEL’s saddle point characterization
is equal to the number of moments, its computational burden is directly related to the number
of moments. As a result, our two-step approach saves computational time for GEL in terms of
the reduction in both the number of estimated parameters and that of Lagrangian parameters.
Furthermore, we show that the TGEL estimator of parameters of interest is asymptotically as
efficient as the joint GEL estimator if the number of moments reduced is equal to the number
of nuisance parameters. We refer to the TGEL estimator in this case as the efficient TGEL (E-
TGEL) estimator. If we are also interested in efficient estimation of “nuisance” parameters, then
the E-TGEL estimate may be plugged into the joint GEL objective function in a subsequent step
of estimation.

Our second contribution is the investigation of tests in the TGEL framework. In these tests,
the nuisance parameter estimator can be any \/n-consistent estimator, which may or may not
relate to the original moments for estimation. The C(a)-type moment vector at a \/n-consistent
nuisance parameter estimate behaves as if nuisance parameters were known, so various tests
can be constructed with the TGEL objective function similarly as those in an ordinary GEL
framework. Newey, Ramalho and Smith (2005) investigate a GEL estimator where estimated
nuisance parameters are directly plugged into the GEL objective function. Their objective func-
tion will not provide asymptotically chi-squared distributed tests due to the asymptotic impact
of the nuisance parameter estimator. Our GEL objective function with the C(a)-type moment
vector overcomes this problem. We investigate the GEL ratio tests, GEL score-type test, GEL
Wald test, and GEL test with the generalized method of moments (GMM) gradient in the two-
step estimation framework. As in Guggenberger and Smith (2005) and Smith (2011), a score-
type test in the TGEL framework can be directly based on the derivative vector of the TGEL
objective function. For a GMM gradient test, Lee and Yu (2012) and Dufour, Trognon and
Tuvaandorj (2017) have investigated a C(a)-type form with any /n-consistent restricted esti-
mator. This C(a)-type test can also be implemented in the GEL framework, which will only use

its moments in formulating the test statistic as it internalizes its variance matrix. So a GEL test



can be robust to unknown heteroskedasticity.! We show that tests in the TGEL framework can
be locally as powerful as those in the joint GEL framework.

Our third contribution is the consideration of moment functions that are martingale arrays
at the true parameters in a two-step estimation, so that they cover some time series autore-
gressive models (Chuang and Chan, 2002) and spatial autoregressive (SAR) models (Jin and
Lee, 2019). For SAR models, linear and quadratic moment functions are basic ones, and at the
true parameter values, they can be written as martingale arrays (See e.g., Kelejian and Prucha,
2001).

We also investigate the higher order bias of TGEL. One reason that GEL attracts much atten-
tion is that it can have smaller higher order asymptotic bias than that of the two-step optimal
GMM (OGMM), as shown in Newey and Smith (2004) for random samples and in Anatolyev
(2005) for stationarity time series models with non-i.i.d. data.> Finite sample Monte Carlo
studies have reported that OGMM can have large bias (e.g., Altonji and Segal, 1996), and GEL
performs better than OGMM for models with random samples (e.g., Hansen, Heaton and Yaron
1996; Imbens 1997; Ramalho 2002; Mittelhammer, Judge and Schoenberg 2005; Newey et al.
2005). The bias advantage of GEL carries over to TGEL, which can remove several higher order
bias terms of a corresponding two-step GMM (TGMM) estimator. However, like a GEL esti-
mator, a TGEL estimator might not have finite moments and the analysis does not necessarily
imply exact finite sample properties of TGEL and TGMM. Hausman, Lewis, Menzel and Newey
(2011) provide a theoretical analysis of bias issues of the continuous updating (CU) estimator,
a member of the GEL estimator. Our Monte Carlo results show that two-step empirical like-
lihood (EL) and two-step exponential tilting (ET) estimators have smaller bias and dispersion
than TGMM estimators in finite samples. Both EL and ET are GEL members.

Our TGEL is related to several approaches in the literature, but they are all about GMM

1On the other hand, for a GMM test to be robust to unknown heteroskedasticity, we need to be careful on
using a proper variance for its moments, whose inverse is also the optimal weighting matrix in its GMM objective

function.

>The empirical likelihood (EL) introduced in Owen (1991), as a member of GEL, has other advantages such
as the Bartlett correctability of EL ratio tests and confidence intervals (e.g., DiCiccio et al., 1991; Corcoran, 1998;
Chen and Cui, 2007), Bahadur efficiency (Otsu, 2010) and optimality in terms of large deviations of EL ratio tests

(Kitamura, 2001) for i.i.d. random samples.



instead of GEL. First, it has some similarity to that in Crepon, Kramarz and Trognon (1997)
for the GMM estimation. They require that a subset of empirical moment conditions has a
unique solution of the nuisance parameter vector as a function of the parameters of interest. We
consider both the case with an initial y/n-consistent estimator of nuisance parameters and the
case where the nuisance parameters can be replaced by an estimating function of parameters
of interest. In our TGEL or E-TGEL, the initial consistent estimator of nuisance parameters or
the estimating function need not necessarily be from a subset of originally proposed empirical
moment conditions. So our result can be regarded as a generalization of Crepon et al. (1997) in
a flexible extension to separate moments estimation in the first step and also martingale arrays.
In another related two-stage GMM procedure proposed in Gouriéroux, Monfort and Renault
(1996), the set of moments are partitioned and the set of parameters are unfolded to derive an
asymptotically efficient estimator of all parameters. We note again that their initial consistent
estimator is from a subset of the moment vector, but not any v/n-consistent estimator. In the
presence of a consistent estimator of nuisance parameters, Trognon and Gouriéroux (1990)
propose a two-step estimation that can efficiently estimate all model parameters. They obtain
an approximated objective function by a second order Taylor expansion of an original objective
function at the initial consistent nuisance parameter estimate, thus the resulting estimator of
nuisance parameters is just a second-round estimator of the Newton-Raphson method. We
shall show that our E-TGEL estimator of parameters of interest is asymptotically equivalent to
their estimator.> Frazier and Renault (2017) consider a general setting of two-step estimation
where there are awkward occurrences of the parameters of interest. Their approach can be
seen as a generalization of that in Trognon and Gouriéroux (1990). Song, Fan and Kalbfleisch
(2005) propose the algorithm of maximization by parts for separable log-likelihood functions.
It has been generalized to non-separable extremum estimation problems in Fan, Pastorello and
Renault (2015). The algorithm is iterative and involves the tuning parameter of the number of
iterations, which might need to be large.

There are also papers in the semiparametric framework for two-step estimation. Acker-

berg, Chen, Hahn and Liao (2014) consider a particular model where nuisance functions are

3In a way, this equivalence provides an account to justify that our E-TGEL is asymptotically efficient for the

estimation of the parameters of interest.



identified by conditional moment restrictions not involving parameters of interest, which is a
subset of all moments used for estimation. They show that semiparametric two-step optimally
weighted GMM estimators can achieve the efficiency bound. Thus, they have a special setting
of moments of our E-TGEL to a specific semiparametric model. Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey and Robins (2018a) provide an excellent literature review on
C(a)-type orthogonalization and they show that it can be used to construct debiased/double
machine learning estimators. Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018b)
give a general construction of debiased/locally robust/orthogonal moment functions for GMM,
where a first step nonparametric estimation has no effect on the influence function.

This paper is organized as follows. Section 2 introduces the TGEL estimator and investigates
its asymptotic distribution, efficiency and higher order asymptotic bias properties. Section 3
studies various tests for parameter restrictions. Monte Carlo results are reported in Section 4.
Section 5 concludes. Lemmas and proofs of some theorems are provided in appendices, and

more detailed proofs are in the online supplementary material associated with this article.

2 Two-step GEL

Suppose that a sample moment g,(y) = % 1 &ni(y) is available, where # is the sample size, ¥
is a k), x 1 parameter vector and g,;(y) is my x 1 with m, > k,,. The true parameter value y, of

is characterized by the equation
E[84(70)] = 0.

In general, g,;(y) can depend on all n data observations. At the true value y, of v, £,i(v0)’s
are martingale differences (MD) with respect to an increasing sequence of o-fields, but at other
parameter values they may not be MDs. Denote y = (a’, "), where « is a k, x 1 subvector of
nuisance parameters, and f is a kg x 1 subvector of parameters of interest such that k,, = k, +kg.
We consider the estimation of f with the moment vector g,(d,f) or g,(d,(p),f), where & is
any y/n-consistent estimator of @ and d,(f) is any estimating function of 8 such that its value
at a consistent estimator of B is a \/n-consistent estimator of @. An example of ¢ is a GMM

estimator derived from a moment vector h,(«) that does not involve 8, and an example of ¢,(p)



is an estimating equation derived from h,(a,p). Here h,(a) and h,(«, ) do not need to be
subvectors of g,(y). The interesting situation is the case where & and d,(f) are easy to derive,
while moments for the joint estimation of both a and f are efficient but relatively complex.

Some examples of ¢ and a,(p) are given below.
Example 1. Consider the following probit model with an endogenous regressor:

V] =X{K+VT+U, Y=X[a1 +X50;,+E€,

y1 =1 if y] >0, and y, = 0 otherwise, (2.1)
2
(4)|x ~ N(O,(p(‘;{% o ))

where x; and x, are exogenous variable vectors, x = [x],x,]’, v, is an endogenous regressor, and «,
T, ay and a; are parameters. While y] is not observable, we can observe an indicator y,, which
takes value 1 if y] is positive, and takes value 0 otherwise. Since y, is generated by a linear model,
a simple consistent estimator of a = [a], a,]" is the OLS estimator, which relates to a moment vector
2.(a) = x(y, —x’a) that only involves a.. This estimator can be used to construct a TGEL estimator of
parameters of interest, denoted by B, with some moment conditions. A TGEL estimator with a proper
parameter normalization for identification is defined in Section 4.1. The whole moment vector may
or may not include g,(«). For example, the empirical moments consisting of scores are rather complex

and do not include g,(a) (See Rivers and Vuong, 1988).

Example 2. Consider the Box-Cox transformation model for a positive dependent variable y;: z;(p) =
x;a + uj, where z;(f) = (yf -1)/Bif =0, z;(B) =logy; if B =0, x; is a vector of exogenous variables
and u; is an error term with mean zero. Although the model is nonlinear in B, it is a linear regression
model for given B, so an estimating function for a can be obtained by regressing z;(f) on x;, which

relates to the moment vector x;[z;(B) — x,a] that involves both a and p.

Example 3. Consider the following SAR model:
Y, =W, Y, + X, a1 +V,, (2.2)

where n is the sample size, Y, is an n x 1 vector of observations on the dependent variable, X,, is
an n x k, matrix of observations on k, exogenous variables, W,, is an n x n spatial weights matrix

with a zero diagonal, p is a scalar spatial dependence parameter, ay is a k, x 1 vector of coefficients,
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and elements v,;’s of V,, = [Vy1,...,Vpn| are i.i.d. with mean zero and variance o*. Model (2.2) can
be estimated with moments linear in V,, and moments quadratic in V, (Lee, 2007), where the latter
ones are motivated from the quasi maximum likelihood estimation and Moran’s I test for spatial
dependence (Moran, 1950). Like the above Box-Cox transformation model, model (2.2) is a linear
regression model (I, — BW,)Y,, = X,,a1 + V), for given B. Thus, natural estimating functions of ay and

o2 can be, respectively,

dln(ﬁ) = (X;;Xn)_lxé(ln o ﬁWn)an (2-3)
G(B) = Vil ), B)Valcival ), ), (2.4)

where V,(aq, ) = (I, — BW,)Y, — X, a1. As in Jin and Lee (2019), model (2.2) can be estimated with

the moment vector:

§0) = L 1Vilan, B)Pu Vilar, B) = 07 (P Vilar, BB Vileas, B) — o (B ), Vi, BIQ, T

(2.5)
where y = [a/, B] with a = [ai,az]’, P]-n’s are n x n matrices, which are functions of W,,, and Q,, is
an n x kg IV matrix, which are functions of X,, and W,.. With a,(p) and 62(B) substituting a; and

o2 in (2.5), we can consider the two-step estimation of f.

To eliminate possible asymptotic impact of d (or d,(p)) on the estimation of 3, we may use
C(a)-type moments as follows. Let g,(y) = [g,,(¥),&.a(y)]’, where g,;,(y) is my, x 1 and g,,(y)
is m, x 1 such that my = my, + m,.* Consider the function g,;(y) — Ci,8ua(y) = Cugu(y) of my,
moments, where C;, is an my, x m, nonstochastic matrix with bounded elements and C, =
[In,,—C1,] with I, being the m;, x m), identity matrix. We can show by the mean value theorem
that \/nC,g,(d, By) has the same asymptotic distribution as that of VnC, g,(yo) if C,Gna = Gupa—

ClnG_naa =0and & = ag + Op(n_l/z); where G_na = E(agg(z/{))); ana = E(%)z and G_naa =

a a

E(%) is assumed to have full column rank.’ Such a C,,, exists if rank(G,,) = rank(Gp,,)-

An example of Cln is ancx(é/ Q. Gnaa)_lé;qaaQr_liw where Qnaa = nE[gna(VO)géa(VO)]- There

naa naa

4See Appendix A for a list of notations used in this paper.
>With C,G,, = 0, by a first order Taylor expansion of VnC,g,(d,f) at & = ay, VnC,g,(d, Bo) has the same

asymptotic distribution as that of vnC,g,(yo) as long as & = ag + op(n’1/4). Thus, it is possible to allow for
the convergence rate of & to be slower than +/n but faster than 1n'/4. We focus on the usual case with the /-

convergence rate of & in this paper.



are mj, moments in C,g,(y), thus the number of moments is reduced by m, from mg. In the
special case that m, = k,, we have C;,, = G,3,G,},- For the following analyses, we assume that
m, >k, and there exists a C,, such that C,G,,, = 0. However, the case m, = k, will be of special
interest.

The transformation matrix C,, might involve unknown parameters a, and B,. Let C,(a, B)
be a function of a and f such that C,(a, ) at consistent estimators of a( and S is a consistent
estimator of lim,,_,., C,.. If expectations in C, have closed forms, then we may simply let C,(y) =
C,(y), where C,(y) is the matrix obtained by replacing y, in C, with y; otherwise, relevant
expectations can be estimated by corresponding sample averages. For example, when m, = k,,

98 (y) 981a(¥)

Cn(y) can be [Ime_ana(V)Gnua( ] where ana(y) - T oa and Gnaa(y) - T oa . We consider

the following TGEL estimators®

Praws = argr/?elgﬂeir;%ﬁ Zp dni(d, B) ) (2.6)

and
- (wd 2.7
Bronia = wgmip sup Zp wi(dn(B), B)), (2.7)

where d,;(7) = C,(¥)2.i(¥), Aua(y) ={p: pt’dni(y) e V,i =1,...,n} for an open interval V con-

taining 0, and p(v) is a twice continuously differentiable concave function of a scalar v on V.

dp(v)

The TGEL estimators does not involve the estimation of any variance.” Denote pi(v) = - F

for k = 1,2. We may let p;(0) = p,(0) = —1 without loss of generality, as long as p;(0) # 0 and

®Alternatively, we may first derive a consistent but perhaps inefficient estimator f of f, and use the moment
C,(a, ﬁ)gm-(d, B) instead of C,/(d, B)g,i(d, p) for estimation. Then an asymptotically equivalent TGEL estimator can
be derived. Using én(d,[;)gni(d,/i) involves an additional estimation step of . These two moments also differ in
terms of identification conditions. We focus on the TGEL estimator using C,(d, f)g,i(d, f) in the main text, and

investigate the other one in the supplementary material. The same comment applies to the case with d,(p) for

Culdn(B), B)-

"We may also consider optimal two-step GMM (TGMM) estimators, which require a consistent estimator
of the variance of —= ):l 181i(Y0) to construct an optimal weighting matrix. As g,i(y9)’s are MDs, the vari-
ance of \/Lﬁ):?:lgm(yo) is Q, = ﬁ i=1E[24i(70)8,;(y0)]. With d and a consistent estimator ﬁ of By, Q, can
be estimated as Q,,(d, f) = £ Yi; gui(d, f)g,;(d, f). Denote d,(y) = Cu(y)8u(y) and Q,a(y) = C,(»)Qu(7)Ch(y)-
The proper optimal TGMM estimators of § to be compared with ﬁTGEL and ﬁTGELz are, respectively, ﬁTGMM =
argmingep d;,(d, B)Q;, ) (& f)dy(d, B) and Brow = argminges d;y(dn(B), B (cu(B), f)du(cn(B), B)-



p2(0) < 0 (Newey and Smith, 2004). The class of GEL estimators include the EL estimator (Qin
and Lawless, 1994; Smith, 1997), the ET estimator (Kitamura and Stutzer, 1997; Smith, 1997),
and the CU estimator (Newey and Smith, 2004), which have, respectively, p(v) = In(1 —v) for
v<1,pv)=-e"and p(v) = —%(v +1)2. The TGEL estimators of the auxiliary vector p corre-

sponding to frge; and frgec, are, respectively, flygy = argmax cp .4...) Y p( wd,i(a, ﬂTGEL)),

and

ﬁTGEL2 = arg max Zp /dfll an ﬁTGELZ) ﬁTGEL2))
I"EAnd(an(ﬁrcst) ﬁTGELZ) i=1

A two-step GEL estimator has been considered in Newey et al. (2005) as

n

argmin  sup o\ A gni(d, B)),
PEB Nen,o(@p) Z ( " )

where A (a,B) = {A: Vgi(a, ) € V,i=1,...,n}. It is asymptotically equivalent to the GMM
estimator argminges g,(d, B (7)g(di, B), where Q,(y) = L Y7, g4(3)g/;(¥) and 7 is an ini-
tial consistent estimator of y, due to the self-normalization property of the GEL.® Since & is
generally inefficient and has an impact on the asymptotic variance of estimates of 8, the usual
variance formula cannot be used and a correction is needed. An inefficient estimate & leads to
the inefficiency of the second-step estimate of . Also their two-step GEL objective function
cannot be directly used to construct asymptotically pivotal tests either. As shown below, our
proposed TGEL objective function and estimators are designed to overcome those issues.

For comparison purposes, we present also the ordinary GEL estimator, which is

VorL = argr;lelpAerRaX Zp /\ Sni(y (2.8)

where I' is the parameter space of y. The TGEL estimator (2.6) is computationally simpler than
Veer since there are fewer auxiliary parameters in y than in A and fewer parameters in 8 to be

estimated than in y.

81t can be shown as for the ordinary GEL that, with moments g,,;(&, 8) for i = 1,...,n, the leading order term for
the GEL estimator argmingep SUP e, (d,) Y p(/\’gni(d ﬁ)) is the same as that for a GMM estimator with the em-
pirical moment g,(d, f) and the weighting matrix [ Y1 &ni(7)g (D) 1. So GEL employs [ Y 1gm(7/)g;li(77)]’1

as the weighting internally, but that is not proper as & has an impact on the asymptotic variance of the moment

\/Zgn(df ﬁO)
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Let O,(y) = L L1 Elgu()g,(0)) Qu = Qulro), Guly) = %2, Gu(y) = EIG,(»)), Gy =

G,(y0) and Gnlg = E(agg—g‘))). The following regularity conditions are required for our asymptotic

analysis on the consistency and asymptotic distributions of considered estimators.

Assumption 1. (i) E[g,(vo)] = 0 and yq €T is the unique solution to lim,,_, E[g,(y)] = 0;° (ii) T is
compact; (iii) 8,i(y) is continuous at each y € I with probability one; (iv) sup,,¢r llg.(¥)-Elg.()]ll =
0,(1) and E[g,(y)] is continuous on T uniformly in n; (v) sup,cpligni(y)II! < by for some 1 > 2
and b,; with %2?21 E(byi) = O(1); (vi) sup,,ep [1Q,(y) - Q) = 0,(1) for a neighborhood N of
v, Qu(y) is continuous on N uniformly in n, and lim,_,., Q,, is nonsingular; (vii) p(v) is con-
cave on V, twice continuously differentiable in a neighborhood of zero, and p1(0) = p,(0) = —1;
(viii) yo € int(T); (ix) g,i(y) is differentiable on N, supyeNllG (y)-G,(¥)l =0 p(1), G,(y) is con-

tinuous on N uniformly in n, and supyeNHag”’ | < by; for some b,; with =Y i1 E(by) = O(1);

(x) rank(hmn_m n) = ky; (xi) g4i(yo)’s are MDs with respect to an increasing o-field so that

Vng,(vo) 4 N(0,1im,,_,, Q,,) by a central limit theorem (CLT) for MD arrays.

Assumption 2. (i) There exists a nonstochastic my x m, matrix Cy,, such that lim,,_,, C;,, exists and
CyGna = 0, where C,, = [I,,,,—C1,] and m, > ky; (ii) for the case with d, sup,en;, peslICula, B) -
Cula, Bl = 0,(1) and C,(a,p) is continuous on N x B uniformly in n, where N is a neigh-
borhood of aq; for the case with a,(p), supyerllcn(y) - Cypll = 0,(1) and C,(y) is continu-
ous on I uniformly in n; (iii) for the case with &, & € A; for the case with d,(B), d,(B) is in

the convex parameter space A of a; (iv) for the case with &, & = ag+ O,(n —1/2);

); for the case
with a,(B), d,(Bo) — ap = Op(n‘l/z) and there is some nonstochastic function a,(p) of p such
that a,(B) € A for B € B, supgegllan(B) — an(Bll = 0p(1), ay(p) is continuous uniformly in n
and lim,_,., a,(Bo) = ao; (v) By is the unique solution to lim,_, C,(ag, B)E[g.(ag, B)] = 0 and

lim,,_,o C,i(a,(B), B)Elgu(a,(B), B)] = 0; (vi) for the case with &, C,(a,p) is differentiable with

respect to B on a neighborhood Ny of Bo and sup.,c s, L<j<k, ”acﬂ I = O,(1); for the case with
ay(B), Cul(y) is dzﬁerentzable on N, da(p) is differentiable on ng, SUP, e, 1<j<k, ”83/)” = 0,(1)
T j
J n .. . - -
and SUP e, 1<)k 1% a || = 0,(1); (vii) rank(hmn_ﬂ><> CuGp) = k.

Assumption 1 is for the ordinary GEL estimator, while the additional Assumption 2 is for

9The existence of the limit of E[g,,()] is implicitly assumed in the expression lim,,_,, E[g,,()]. This also applies

to other expressions in the paper where limits are taken.
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TGEL estimators. Conditions in Assumption 1 extend those in Newey and Smith (2004) for
i.i.d data to allow for triangular arrays, where the moments at the true parameters are MD
arrays. Since we have only assumed that g,;(y()’s at the true y, are MDs, high level regularity
conditions such as uniform convergence and continuity are imposed. For some specific models,
more primitive conditions can be derived. For example, primitive conditions for GMM and GEL
estimation of SAR models are given in Lee (2007) and Jin and Lee (2019). A CLT for MD arrays
in Assumption 1(xi) can be found in, e.g., Gidnsler and Stute (1977) and Hall and Heyde (1980).
For SAR models, a CLT is derived in Kelejian and Prucha (2001) for linear-quadratic forms of
disturbances.

Assumptions 2(ii)—(iv) list some basic conditions on C,(y), & and d,(f). Assumption 2(ii)
is needed for the consistency of the TGEL estimator. It may be verified by a proper law
of large numbers (LLN) in specific models, since C,(y) can be C,(y) or estimated by using
sample averages for relevant expectations. Similarly, as d,(p) is a function of sample ob-
servations, an LLN might be applicable and it is plausible to assume some uniform conver-

10

gence and continuity conditions on ¢,(B)."° With &, even if lim,,_,, E[g,(ag, 8)] is uniquely

zero at f = By, lim,_, ., C,(ag, B)E[g.(o, B)] might not be so as the transformation reduces the

number of moments. As an example, consider the estimation of the SAR model (2.2) with

gn(y) = [gnb(y)’gna(y)]/) where gnb(y) = %Vn/(al’ /J))ann(alf :8) and

8a0) = L [Vilar, B)Valar, )~ o, Vilar, QT

with Q, being an n x k; matrix for some k, > k,. In this special case, as E % =0, we may let

— O_2

Cln = 0. Then hmn—>oo Cn(“O: ﬁ)E[gn(aO; /3)] = hmn—moE[gnb(aOr ﬁ)] = hmn—mo %(ﬁo_ﬁ)tr[WH(Tn‘*’
)]+ lim,_ %([30 - B (T, Xp10) W(T, Xpa10) + agtr(Tn’WnTn)], which can be zero at § # By,
where T, = W, (I, — BoW,,)~'. On the other hand, %E[gn()/)] can be uniquely zero at y = y,. For

example, when lim,,_, %Q;[Xn, T, X,a10] has full column rank, lim,_,., Q; V,(ay, B) is uniquely

10As an example, consider the case that Suala, B) is ko x 1 and da,(p) is the solution to g,,(a,p) = 0. If
E[gua(a0, Bo)] = 0, under regularity conditions, E[g,,(a, 8)] = 0 yields a solution a,(8), which is a continuously
differentiable function of g and satisfies a,,(fg) = @g. we can show that SUpges llau(B)—au(B)ll = 0,(1), and d,(Bo) =
ag + Op(n’l/z) by expanding 0 = g,,(c,,(Bo), fo) at (g, fo). For the SAR model (2.2), with &, () = [d],,(B).62(B)],
where d;,(B) and 62(B) have explicit expressions in, respectively, (2.3) and (2.4), it is easy to show that Assump-

tion 2(iv) is satisfied.
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zero at (ay, ) = (aq0, Bo), which implies that %E[gn(y)] is uniquely zero at ¥ = y(. In this ex-
ample, the transformation of g,(y) results in the loss of too much information so that only
a moment quadratic in g is left, from which f; is not identified. We may move some linear
moments from g,,,(y) to g,;(7) or add more quadratic moments to g,;(y) to achieve the iden-
tification of By when using transformed moments. It is also possible that the transformation
of moments leads to weakened identification, which may result in worse finite sample perfor-
mance, but it is beyond the scope of this paper. In the case that there is an identification issue,
the penalization approach proposed in Frazier and Renault (2017) can be used.!! For simplic-
ity, we assume the identification uniqueness in Assumption 2(v). The same comment applies to
the case with d,(B). Assumptions 2(vi)—(vii) are needed for the v/n-rate convergence of TGEL
estimators.

Denote D_nlg = C_nénﬁ and Q,; = C,Q,C/. Then we have the following theorem on the

asymptotic properties of ﬁTGEL and /§TGEL2.
Theorem 1. Suppose that Assumptions 1-2 are satisfied.
(i) Vi(Braw—Bo) > N(0,1im, oo (D} Q5 D)™ ) and Nit(Brgesa—Bo) > N(0,1im, o (D05 Dy) )
(ii) 2T p(fronn i (@ Bra) )-10(0)] 5 x2(my—kg) and 2L 1y p(Hhcunadni(cin(Broses): Broa))-
np(0)] % x2(m;, - k).

(ii1) ﬁTGEL and fgmuz are generally less efficient relative to ﬁGEL, where ﬁGEL is the joint GEL estimator
of B, which is a subvector of Pgy, in (2.8). But if m, = k,, then ﬁTGEL and ﬁTGELz (will be denoted

as /§E_TGEL and ﬁE_TGELz ) are asymptotically equivalent to ﬁGEL.

(iv) If m, =k, and E(supaeA,ﬁeNﬂ ||a‘3;3(,7)||) < oo for the parameter space A of a and a neighborhood

Np of Bo, then @y gy, and Gy rgey, where

n

aAE—TGEL = arg rnel./{ll SU.R Z p(/\,gni (0(, ﬁE—TGEL))
YA NEA (@ Prrarr) =1

"An alternative to the penalization approach in Frazier and Renault (2017) is to use Newton iterations for
the TGEL objective function by starting from the initial consistent estimate 8. The resulting estimate in each
iteration will be consistent and the estimate sequence converges to a critical point of the TGEL objective function.
As pointed out by Frazier and Renault (2017), the approach in Trognon and Gouriéroux (1990), which we shall

describe later, may also have a similar identification issue.
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and &y ygp, = aArgMinge 4SUP cp ) Yiip(Ngi(a, ﬁE_TGELZ)), are asymptotically equiv-

ng (@ Prrres
alent to the joint estimate dgy, of a from (2.8).

With the C(a)-type formulation, the TGEL estimators have an asymptotically normal dis-
tribution with a limiting variance formed by a usual Jacobian matrix of given moments and
a weighting matrix, and do not involve any asymptotic variance of initial estimates of nui-
sance parameters. The TGEL objective functions can provide overidentification tests in Theo-
rem 1(i7). The C(a)-type transformation reduces the number of moments for the estimation of
p by m,, where m, > k,, in order to eliminate the asymptotic impact of the k, x 1 dimensional
estimate & or d,(f). The resulting TGEL estimates might not be efficient relative to the joint
estimator ﬁGEL. However, in the case that m, = k,, ﬁTGEL and ﬁTGELz do not lose asymptotic effi-
ciency for the estimation of 8, which is the parameter vector of interest. In the event that it is
also desirable to have a relatively efficient estimate of the nuisance parameter vector «, then the
efficient TGEL estimates /§E_TGEL and ﬁTGEm may be plugged back into the original GEL objective
functions to obtain second round estimates of a, which turn out to be asymptotically as effi-
cient as the joint GEL estimate of a. For our results on GEL estimators in Theorem 1(iii)—(iv)
with m, = k,, the nuisance parameter vector a in g,(a, B) can be replaced by any /n-consistent
estimator & or any estimating function d,(p) satisfying regularity conditions, while in Crepon
et al. (1997), a is replaced by d,(f), where &,(p) is the unique solution of g,,(a, f) = 0 given f.

We note that our efficient TGEL estimators are asymptotically equivalent to a GMM esti-
mator proposed in Trognon and Gouriéroux (1990). Consider the case with & as an example.
Applying their method to the OGMM objective function g/ (a, B)Q; (&, )g,.(a, B), where f is a
consistent estimator of f,, we derive the following objective function for a two-step estimator

[a”, p7] of [aq, Bo]:
[84(, B) + Ga( s B)(a — )] Q51 (d, P)gn(d, B) + G (d, B)(a — )], (2.9)

where G,,(a, ) = %.12 This objective function is derived by a first order Taylor expansion

of g,(a, B) at a = d. For given f, the closed form solution of « is

@ (B) = &~ [Ga(d, B)Q (&, f)Gra (&, P Gria(d, B)O; (b B)gu( B).

12G,,(&, B) in (2.9) can be replaced by G, (d, f) and an asymptotically equivalent estimator can be derived. See

also Frazier and Renault (2017).
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Substituting this expression into (2.9) yields the objective function for §*:

8n(&, B)M o (B)gn(dt, B), (2.10)

where M,,o(B) = Q03 (d, )=Q5 " (d, B)Gra (d, ) Gra (¢ B2 () G (. B)] 7! Gria () (s )
A two-step GMM (TGMM) estimator Sy, which is asymptotically equivalent to the TGEL es-

timator (see, e.g., Newey and Smith, 2004), has the objective function

gn(d, B)Cp(d, B)[Culd, ) (d, B)Cri(d, P Coldh, B)gn(dh, B). (2.11)

Assume that C, (&, )G, (&, ) = 0 for this comparison of our TGEL with the GMM in Trognon
and Gouriéroux (1990). Then

[0:(& HICH(@ O3 f)Gra (. B) = Culd B)Gra(d ) = O

v

and rank [Ql/z ﬁ) ((X ﬁ) Q;, 1/2( ﬁ) na(d, /3)]) =mp+kq < Mg as my > ko Thus, Mna(ﬁ) =
Q;'2(d, B)- Q)% (d, )M, (B)Q)*(d, B) - Q5 2(d, ) 2 Py (), where

Poa(B) = QY2 (&, B)- Q1% (&, B)Co(ct, B)Could, BY(dh, B)C(d, B Could, B2, )2, 2 (1, B),

by the decomposition of projection in (3.25) of Ruud (2000), and

8n(&, B)Myo(B)gn(dt, B) = 8n(dls B)Prua(B)gn(cls B).

If m, = kg, then g, (&, B)M,o(B)gn(c, B) = (&, B)Pya(B)gu(d, B). The objective function in (2.11)
differs from g, (d, )P, (B)g,(&, B) only in that the optimal weighting matrix does not involve
unknown f, as the optimal GMM vs CU. Hence, the E-TGEL estimator f;_,q;, is asymptotically
equivalent to f*. By plugging f,..ce. back into the original GEL objective function, we may also
derive an estimator of « that is asymptotically equivalent to a*.

We next study higher order asymptotic biases of ﬁTGEL and /§TGEL2 based on the Nagar-type

expansion (Nagar, 1959) of an estimator f:

\/E(/D9 —Bo) = lpn[)’ + n_1/2(Pnﬁ + Op(n_l)f

where E(¢,3) = 0, 3 = Op(1) and ¢@,g = Op(1). The higher order bias of p is computed as

%E((pnﬁ). Newey and Smith (2004) show that the ordinary GEL can remove several bias terms
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of the ordinary feasible OGMM. For the TGEL and TGMM estimators, we expect ¢, d,(f) and
the estimation of C,, to result in additional higher order bias terms. To investigate this, we make

the following assumption.

Assumption 3. (i) For the case with &, \n(d — ag) = Puq + Op(n™2) = 0,(1); for the case with

da,(B), d,(p) is twice differentiable and a,(B) is differentiable in a neighborhood Ny of By such

aan(ﬁ ) aan(ﬂ ) _
that aﬁ,o aﬂ," = Oy(

possible partial derivatives of order j; (i) \n[Cy(yo) — Cu] = Puc + Op(nV2), B(llipucll?) = O(1),
VC,(y) and V2C,(y) exist on N, VC,(y0) = VCy(yo) = O,(nV?) and sup, e IVZCu(p)ll = Op(1);

n—1/2)

and supﬁegllvzdn(ﬁ)ll = Op(1), where Vi denotes a vector of all

(iii) for 0 < j < 4 and all z, Vig,:(y) exists on N, supyeNHngni()/)H < b, for some b,; with
1 i (bS ) = (1)1 L 7'1:1 Vkrm'(Vo) - l n: E[Vkrni(yo)] = Op(n_l/Z)for k=1,2and r,;(yo) =
gni(VO)i 8ni(70)8,i(V0)r 07 8i(70)8,,i(70)&ni(y0); (iv) p(v) is three times continuously differentiable

with Lipschitz third derivative in a neighborhood of zero.

In Assumptions 3(i)—(ii), ¥4 and ¥, being respectively leading order terms of v/n(d — ag)
and v/n[C,(yo)-C,] are involved to derive the higher order bias of ﬁTGEL, where ¢, ; and ¥,,c may
be correlated in general. If C,(y) is equal to C,(y), which can be the case when expectations
in C,, have closed forms, then ¥,c = 0; otherwise, ¥,c # 0. For example, when m;, = k, so
that Cy, = [Iy,, ~GupaGraa] and we take C,(y) = [Ln,, ~Gupa(¥)Graa(¥)], then ¢, = [0,~(Gypa —
Guba)Graa + GuvaGraa(Graa = Guaa)Graal, Where Gy = Gupa (1) and Guaa = Guaa(yo). Other
regularity conditions in Assumption 3 such as smoothness conditions on da,(8), C,,(¥), g.i(¥)

and p(v) are needed since Nagar-type expansions are based on higher order Taylor expansions.

i g =(j i ni i
Let £,i(Y0) = &ni» &1 = &n(Y0)> Guip = ga,;'m)' Gup = ga,(sZO)' Gfa]/; E( agy 3295 gm = gay(,m'
=(j) _ aC, ) dau(Bo) ' A-1R -
¢ = % @l = 25, 5,4 = (D Q5hDup) ™ B = 04D} Oty P = 0y =035D,1p 200Dy 051,

p3(v) = dz 5, P be the jth element of any vector ¢, and Ckyj be the jth unit column vector of

dimension kg. Denote 1,5 = — H,;\nC,g, and Yoy = — P,;\VnC,g,, which are leading order

terms of, respectively, \/ﬁ(ﬁTGEL - /3’0 ) and Vnfi,e. In addition, let the leading order terms of
\/E[dn(BTGEL) - aO]l \/—[ (0( ﬁTGEL and \/_ an ﬁTGEL) ﬁTGEL) Cn] be, feSPeCtiVel}" ano'u

Y, and 1, , whose explicit expressions are given in Appendix A.

Theorem 2. Suppose that Assumptions 1-3 are satisfied.
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(i) The bias of Preey i

(ii)

p3(0)
2

L - - o _
Bias( s ) = [BL, + (B, + 2B2) + (BC, - BS ) + B, " + BS ¢ + BS;C 4+ BCG 4 B ),

kg ~ = 205 A
where B! nd — Hnd E(C GnﬁHnangn) nd Z] 1 C G( +])Endekﬁjl Bizd =Hyg E(CnQnCnPnangn):

np

B?d = p Zi:l HndcnE(gnignicnpndcngni)l nd = _EndE(G C p dcngn):

np

. 1. &
G
Bnd = _n;)_):nd é_l E( m/gc Pndcngnz)

C- k 1 '(ka+k ) = ) ¢
Bndﬂ = % nd[t " )Gna E(¢na¢n;,¢)] tr[cn ! GnaE(¢nd¢ny)]] ’
c- 1l - = s
Bndg = _E nd E(\/%i,bn(jgn + EDnCGnaz:bnd + ¢nCG”ﬁ¢”ﬁ)’
X ko , e
BC;0 =Bl 0,00, C+C Qn%c)#’nﬂ] H,, Z(Cy)QHC,’ﬁCnQnC,SJ) VE(rPnaj)
j=1
Bia® = wBEwaGl ), and
1 L v 1 a '
B,‘fd = EE[an ZGL]I; Crzlzbnpgbndj _Hnd\/ECn(Gna na)¢na E nd CnGSjgf¢”d¢”&j
j=1 J=1

ke ko n

- - =(j) 1 -

_Hnd CnGn]ﬁﬁbnp’ana] - ;H ZZC E gm gnz +gmgm ) nlabnylabna]]
=1 =1

The bias 0f[§TGEL2 is

. A G, -G, i—-G,—C
Bias(froprs) = Bias(Breer) + B + (BS, © = B O0) 4 BO 02 7C,

(kg)

—d = ke ~() (1), = ) ke A = P
where BS;¢ = 15,4[tr[(Z5, G ) Gra B i) (22 CF e, ) G B(a ]|

-G, V) ) A’ D = =G, 3 ) )’ D =
Bjd =-Y,E(a, IgG aCrnPuaCngn) Bzd = _nl_zznd Y1 E(e, ﬁGmaC PuaCugni),
ka
i-G,—-C _ 1 & ’
B:d - nd nﬁE[(Z C ana]+G alzb )anp]
j=1

and Bias(ﬁTGEL) has the same form as that ofBias(ﬁTGEL) in (i) except that V4 in Bias(ﬁTGEL) is

replaced by ,,4.



With the moment vector C, g,(aq, ), the bias terms qu 2 Bi)d and de have similar interpreta-
tions to corresponding ones for one-step estimators, respectively, the bias for a GMM estimator
with the optimal linear combination Déﬁﬂgé C,gu(ag, B), that from estimating the second mo-
ment matrix ), in Q,,; with the empirical variance § Y I, g,;g,;, and that from estimating G,
in the gradient C,G,5. As g,i(y)’s are not iid., B, = BS, and B, = B, in general, and their
differences depend on the strength of correlations across observations. If g,;(y)’s are i.i.d., then
de—figd drops out from GEL’s higher order bias. Furthermore, for EL, since p3(0) = -2, the bias

p3(0) 5 C-g

. .. . C- - - ¥
term B?d + BnQd also drops out in the i.i.d. case. The bias term B, , P +B,, +de Q +B7C1d G—i—BZd

of [§TGEL arises since the ith transformed moment vector d,;(&, ) = C,(d, f)g.i(d, B) involves

o . y . C-p . o ko +j
C,(a, B) and the initial estimate ¢. The bias term Bndﬁarlses from the derivatives C,(1 ) of

C,(a, p) with respective to f3; Bsd_g, BSd_Q and BS;G arise from the estimation of C,, in, respec-
tively, the moment vector C,g,(ao,f), the second moment matrix C,Q,C}, and the gradient
C_nGnﬁ; and Bf‘;d arises from the initial estimate d.

Compared with /§TGEL, /§TGEL2 has some additional bias terms Bgd_‘i, BZ;G“, Bi;G“ and Bi;G“_C

due to the derivative of ¢(pB). The bias term Bgd_d is the direct result of the derivative of ¢(f),

Bg;G“ and BZ;G“ are related to the correlation of g, with estimated G,,,, and Bz(;G“_C is related
to the correlation of g, with estimated C,, and also G,,. With i.i.d. data, Bi;G“ = Bi‘;G“_C, SO

5d—G, a-G4—C i 3
B ,7“-B | drops out from Bias(Bgg,)-

In the special case that g,,(7) = g,.(a) does not involve  and is k, x 1, an initial consistent
estimator & might be derived by solving g,,(a) = 0. It follows that C,(d, 8)g,(d, B) = guw(d, B)
does not involve C,(d, ). Furthermore, since Eag’g—ﬁ(f‘)) =0, CnGn/s = Eaggb—ﬁ(,y(’) does not involve
Cy,- Then ﬁTGEL will not have the bias terms Bgd_g and Bgd_G.B

Corollary 1. If g,,(v) = gua(@) is k, x 1, the unique solution d to g,,(a) = 0 is a \/n-consistent

estimator of ag and ¢ is used to derive Pygg,, then Bias(fyee, ) = [BL,+ (B, + p32(O)B§d)+(BSd—I§Sd)]+
C-p

c-Q ¥
[Bnd +B.; +Bgd].

As in Newey and Smith (2004), Theorem 2 and Theorem D.1 in the supplementary mate-

13The bias term BS{;Q will still be present because C;,, appears in the second moment matrix Q,,4, even though
it does not appear in C,g,(d,B) = gup(d, B). For ﬁTGELz, we may consider the special case that g,,(y) is k, x 1 and

a,(B) is the unique solution to g,,(7) = 0, where only the bias term BrCld—g disappears.
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rial show that TGEL estimators have fewer bias sources than corresponding TGMM estimators.
However, for general models, it is not clear whether TGEL estimators have smaller higher or-
der biases than TGMM estimators or not, because the signs of higher order bias terms can be
positive or negative and fewer bias terms do not necessarily mean smaller higher order bias. In
addition, as pointed out in the introduction, a TGEL estimator might not have finite moments,
so the analysis might not imply the exact finite sample bias of TGEL and TGMM. Criticisms
and interpretations on using Nagar-type expansions for higher order bias analysis can be found
in Rothenberg (1984) and references therein. To compare the higher order biases of GEL and
GMM, Newey and Smith (2004) consider some special models including conditional moment
restriction models and some minimum distance estimation models. For such models, GEL’s
bias does not increase with the number of moments while GMM’s bias does. GEL automati-
cally eliminates some bias terms due to the presence of unknown f in estimated C,. Except
for these bias terms eliminated by GEL, the bias terms from the moment vector C,g,(ao, )
and TGMM'’s extra bias terms due to its two-step nature in forming an optimal weighting ma-
trix, TGEL and TGMM estimators have the same higher order bias due to the estimation of C,,
and the estimate d or d,(f). Thus TGEL estimates generally have bias advantages over TGMM
estimates for those conditional moment restriction models and minimum distance estimation
models. In our framework, ¢ and d,(B) are arbitrary except for some regularity conditions,
thus it is not easy to see the relation between the number of moments and the bias terms which

are not from C, g, (o, B).

3 Tests for parameter restrictions

In this section, we study tests for parameter restrictions with the TGEL estimator. We consider
k. general restrictions r(fy) = 0 on the parameters of interests f§ for a k, x 1 vector of functions
r(-) with k, < kg. The alternative hypothesis is r(fy) # 0. For any \/n-consistent estimator d& of

a, d,i(d&, B) plays the role of g,;(y).'*

144, (B) at a \/n-consistent estimator § of 8y is a yn-consistent estimator of a, and the first order asymptotic

analysis in the following text is the same, so we just use d.
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Let pa(a, Bou) =Y, p(y’dm-(a,ﬂ)), [S’rTGEL be the restricted TGEL estimator that solves

min sup pu(d,pu), st r(p)=0,
PEB e alp)

and fi;pgp = arg MaAX A (& frrens) Pnd(d, ﬁrTGEL, #). The TGEL ratio test has the test statistic

RTGEL = 2[pnd(d’ ﬁrTGELt ﬁrTGEL) - pnd(d: ﬁTGEL’ ﬁTGEL)]’ (31)

which follows the asymptotic distribution x?(k,) under the null hypothesis r(8;) = 0. While
R Tequires both restricted and unrestricted estimates, it avoids the estimation of any vari-
ance and it has a form similar to the likelihood ratio test. The Wald test statistic with the TGEL

estimate is

WTGEL =n: r,(ﬁTGEL)[R(B\TGEL)an(a‘/l ﬁATGEL)R/(ﬁATGEL)]_lr(ﬁTGEL)’ (3'2)

where R(f) = 85;3/3) and ¥,,;(y) = [D,;ﬁ(y)Q 1(7/)Dn/3(7/)]_1. Alternatively, we may consider a re-

IPnd (Y1)
Ip
at the restricted GEL estimate. Under the null that () = 0, the test statistic satisfies

stricted GEL estimation and construct a test directly based on the GEL score evaluated

apnd (d, ﬁrTGELI ﬁrTGEL) d

1 apnd(dJ/;rTGELl ﬁrTGEL) 2
o LX) (33)

n dp’

STGEL = an ( da, ﬁrTGEL)

This test only requires the restricted TGEL estimate.
A C(a)-type gradient test and a corresponding GEL test can be applied with any y/n-consistent

restricted estimator f, such that r(f,) = 0. Let

W(a, ) = R(Pr)Z0a (7r) Dy (7)) Qg (7). B), (3.4)

where 7, = (&, f)". Then VnW,(d, f,) is a C(a)-type statistic such that it has the same asymp-
totic distribution as that of vnW,(d, By) by the mean value theorem, and the same as that of
V¥, (ag, Bo) since Vnd, (&, fo) = Vnd,(ag, fo) + 0,(1). Let W,;(a, B) be the vector derived by re-
placing d,(a, f) in ¥,(a, p) with d,;(a, p) so that ¥, (a, f) = Z i1 ¥,i(a, ). Then we have the

following gradient test in the GEL framework:

n

gTGEL=z[A€Ai$&ﬁr)i:Z p(V Wi i) - p(0)], (3.5)

where Ayy(a,f) = {A: VV¥,(a,B) € V,i = 1,...,n}. Note that 12 Wi (7)), () is a consis-

tent estimator of the limiting variance of y/n\W,(yy) and its inverse is used internally by the
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GEL as the optimal weighting matrix. An advantage of G, is its robustness to unknown het-

eroskedasticity, because (),(y) = %Z?:l 81i(70)g,;(y0) may capture unknown heteroskedastic-
ity in g,;(70) (Lee and Yu, 2012). This test statistic only requires the estimation of the auxiliary
vector 1 in the GEL framework, and no variance matrix needs to be estimated.!?

We maintain Assumption 4 for asymptotic analysis on the above tests.

-1/2

Assumption 4. (i) The true p value in the data generating process is , = Po+ n'“c for some

constant vector c; (ii) r(p) is continuously differentiable and R = I(Bo) py g full row rank; (iii) r(f,) =

ap’
0 and \/E(ﬁvr —Bo) = Op(l)'

With a continuously differentiable r(:), the Pitman drift in Assumption 4(i) implies a local

violation of r(p) = 0.
Theorem 3. Suppose that Assumptions 1-2 and 4 hold.

(1) Rigerr Wicerr Sraer Ahd Grpy are all asymptotically equivalent with the asymptotic distribution
x2(k,,lim,,_,o ¢’R'(RY,,4R") "1 Rc), where x*(ay,a,) denotes a noncentral chi-squared distribu-

tion with a; degrees of freedom and the noncentrality parameter aj.

(ii) lim, o ¢'R'(RE,4R) " Re < lim, o, ¢'R'(R,£,R)) " Re, where R, = 206 — [o,R], £, =

(G, 0,1 G,)7Y, lim,,_, o ¢’R(RY,,4R') " R is the noncentrality parameter in (i), and

lim ¢’R'(R,£,R})™" Re

n—-o0

is the noncentrality parameter for tests in the ordinary GEL framework in the supplementary

material.
(iii) If my = ke, then lim, o ¢'R'(RE,4R’)™ Re = lim,_,, ¢'R'(R, £,,R},) ' Re.

The above theorem shows that tests in the TGEL framework are asymptotically equivalent
under either the null or local alternative hypotheses. These tests are locally less powerful in
general than those in the ordinary GEL framework, but they are locally as powerful as the latter

ones when m, = k,,.

5In Jin and Lee (2019), this form of test is used to implement Moran’s I test for spatial dependence, which can

also be robust under unknown heteroskedasticity.
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4 Monte Carlo

In this section, we conduct some Monte Carlo studies on finite sample performance of the two-
step estimators and tests considered in this paper. We consider both the probit model (2.1) with

an endogenous regressor and the SAR model (2.2).

4.1 Probit model with an endogenous regressor

We first consider estimation of model (2.1) with simple moments as those in Wilde (2008),
where the initial consistent estimator of nuisance parameters for TGEL and TGMM is the solu-
tion to a subset of simple empirical moment conditions.'®

The parameters for model (2.1) are not identifiable without a proper normalization. We
may show that E(y;|x) = ®((x]x + x'at)/0,), where 02 = 02 + 1202 + 2p70, 0., and P(-) denotes
the standard normal cumulative distribution function. Following Wilde (2008), with ; = x/0o;
and f, = t/05, we have the simple moment vector g(y) = [g,(¥),8,(y)]’, where g,(y) = x[y; -
D(x1p1+x'aBy)], g(y) =x(v,—x'a), and y = (a’, p’)’ with B = (B], B2)". Given g(y), a convenient
two-step estimation is to first derive the OLS estimate & by regressing v, on x, which is the
solution to the empirical moment condition ) ! | g,;(y) = 0, where g,;(y) denotes g,(y) at the

ith observation, and then use the transformed moment C,(d, $)g(d, ) to estimate f, where

Iy 0%ai -
Col@t, B) = [y, —(L1, 2y | O%i)))-1)

In our Monte Carlo experiments, x; contains 2 regressors of independent standard normal
random variables and we set 1y = ajp = 0. The two-step approaches have computational
advantage, in particular, if x, contains many variables, so we let x, contain 5 or 20 regressors of
independent standard normal random variables. In a linear regression model of y; with only
an endogenous regressor, i.e., if y; in (2.1) were generated by y; = y,7+u instead, the first stage

F, which is a measure of the IV strength (Staiger and Stock, 1997), is approximately +1,

nR2
ky(1-R2)

where R? = % and k; is the number of variables in x,. F > 10 is usually regarded as the
20%2070e

16 A5 an alternative asymptotically efficient estimation, in the supplementary material, we consider estimation
with the score vector of the likelihood function, where the initial estimator of nuisance parameters is computa-

tionally simple but is not a solution derived from a subvector of the complex score vector.
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case with strong IV (Staiger and Stock, 1997). We set R? to be 0.7 or 0.01 and set 7 to be 100 or
400, so that R? = 0.7 and R? = 0.01 correspond to, respectively, relatively strong and very weak

IV cases. Elements of o, are equal. The true values of ¢, and o, are equal and are selected

1

Tr255.- Lhe true value of 7
+T44+2p7T

so that the true value of o, is equal to 1. Then 8, = T and 0? =
is set to be 0, and the true p is either 0, 0.2, 0.4, 0.6 or 0.8. Each exogenous variable in x; has
the same coefficient. The number of Monte Carlo repetitions is 2000, and the nominal size for
various tests is 0.05.

For GEL and TGEL estimators, we use a double optimization method. Both inner and outer
optimizations use a quasi-Newton strategy with limited memory BFGS updating. For the inner
optimization, the first order derivative of the objective function is provided and the starting
value is a zero vector. For the outer optimization, the provided derivative is derived by the im-
plicit function theorem. The starting value is the GMM estimate f§ = arg ming g, (&, B)gup(d, B),
where d is the OLS estimate by regressing y, on x, and the starting value for f is a zero vector.
More computational details are in the supplementary material.

For the performance of various estimators, we compute the following measures: median bias
(MB), median absolute deviation (MAD), interdecile range (IDR), bias, standard deviation (SD),
root mean squared error (RMSE), and tail probability (TP), which is the proportion of estimates
with absolute values larger than 25 x 90% = 22.5. We follow Guggenberger (2008) to use the
number 25 for TP. The first three are robust measures of central tendency and dispersion. We
consider the following two-step estimates: two-step ET (TET), two-step EL (TEL) and two-
step GMM (TGMM), and compare them with the joint estimates ET, EL and (feasible optimal)
GMM.!7 ET, EL and GMM use jointly all the moments in g(y).

4.1.1 Estimation results

The parameter 8, for the endogenous regressor is often a parameter of interest, so we focus

on the performance of various estimates of §,. Figure 1 presents the estimation results when

7The CU estimator is often observed to possess multiple modes and thus generally considered to be less desir-
able than the EL and ET estimators (Hansen et al., 1996; Imbens et al., 1998). Our Monte Carlo results also show
that CU has worse performance than ET and EL. For simplicity, we do not include results for CU in the main text

but report them in the supplementary material.
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RZ =0.7. Only the robust measures MB, MAD and IDR are reported, since all TPs are zero
in this case and comparisons of robust measures are observed to be the same as those of the
usual measures bias, SD and RMSE. All MBs are relatively small when x, contains 5 variables.
The MB of GMM is large when x, contains 20 variables and p, # 0, but those of ET and EL
are still relatively small. In terms of MAD and IDR, among ET, EL and GMM, EL performs
the best and GMM performs the worst; among TET, TEL and TGMM, EL performs the best,
and ET outperforms TGMM in most cases. The two-step estimates TET, TEL and TGMM have
similar performance as corresponding one-step estimates in general. We also report TET and
TEL estimates where there is no unknown f in the transformation matrix én, which we denote
by TET, and TEL.. We observe that TET, and TEL, tend to have larger MB than corresponding
TET and TEL, but they generally have smaller MAD and IDR.
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Figure 1: Performance of various estimates of 8 in the probit model with R> = 0.7. All TPs are observed to be zero. TET. and TEL, are,

respectively, TET and TEL estimators with C,l(d,ﬁ). ky is the number of variables in x5, the true value of 7 is 0, and the sample size 1 is 100.

Figure 2 presents the estimation results when R? = 0.01. We observe very different results
compared with those in Figure 1 when R? = 0.7. With R? = 0.01, ET, EL and GMM have nonzero
TPs in all cases, while two-step estimates have zero TPs except TEL,. EL has a smaller TP than

that of ET, but larger than that of GMM. As a result, among ET, EL and GMM, ET has the largest
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SD and RMSE, and GMM has the smallest SD and RMSE. Figure 2 omits the usual measures
bias, SD and RMSE. In terms of robust measures MB, MAD and IDR, GMM has larger MB than
those of ET and EL, but smaller MAD and IDR in some cases. ET has larger MB, MAD and IDR
than those of EL. TEL and TEL have smaller MB than that of TGMM in some cases, but they
generally have larger MAD and IDR than those of TGMM. While TET, and TEL, tend to have
larger MB than that of corresponding TET and TEL, they have significantly smaller MAD and
IDR. TEL, generally has the smallest MAD and IDR among two-step estimates.

TP MB MAD IDR
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1%

-
q & £- + 4
0 02 04 0.6 08 0 0.2 0.4 0.6 0.8 0 02 04 0.6 0.8 0 02 04 0.6 0.8
Py Py Py o

-
0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Figure 2: Performance of various estimates of f in the probit model with R? = 0.01. TET, and TEL, are, respectively, TET and TEL estimators

with C”(d,ﬁ). ky is the number of variables in x5, the true value of 7 is 0, and the sample size n is 100.

To investigate the potential local minimum problem of GEL, we also conduct some Monte
Carlo experiments where there is no x; in model (2.1), so that for two-step estimates, the un-
known parameter f§ = , is one-dimensional and we can do a grid search.!® Following Guggen-
berger (2008), two-step estimates of 3, are searched over the interval [-25,25] with a grid size
0.01. Figure 3 reports the results for the case with R?> = 0.7. We observe similar patterns as

those in the corresponding Figure 1, where grid search is not used. The results with grid search

18We thank an anonymous referee for this suggestion. For joint GMM and GEL estimates, we do not use grid

search since the large number of unknown parameters makes grid search computationally demanding.
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for the case with R? = 0.01 are similar to those in Figure 2. They are omitted to save space.
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Figure 3: Performance of various estimates of f, with grid search in the probit model with R? = 0.7. All TPs are observed to be zero. TET, and
TEL, are, respectively, TET and TEL estimators with Cn(d,[;). ky is the number of variables in x5, the true value of 7 is 0, and the sample size

nis 100.

From these results, we can see that ET and EL outperform GMM in cases with strong iden-
tification, but they may have a heavy tail problem in cases with weak identification. This is
consistent with the Monte Carlo results in Guggenberger (2008). Note that in our theoretical
analysis, we have assumed strong identification. In the weak identification case, the GEL es-
timators cease to be consistent and can have a nonstandard asymptotic distribution which is
different from that of the (“optimal”) GMM estimator (Stock and Wright, 2000; Guggenberger
and Smith, 2005). Thus, we may observe the results in Figure 2.

Table 1 reports the computational time of various estimates where grid search is not used.
GEL is computationally more intensive than GMM as expected from the saddle-point charac-
terization of GEL. EL takes slightly more time to compute than that of ET. GEL takes about 5 to
20 times longer to compute than TGEL, and GMM takes about 3 to 10 times longer to compute
than TGMM. TET, and TEL, take less time to compute than the corresponding TET and TEL in

most cases. The computational time generally increases as the sample size 1, k, and p, increase
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and as R? decreases.

Table 1: Computational time of various estimates for the probit model

ET EL GMM  TET TEL TGMM  TET, TEL,

n=100 k,=5R*=0.7,p9=0 204 21.0 3.8 7.7 7.8 1.3 79 73
ky=5R*=0.7,pp=0.8 37.2 400 49 78 84 1.6 7.0 7.7
k,=5,R*=0.01,p0 =0 941 1002 129 149 157 2.1 1.2 122
ky=5,R?=0.01,p,=0.8  109.2 1241 13.0 154  16.7 2.1 114 124
k,=20,R?=0.7,p, =0 1349 153.0 11.0 153 17.5 2.1 134 16.0
ky=20,R*=0.7,09=0.8 2349 2777 11.8 15.5 18.7 2.2 133 16.1
ky,=20,R?=0.01,p0=0 293.8 2559 156 22.7 253 2.4 163 19.5
k;=20,R?=0.01,p9=0.8 417.1 4463 17.0 267 317 2.4 18.8 237

n=400 k,=5,R*=0.7,09=0 1027 102.1 4.9 35.4  35.0 2.7 38.9  40.2
ky=5R*=0.7,py=0.8 2450 2454 6.9 36.0 36.2 2.8 39.9 404
k,=5,R*=0.01,p0 =0 3932 3958 16.8 87.1  86.8 4.1 80.1  80.6
ky=5R?>=0.01,p0=0.8  619.4 6244 18.8 88.0  90.9 3.9 80.9  82.9
k,=20,R?=0.7,p0 =0 299.1 3123 13.8 69.0 74.8 3.8 65.2 715
ky=20,R?=0.7,0=0.8 6250 651.9 16.9 71.6  80.0 3.7 64.9 714
ky=20,R?=0.01,p=0 1301.2 1326.7 39.2 1521 1653 48  110.3 120.0
k,=20,R?=0.01,p0p=0.8 1852.8 1814.0 43.1  158.7 177.2 48 1201 136.2

(i) The reported numbers are the total time in seconds for computing each estimate 2000 times. The results
are from Matlab on a desktop computer with Intel Core i7-8700 CPU and 16 gigabyte memory.
(ii) TET. and TEL, are, respectively, TET and TEL estimators with Cld, B).

(iii) k, is the number of variables in x,. The true values of 7 is 0.

4.1.2 Tests

To investigate the performance of various tests of 9 = 0, we set R?> = 0.7 which corresponds
to the case with relatively strong identification. Table 2 reports empirical sizes. With k, =5,
the size distortions of all tests are relatively small. With k, = 20, Wy, War, Wierr Wiers Grer
and G, have large size distortions for the small sample size n = 100, but their empirical sizes
become much closer to the nominal 5% with n = 400. Tests in the two-step frameworks have
similar empirical sizes as those of corresponding ones in the ordinary frameworks except for
some cases with k, =20, n =100 and a large py = 0.8.

Table 3 reports empirical powers of the tests when n = 100. The powers of all tests increase
as 7( increases. With 7y = 0.4, the powers are close to 1. For given p, 7y and k;, different tests

generally have similar powers.
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Table 2: Empirical sizes of various tests for 8,3 = 0 in the probit model

ky=5,1n=100 ky=5n=400  k;=20,n=100 k=20, n=400

P0=0 pp=08 pp=0 pg=08 pg=0 pg=08 py=0 py=08

Rer  0.052 0.065 0.055 0.066 0.081 0.081 0.063 0.066
Ree  0.052 0.065 0.054 0.065 0.079 0.086 0.059 0.064
Wer  0.061 0.067 0.058 0.065 0.166 0.160 0.074 0.071
W 0.052 0.059 0.054 0.062 0.094 0.096 0.060 0.062
Ser 0.036 0.043 0.051 0.060 0.021 0.021 0.045 0.058
S 0.045 0.060 0.053 0.063 0.062 0.070 0.055 0.064
Ger 0.046 0.060 0.053 0.064 0.059 0.079 0.057 0.064
G 0.046 0.058 0.052 0.064 0.057 0.079 0.057 0.064
Rigr  0.052 0.065 0.055 0.066 0.082 0.081 0.063 0.066
R 0.052 0.065 0.054 0.065 0.080 0.084 0.059 0.064
Wigr  0.060 0.068 0.058 0.066 0.161 0.163 0.073 0.071
Wige 0.051 0.060 0.055 0.064 0.092 0.096 0.063 0.064
Ser 0.036 0.044 0.051 0.062 0.025 0.025 0.046 0.056
Siee 0.046 0.058 0.052 0.063 0.065 0.061 0.054 0.063
Grer  0.049 0.057 0.055 0.063 0.063 0.131 0.057 0.068
Grr  0.048 0.055 0.055 0.063 0.061 0.129 0.056 0.067

(i) k, is the number of variables in x,. The nominal size is 5%.

(i1) Rgp: ET ratio test; Ry : EL ratio test; W,,: ET Wald test; W;,: EL Wald test; S,
score-type test in the ET framework; S;;: score-type test in the EL framework; G,:
ET gradient test; G, : EL gradient test.

(iii) Rygr: TET ratio test; Ryp @ TEL ratio test; W,,: TET Wald test; W, : TEL Wald
test; Sygp: score-type test in the TET framework; S, : score-type test in the TEL

framework; G,;: TET gradient test; G, : TEL gradient test.
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Table 3: Empirical powers of various tests for ¢ = 0 in the probit model

po=0 po=0.8

TOZO.l T0:0.2 T020.3 TOZO.4 T():O.l TOZO.2 TO:0.3 TOZO.4

k=5 Ry 0.245 0.668 0.914 0.992 0.208 0.546 0.807 0.941
Rer 0.244 0.658 0.912 0.993 0.203 0.538 0.806 0.937
Wer 0.265 0.687 0.929 0.996 0.272 0.619 0.864 0.960
Wer 0.240 0.666 0.919 0.995 0.249 0.596 0.850 0.955
Ser 0.193 0.580 0.874 0.984 0.160 0.469 0.754 0.908
Sec 0.228 0.644 0.900 0.992 0.195 0.523 0.792 0.934
Ger 0.233 0.654 0.910 0.993 0.213 0.551 0.814 0.943
Ger 0.230 0.650 0.908 0.993 0.208 0.545 0.813 0.942
Rier 0.245 0.668 0.914 0.992 0.208 0.546 0.807 0.941
R 0.244 0.658 0.912 0.993 0.203 0.538 0.806 0.937
Wigr 0.262 0.688 0.929 0.995 0.275 0.620 0.867 0.961
Wige 0.242 0.664 0.922 0.994 0.256 0.601 0.857 0.956
Sier 0.184 0.561 0.848 0.969 0.110 0.353 0.642 0.826
S, 0223 0625 0.886  0.985 0.144 0422 0718  0.879
Grer 0.245 0.672 0.918 0.992 0.258 0.607 0.856 0.957
Grer 0.243 0.667 0.915 0.992 0.253 0.601 0.853 0.957
ky =20 R, 0.264  0.618  0.877  0.980 0.214 0528  0.784  0.915
Rer 0.275 0.638 0.892 0.984 0.224 0.546 0.804 0.926
Wer 0.384 0.749 0.935 0.992 0.354 0.691 0.882 0.970
Wer 0.308 0.668 0.905 0.989 0.282 0.625 0.840 0.953
Ser 0.105 0.336 0.614 0.777 0.082 0.283 0.482 0.634
Ser 0.243 0.589 0.874 0.982 0.204 0.512 0.786 0.915
Ger 0.239 0.629 0.910 0.989 0.332 0.692 0.890 0.975
Ger 0.235 0.626 0.909 0.989 0.331 0.690 0.888 0.975
Roe 0265 0621  0.876  0.982 0.210 0526 0783  0.916
Ries 0.275 0.639 0.894 0.987 0.221 0.544 0.800 0.925
Wier 0.378 0.744 0.938 0.988 0.361 0.698 0.887 0.969
Wiee 0.299 0.667 0.908 0.990 0.291 0.636 0.849 0.959
Sier 0.108 0.320 0.568 0.702 0.043 0.161 0.312 0.427
Sier 0.246 0.586 0.856 0.970 0.157 0.426 0.682 0.854
Grer 0.255 0.677 0.931 0.982 0.462 0.814 0.946 0.981
Grar 0.254 0.677 0.931 0.982 0.460 0.810 0.945 0.981

(i) k, is the number of variables in x,, the nominal size is 5%, and the sample size is 100.

(ii) Rgp: ET ratio test; Ry, EL ratio test; Wy,: ET Wald test; W,, : EL Wald test; S;: score-type test
in the ET framework; S;;: score-type test in the EL framework; G;.: ET gradient test; G;;: EL
gradient test.

(iii) Rygr: TET ratio test; R,z TEL ratio test; W,,: TET Wald test; W, TEL Wald test; Sy
score-type test in the TET framework; S, : score-type test in the TEL framework; G,;,: TET

gradient test; G, : TEL gradient test.
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4.2 SAR model

For the SAR model (2.2), let V,,(a1, B) = [vai (a1, B),- -, Van(ar, B))s Py = [Pjnrs] and Qp = [Qp1,- -
Then g,(0) in (2.5) can be written as g,(0) = %2?21 2,i(0), where

i-1
gni(e): [(vii(al’ﬁ)_ )plnzz+vnz 061; p1n1]+p1n]z Vn](alfﬁ)
]:1
i—1 )

2
.,(vm-(Oél, /3) - )Pk nii T vm alr pkpn,ij +pkpn,ji)vnj(a11 ﬁ)l Q;ivni(al’ /3) .
J:1

Since E[g,i(00)lvy1,...,Vyi—1] = 0 and E[g,i(00)|vy1,...,vui] = 81i(6) at the true value 6, of O,
2,i(0g)’s are martingale differences. Thus, we may consider GEL and TGEL estimators with
2ui(0)s.

As one Pj, can be [, and X, is usually included in Q,, we assume that Pkpn =I,and Q, =

[X,, Q1]), and rewrite the moment vector as g,(0) = [g,,(0),&,,(6)]’, where

’ an]"

gnb<9>=%[Vn’ml,ﬁ)Plnvml,/s)—aztr(PM),...,V,;<a1,ﬁ)Pk,,_l,nvnml,/s)—aztr(Pk,,_l,n> a1, B)Qua]’

and g,,(0) = %[Vn’(al,ﬁ)Vn(al,ﬁ) —no?,V,)(ay,B)X,]. TGEL estimators of  can be constructed

with the C(a)-moment [I,,,,, ~Ci1)24i(0), where

Lir(py,) 0

= agnb(QO) agna(QO) -1 :

Cl”_( da’ )(E da’ ) - gtr(P;cp_l,n) 0
0 Q1 Xu(X) X,)

does not involve unknown parameters.

In our Monte Carlo experiments, X, contains 2 or 8 exogenous variables and each exogenous
variable is randomly drawn from the standard normal distribution. The W, is generated by the
rook criterion and row-normalized to have row sums equal to one. We set the variance of v,;
to 1 and a;q is chosen such that R? = var(X,a;)/[var(X,a;o) + 1] is either 0.7 or 0.01. For
estimation, we use two quadratic moments with P, = W, and P,, = [,;, and the IV matrix is
(X WX

Figures 4-5 report the MBs, MADs and IDRs of various estimates of [)’.19 In terms of MB,
GEL and TGEL estimators perform better than GMM and TGMM estimators, especially when

Note that the spatial dependence parameter § is often the parameter of interest in practice. The parameter
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Bo # 0 and k, = 8. In terms of MAD and IDR, GMM, ET and EL have similar performance. For
two-step estimates, we observe that TET and TEL perform better than TGMM in terms of MAD
and IDR.
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Figure 4: Performance of various estimates of § in the SAR model with R? = 0.7. The sample size n is 100.

5 Conclusion

This paper considers the TGEL estimation of parameters of interest via moment functions,
which are martingale differences at the true parameter values, when there is a y/n-consistent es-
timator of nuisance parameters or the nuisance parameters can be eliminated by an estimating
function of parameters of interest. We propose to employ a C(a)-type moment vector derived

from proper linear combinations of the original moments. Such a two-step approach can elim-

space of $is (1/Amin, 1/ Amax), where A, and A,y are, respectively, the minimum negative and maximum positive
eigenvalues of W,,. As our W,, is row-normalized, A,,x = 1. For convenience, two-step estimates of § are searched
over the interval [-0.99,0.99] with a grid size of 0.01 and other estimates do not use grid search but also use this
parameter space for consistency, so we do not report TPs. The comparisons of the usual measures bias, SD and

RMSE for various estimates are similar to those for robust measures, so only robust measures are reported.
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Figure 5: Performance of various estimates of § in the SAR model with R? = 0.01. The sample size # is 100.

inate the asymptotic impact of the nuisance parameter estimate, so that confidence intervals
and various asymptotically pivotal tests can still be constructed with the TGEL objective func-
tion. Meanwhile, a TGEL approach can save computational time relative to the GEL approach
due to its reduction in the number of moments and the number of parameters to be estimated.
We show that TGEL does not lead to efficiency loss if the linearly combined C(«a)-type moment
vector only reduces the number of moments by the number of nuisance parameters. The TGEL
approach has a higher order bias advantage over its corresponding TGMM. In addition to the
reduction in bias terms as for the ordinary GEL, TGEL does not have a bias term of TGMM
which results from using an estimated feasible optimal weighting. Furthermore, we investi-
gate various tests for parameter restrictions in both the ordinary and two-step GEL and GMM
frameworks. Tests in the two frameworks can have equal local power.2°

In a recent paper, Cattaneo et al. (2018) show that a first order bias emerges when the

number of included covariates in the first step of a two-step GMM estimation procedure is

200ur two-step approaches are very useful in deriving simple and efficient estimators for some models. In Jin
et al. (2018), TGMM is applied to dynamic short panel data models and is shown to generate closed-form root

estimators of the dynamic parameter that are asymptotically as efficient as quasi maximum likelihood estimators.
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large, rending standard inference procedures invalid. Our analysis is based on a fixed number
of nuisance parameters. It is of interest to study in future research how to extend our analysis
to such a situation, where a bias correction might be needed in addition to the use of a C(«)-
type formulation. Our Monte Carlo results show that two-step EL tests perform similarly to
ordinary EL tests, which may have size distortions in small samples. More accurate inference
for EL can be conducted by applying the Bartlett correction. It is of interest to study the Bartlett

correctability of our two-step EL.%!
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Appendix A List of notations

=(a’,B’), yis k),xl, aisk,x1,pis k/gXl.
8(¥) = 5 01 80 (1), 8n(¥) = Elgu)) 8u(¥) = (€5 (1) 80 (V) 8u(y) is mgx1, () is myx1,

. . . i d ni
Sna(y) is my x 1. gui = €4i(¥0), &1 = &n(V0)» &ub = &ub(¥0), ¥ is the jth element of y, g,(fz-) = 2l

8)/] ’
d ni a aGma
Gnia(y) = ga—(?/)) Gnia = Gnia(VO) G, (7/) = l ?—1 Gnia(y)z Gpa = E[ na 70)] Gma(7> 3—7/]()'
() (7) (7)
Gn]ia = ana( ) = 1ana’ W - E[Gna Yo ]
98.i(70) _ 9gn(7/ ) A~ _ 9800\ AU _ g98a(0) _95.(y) AU) _ 9Cu(0)
Gniﬁ - /3 ’ Gnﬂ - aﬁfo ) Gnﬂ - E( aﬁfo )l Gnlg - E( 3)/]'9[3’9 )l Gn(y) - 97/ ’ Cn - ayjo ’
L) _ depo)
n aﬁ] .

Qn(y) = 1 1n 1gn1(7/)g;/1i(7/)' Qn = E[QH(VO)]' Qnaa E[ngna 140 gna(VO)] nbﬂ E(B—[j”)’

- g,
ana = E( gabciz/()))'
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dni(y) = éngni(y)l d (7/) = éngn(y) Qnd(y) = CnQn(V)C;/w Qnd = CnQnC_,;

Dyp = CuGup, Ena = (D), iDup) ™", Hyg =53nd15;,30;é,l5nd =0, Q. D,%,4D,, ﬁQ !
71b == _nd\/—cngnl anﬁ == nd\/_cngnl Vg = \/_( . (/30)_&0)+anﬁ¢nﬁl Ve = ¢HC+Z]‘:1 Cil])gbndj"'
kg =(k, (k
Z =1 C( +])§bnﬁ]! and lian 71an + Z] 1 C ¢na] + Z] 1 C «*) ¢n[3’}

eksj is the jth unit column vector of dimension kg.

Appendix B Proofs

In this section, MVT will denote the mean value theorem.

Proof of Theorem 1. We first prove the consistency of ﬁTGEL. It is shown in the proof of Lemma
H.1(i) that sup,cslign(d, ) — &ulao, Pl = 0,(1) and supgeplign(ao, f)Il = O(1), where g,(y) =
E[g,(¥)]. We may similarly prove that SUpges IC,.(&, B)—C(ag, Bl = 0,(1)and SUPgeg IC,u(ao, )l =
O(1). It follows that

ZUII;”C n(d, ﬁ)gn(a /5) (QO'ﬁ)g_n(QO’ﬁ)”

=supl|[C, (a4, B) - (aOIﬁ)][gn(d'ﬁ) 8n 0(0,/3]+C (@, B)&u(d, B) — §ulao, )]

peB

+[Culd, B) = Culao, B)In(ao, I
<supl|C,(d, ) = Culao, B)lIsupligu(d, p) = Gulao, p)ll + suplIC,i(ao, p)llsuplign(d, B) = &u(ao, B

peB peB peB peB
+sup||C,(d, B) - Culao, B)llsup lIg, (a0, Bl
peB peB
=0,(1).

By Lemma H.4(ii), Cn(d,ﬁTGEL)gn(d,ﬁTGEL) = 0,(n"'/?). Then

p

”Cn(aO’ ﬁTGEL)g_n(a()l ﬁTGEL)”

< ”Cn(aOr ﬁATGEL)g_n(aO’ﬁATGEL) - Cn(avlﬁTGEL)gn(d’ﬁTGEL)” + ||Cn(av’/§TGEL)gn(d’ﬁTGEL)” = Op(l)-

Since C, (g, B)g.(ao, B) is uniquely zero at f = B, for large enough n and it is uniformly equicon-
tinuous, ||C,,(ag, B)g. (a0, B)|| must be bounded away from zero outside of any neighborhood of

Bo for large enough n. Hence fqp must be inside any neighborhood of f, with probability
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—1/2)

approaching one (w.p.a.l), i.e., ﬁTGEL = Po+0,(1). As Cy(a, ﬁTGEL)gn(d, ﬁTGEL) =Op(n , Lemma

H.3 holds for g = ﬁTGEL and h,,;(B) = C, (&, B)gni(&, B). Therefore,

ﬁTGEL = arg max ZP H C a ﬁTGEL)gnz(a ﬁTGEL))
FGA"(‘X ﬁTGEL s

exists w.p.a.1, and fi;gg = Op(n‘l/z),

We next investigate the asymptotic distribution of Orcer. Let v,;(a, 0) = wWChla, B)gni(a, B),

(a B) = 9Cul Dfﬁ , where y; is the jth element of y = (&', "), qi(@, 0) = [av”é;f .9) , av’gf;f’e)]',
(k +k‘3

hmm,e):( o ) and A5(,0) = (1Tl @, )guitar B O, Blgai(at BT

Cn(a'ﬂ)gni(a'ﬁ)
Then q,;(a,0) = h,;(a,0) + (A”"(Oa’e)), where A,;(a,0) is due to the unknown g in C,(d, f). The

A

first order condition of éTGEL is Z?:l P1 (vni(dl QTGEL))qni(d' éTGEL) = 0. Applying the MVT to this

condition at O = 6, yields

Qma, oo RS B
0= Zpl q;u 0(,90 Z[pl m 1 8(9, )+Pz(vm'(0é, 6))6]111'(“)9)5];41'(0('6) (QTGEL_QO)

" aAni(dré)
ahm( ) 00’
Zpl nz a 90 Z[pl vnz ( 00’ +( 0

+ pZ(vni(dl 6))qnz(dl Q)Q;l(d, é)](éTGEL - 60)7

where 6 = (f,ji’)’ lies between 6 and 6,
(ka+k/5)

9A i(a,0) [ ACh @ pgulep)] ,ICh (@ Plgute Pl
g0, F IB; ook IB;
a, , " (ka+kg) ,
for 1< j < kg, and 2500 = (1 CI* D, B)gi@, B r€)y, O (@ B)gui(a B for

kg+1 <j < kg With fligy = O (n_l/z) and the consistency of frop, Max;<j<, |[Vni(d, 6) =

0p(1) by Lemma H.2. Then Y1 p1(v,i(d, 6))8i(d, B) = =gu(d, f) + 0,(1) = =gu(ao, B) + 0p(1) =
—8n(ag, o) + 0p(1) = 0,(1). It follows that lzl 1P1(vyi(a, 9))8A’3g)‘ 0) _ 0p(1) for kg +1 < j < kg.
BAm(a b) _

d0;

With e = Op(n‘l/z) similarly, we have % =Y i1 p1(vail(a, 0)) =0,(1) for 1 <j < kg,

—sz V,i(d, 0))hyi(@, 0)A () = 0,(1)

and 1Y, py(v,i(t, 6))Ai (e, 6)A(,0) = o
Ivyi(a,0)
9B

»(1). Then, by (B.1), the term A,;(a,0) for the

derivative has no impact on the asymptotic distribution of 8, . Then, as in the proof
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of Theorem 3.2 in Newey and Smith (2004), we may derive from (B.1) that

Hnd

\/E(éTGEL - 90) = _( p p )Cn\/Zgn(dl ﬂO) + Op(l)' (B-z)

Applying the MVT to Cn\/ﬁgn(dl ﬁO) yields C_n\/ﬁgn(d'ﬁO) = Cn\/ﬁgn(yO) + CnGna(d'ﬂO)\/ﬁ(d -
ag), where & lies between ay and &. Since Vn(d — ag) = Op(1), Guald, Bo) = Gpa + 0,(1) under
Assumption 1(ix). Using C,G,,, = 0, (B.2) becomes

: _(Fu\e 1y
\/E(QTGEL_QO)_ (pnd)cnv%;gm(yo)*'op(l)' (B3)

With the asymptotic distribution of v/ng,(yo) in Assumption 1(xi),

FOI’ BTGEL2’ Supﬁeb’ ”Cn(an(ﬁ)lﬂ)_cn(an(ﬁ)’ ﬁ)” = Op(l) and Sup[ie]_’)’ ||C_n(an(/3)rﬁ)|| = O(l) by ar-
guments similar to those for supgc|lga(dn(B), B)—=&nlan(B), B)ll = 0,(1) and supg g lIgu (@, (B), )l =
O(1) in the proof of Lemma H.1(i). It follows that

sup||C,(dn(B), B)gu(dn(B), B) = Cul@u(B), B)Gn(an(B), B = 0, (1).

peB

Since lim,,_,o, C,.(@,,(B), B)g(,(B), B) is uniquely zero at = By, C,(a,(B), B)gn(a,(B), B) must be

bounded away from zero outside of any neighborhood of ;. Hence f;qe» must be inside any
neighborhood of fy w.p.a.1, i.e., /§TGEL2 = Bo +0p(1). By Lemma H.3, fi;ge, = Op(n_l/z). For the
asymptotic distribution of Orcrins compared with that of O,ce1, We need to take into account the
additional derivative term due to the unknown g in @(g). This additional term does not affect
the asymptotic distribution of o1, as the derivative term due to the unknown pin C, (&, p)
for the asymptotic distribution of Orcp- Then we may similarly show that O.,cp., has the same
asymptotic distribution as that of Orcr -

(ii) For (ii)—(iv), we only prove the results for ﬁTGEL, since those for /§TGEL2 can be similarly

1

proved. As p(0) =), p(0- dni(d,ﬁTGEL)), by a first order Taylor expansion of %Z?:l p(0 -

T n

d,i(d, ﬁTGEL)) at fi;q; and using the first order condition of fi;gg,,

p(0) = % Y oftrcec i@ roe)) + ;—n P2’ di (s Proee) ) rcen i (& Press )i (& Prosy) rces
] i=1
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where ji lies between 0 and fi;qg,. Denote M,,4 = I, - Q. 1/2Dnlg( ’ﬁQ_ D,g)” 1D’IgQ Y2 Then,

2] Zp frern it rom) 000
= l’lTGEL ZPZ ”n ni (&, ﬁTGEL)) ni (&, ﬁTGEL) av’léTGEL)\/ZﬁTGEL

TGEL Zdﬂl a ﬁTGEL) ni a ﬁTGEL \/_l’lTGEL +O ) (B'4)

C ‘/_gn 7/0 ndc \/_gn (y0)+o ( )

= [Q}Y?CVngu(y0) Mua Q.Y > Cing,u(yo) + 0, (1)

d
= x*(my — kg),

where the third equality uses the properties Zl 1 dui(a, /3TGEL) i(a, [§TGEL) =Q,,;+ 0,(1), (B.3)
and P,;Q,4P,; = P,;; and the asymptotic distribution follows because Q;;/zc_nx/ﬁgn(yo) is
asymptotically multivariate standard normal and M, is a projection matrix with rank (1, —kp).

(ii1) For Yap = (dlpr, Poss)» bY (A.8) in Newey and Smith (2004),

\/Z(?GEL - 7/0) = _(G; #Gn)_lé;aﬂzl\/ﬁgn()@) + Op(1)~

As G, = [Gyq, Gygl, by the block matrix inverse formula,

Vit(Bas — Bo) = ~{Grgl Q' ~ Q51 Gonal G 031G, >1G;aﬂzllénﬁ}‘1

G;;/S[Qﬁl _Qzléna(G;aQ_ G / l]v_gn )

where Q' =01 G10(G10 Q5 Gra) 1 G Q5 = Q;”Z[Img—Q;”Gm(G’ Q! Gm)‘léz 0,1721Q;, 12
with mg = my, + m,. It follows that the asymptotic variance of Besr is

’ - ’ -1 5 157 ~A- = — = -1
lim (G750, 21y, = 072G (G105 Gua) 1 G 052102 G}

n—-oo na

On the other hand, the asymptotic variance of fqy; is

lim [G},Cr Q1 CGgl ™! = 1im [, 0512 QY2001 C, QL2 - Q512G 17

n—oo

for the m, x (my, + k,) matrix E = [Q,%QC,Q,Q‘I/QGM],

8

E(E'E)'E' =QV2C/

ﬁu
D.
Q..»—A
@]
=
@]
S
+
@]
= |
S
D
=
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]
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by Exercise (3.17) on pp. 71-72 of Ruud (2000). Therefore,
L, =032 Ga(Gre ' Ga) ' G 0,17 - Q2 C, 05 C Q0% = 1, —E(E'E)'E/

is nonnegative definite, but will be positive definite if m; + k, < m,. Thus, ﬁTGEL2 is generally
less efficient relative to ﬁGEL.

If m, = k,, then E(E’E)"'E’ = Iy, Thus,

Ly, = Q52 (Gla Q3 Gra) L Gl Q2 = QY2C1Q7LC,Q12,

g n
and /§TGEL has the same asymptotic variance as that of /§GEL.

iv) For d..... , the consistency can be similarly proved to that for f,..,. Then an equation for
TGEL y Y p TGEL q

O’ZTGEL as that for ﬁATGEL in (B-Z) is \/E(O,ZTGEL - 0(0) = _(G;aQ;lGna)_l G;aQZI\/ﬁgn(QO’ﬁATGEL) + Op(l)-
By the MVT,

\/E(dTGEL - 0(0) = _(G;QQZIGna)_lé;aQ# [\/Egn(ao’ /30) + Gnﬁ\/ﬁ(ﬁTcEL - ﬁO)] + Op(l)
= _(G;mQ;l Gna)_l G;mQ;l [\/Egn(ao' /50) + Gn[;’ \/ﬁ(ﬁGEL - ﬁO)] + Op(l)r

where the second equality follows because V1 (fraer — fo) = V(Parr — Bo) + 0,(1) when m, = k,.

This equation is the same as that we can obtain from the first order condition for d., . Hence,

\/ﬁ(dTGEL_aO) = \/E(dGEL_aO)+Op(1)' u

Proof of Corollary 1. As C,, = [I,5,,—C1,), let ¥, = [0, i, —Puc, . With E ag’g’ﬁfxo 0, ¢”CGnﬁ =

E 9845 (70)

[Ombxmb,—lpncl]( 8{3’ ) = 0. Thus, BSd_G = 0. By a first order Taylor expansion, 0 = g,,(d) =
gna(a0)+cnaa(d_a0)+Op(n_l) = gna(a0)+n_1/zcnaa¢nd +Op( ) where Gnaa = E =5 agna aO) . Thus,
_%Hnd¢né(ﬁgn + Gna¢n0’z) = _%Hndﬁanl [\/ﬁgna(QO) + Gnaa‘zbnd] = p(n_3/2)' Hence the higher

bias of order O(n~!) for ﬁTGEL does not contain Bgd_g . [
Proof of Theorem 3. (i) To derive the asymptotic distribution of R, we use the results

Vi(Brrae — Bo) = —[Ena — indR,(RindR/)_lRind]Dr,zﬁQ;; Vnd,(d, Bo) +0,(1). (B.6)
and

\/EﬁI'TGEL = [_Q;}i+Q;¢11DnﬁindD;;ﬁQ;,}l_Q;éDnﬂindR’(RindR’)_lRindD;ﬁQ;gi]\/Edn(d: ﬁO)"’Op(l ):
(B.7)
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which are derived in Section 1.5 of the supplementary material. With (B.7), as in (B.4), we have

Zn[ Zp Prror@ni (&) Brroer)) = p(O)]

= Vnd, (70)[Q;5 = Q;4DupEna Dy Qg + Qi DypS g R (REqR') ' RE, 4 D, Qi I nd,y () + 0p(1).
(B.8)

By (B.4) and (B.8),

RTGEL = \/Zd;;(QOI ;BO)Q;LliD_nﬂindR/(RindR,)_lRindD_;/gQ;,}l\/zdn(QOI ﬁO) + Op(l)'
By the MVT,

Vg, (ao, o) = Viigu(ao, Bu) + Guplao, fu) Vit(o = )
= /ng,(ag, B,) - ﬁc+0(1)—>N(—hmGﬁc th )

n—-o0

) d )
where f, lies between f and f,,. Hence, Rygp — x2(ky, lim,,_,o, ¢'R’(RE, 4R) "' Re).

For WTGEL’ by the MVT, \/zr(/gTGEL) = R(/;)\/E(ﬁ’\TGEL - ﬁO) = _RindD;;ﬁQ;}i\/Edn(’)/O) + Op(l)i

where the second equality follows by (B.3). It follows that Wi¢p = Riger +0,(1).

pl

For S;qpr,

10 .. . 1< ., L od; (&, Prrger) .
ﬁa_ﬁpnd(al ﬁI‘TGEL’ l’tI'TGEL) = E ;pl (l/erGELdﬂi(a’ ﬁrTGEL))na—ﬂG\/E”rTGEL

= _D;;/g \/EﬁrTGEL + op(l)
- R/(RindR/)—lRindf)r’lﬁﬂ;}l\/ﬁdn(d,/30) +0p(1).

It follows that

Sreer = Vdy(ag, B0)Q,iDypZpaR (REqR') " RE, 4 D, Qi Vnd, (o, Bo) + 0p(1) = Regry +0p(1),

For G,epr, as in Lemma H.2, A, = argmax ., j Z?:l p(/\’\l’ni(o?, E,)) exists w.p.a.1, and

nwl& ( ¥

the first order condition ) 7, pl(i;‘lfm( B )) Wi(d, ﬁr) = 0 holds. Applying the MVT to this

first order condition at A = 0, we have

0= Zm il B+ ) pa(VWildh, )i, )W, )
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where 1 lies between 0 and A,. Then,

L[l v . \ VN B R .
Viid, = [ oo )il W )| = ) Wl )
= i
= _(RindR’)_lRindDéﬁQ;;\/Zdn(VO) + Op(l)-
Hence, by an expansion as that in (B.4),
1 n
gTGEL = \/E/\;E Z\I]m’(dt ﬂr)qln’i(dl ﬁr)\/a/\r + Op(l) = RTGEL + Op(l)' (B9)
i=1

(ii) Note that G, = [Gyq, Gg), then by the block matrix inverse formula, R, ¥, R), = R[G;Zﬂf);l Gup—
G0 G (G051 G G105 Gy R < RIG, CHC,0, G GG TR = RE R, where
the inequality has used I, - 0,260 (G Q0 Ga) 1 Gl 052 > Q2C(C,Q,Cl) 1 CQL2
when m, > k,, which is shown in the proof of Theorem 1. Thus, C’R’(RyinR;,)_ch < ¢’R'(R%,;R")'Re.
(iii) When m1, = ko, Ir, = Q32 G0 (G0 Q5 Gua) 7 G0 Q52 = Q)2 C1(C,Q,C) 71 C,Q5/2 and
¢’R'(R,E,R),) ' Re = ¢’R'(R%,,4R") ! Re. m
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