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Abstract

This paper considers two-step generalized empirical likelihood (GEL) estimation and

tests with martingale differences when there is a computationally simple
√
n-consistent es-

timator of nuisance parameters or the nuisance parameters can be eliminated with an es-

timating function of parameters of interest. As an initial estimate might have asymptotic

impact on final estimates, we propose general C(α)-type transformed moments to eliminate

the impact, and use them in the GEL framework to construct estimation and tests robust to

initial estimates. This two-step approach can save computational burden as the numbers of

moments and parameters are reduced. A properly constructed two-step GEL (TGEL) esti-

mator of parameters of interest is asymptotically as efficient as the corresponding joint GEL

estimator. TGEL removes several higher order bias terms of a corresponding two-step gener-

alized method of moments. Our moment functions at the true parameters are martingales,

thus they cover some spatial and time series models. We investigate tests for parameter re-

strictions in the TGEL framework, which are locally as powerful as those in the joint GEL

framework when the two-step estimator is efficient.

*Corresponding author. Tel.: +1 614 292 5508; fax: +1 614 292 3906. E-mail addresses: jin.fei@live.com (Fei

Jin), lee.1777@osu.edu (Lung-fei Lee).

1

mailto:jin.fei@live.com
mailto:lee.1777@osu.edu


Keywords: Two-step estimation, empirical likelihood, GMM, martingale difference, higher

order bias, efficiency, test

JEL classification: C12, C13, C14, C18, C51

1 Introduction

A two-step estimation method is often employed in empirical studies due to its computational

simplicity. In this method, we obtain a computationally simple estimator of nuisance param-

eters in a first step, and then use it to derive an estimator of parameters of interest. This is

helpful in computation, in particular when the number of nuisance parameters is large but

their estimates can be easily obtained, as we only need to estimate a relatively small number

of parameters in the second step. This can be the case if researchers include many covari-

ates in the model or estimating equations are rather complex. Famous two-step estimators in-

clude those for the sample selection model (Heckman, 1976), and the linear expectation model

(Barro, 1977). Properties of two-step estimators have been studied by Newey (1984) and Pagan

(1984, 1986), among others. However, it is understood that a first-step estimate might have

asymptotic impact on the variance of the second-step estimate, thus a properly constructed

asymptotic variance of the final estimate is needed. Furthermore, two-step estimators might be

less efficient than corresponding one-step ones.

This paper studies generalized empirical likelihood (GEL) estimation and tests of moment

condition models when a
√
n-consistent estimator of nuisance parameters is available or the

nuisance parameters can be eliminated by the method of elimination and substitution, which

results in an estimating function of parameters of interest. The first contribution of our paper

is the use of a C(α)-type moment vector (Neyman, 1959) to eliminate the asymptotic impact

of nuisance parameters in the GEL framework. The resulting two-step GEL (TGEL) estimator

has an asymptotic distribution with a variance of the usual sandwich form, is computation-

ally simple and can also be asymptotically as efficient as the original joint GEL estimator. The

C(α)-type moment vector is a transformed moment vector of the original one so that any
√
n-

consistent estimator of nuisance parameters will not have an impact on the asymptotic distri-

bution of a second-step estimate of parameters of interest. In forming the C(α)-type moment
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vector, the number of moment conditions will be reduced by at least the number of nuisance

parameters. Since the number of Lagrangian multipliers in GEL’s saddle point characterization

is equal to the number of moments, its computational burden is directly related to the number

of moments. As a result, our two-step approach saves computational time for GEL in terms of

the reduction in both the number of estimated parameters and that of Lagrangian parameters.

Furthermore, we show that the TGEL estimator of parameters of interest is asymptotically as

efficient as the joint GEL estimator if the number of moments reduced is equal to the number

of nuisance parameters. We refer to the TGEL estimator in this case as the efficient TGEL (E-

TGEL) estimator. If we are also interested in efficient estimation of “nuisance” parameters, then

the E-TGEL estimate may be plugged into the joint GEL objective function in a subsequent step

of estimation.

Our second contribution is the investigation of tests in the TGEL framework. In these tests,

the nuisance parameter estimator can be any
√
n-consistent estimator, which may or may not

relate to the original moments for estimation. The C(α)-type moment vector at a
√
n-consistent

nuisance parameter estimate behaves as if nuisance parameters were known, so various tests

can be constructed with the TGEL objective function similarly as those in an ordinary GEL

framework. Newey, Ramalho and Smith (2005) investigate a GEL estimator where estimated

nuisance parameters are directly plugged into the GEL objective function. Their objective func-

tion will not provide asymptotically chi-squared distributed tests due to the asymptotic impact

of the nuisance parameter estimator. Our GEL objective function with the C(α)-type moment

vector overcomes this problem. We investigate the GEL ratio tests, GEL score-type test, GEL

Wald test, and GEL test with the generalized method of moments (GMM) gradient in the two-

step estimation framework. As in Guggenberger and Smith (2005) and Smith (2011), a score-

type test in the TGEL framework can be directly based on the derivative vector of the TGEL

objective function. For a GMM gradient test, Lee and Yu (2012) and Dufour, Trognon and

Tuvaandorj (2017) have investigated a C(α)-type form with any
√
n-consistent restricted esti-

mator. This C(α)-type test can also be implemented in the GEL framework, which will only use

its moments in formulating the test statistic as it internalizes its variance matrix. So a GEL test
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can be robust to unknown heteroskedasticity.1 We show that tests in the TGEL framework can

be locally as powerful as those in the joint GEL framework.

Our third contribution is the consideration of moment functions that are martingale arrays

at the true parameters in a two-step estimation, so that they cover some time series autore-

gressive models (Chuang and Chan, 2002) and spatial autoregressive (SAR) models (Jin and

Lee, 2019). For SAR models, linear and quadratic moment functions are basic ones, and at the

true parameter values, they can be written as martingale arrays (See e.g., Kelejian and Prucha,

2001).

We also investigate the higher order bias of TGEL. One reason that GEL attracts much atten-

tion is that it can have smaller higher order asymptotic bias than that of the two-step optimal

GMM (OGMM), as shown in Newey and Smith (2004) for random samples and in Anatolyev

(2005) for stationarity time series models with non-i.i.d. data.2 Finite sample Monte Carlo

studies have reported that OGMM can have large bias (e.g., Altonji and Segal, 1996), and GEL

performs better than OGMM for models with random samples (e.g., Hansen, Heaton and Yaron

1996; Imbens 1997; Ramalho 2002; Mittelhammer, Judge and Schoenberg 2005; Newey et al.

2005). The bias advantage of GEL carries over to TGEL, which can remove several higher order

bias terms of a corresponding two-step GMM (TGMM) estimator. However, like a GEL esti-

mator, a TGEL estimator might not have finite moments and the analysis does not necessarily

imply exact finite sample properties of TGEL and TGMM. Hausman, Lewis, Menzel and Newey

(2011) provide a theoretical analysis of bias issues of the continuous updating (CU) estimator,

a member of the GEL estimator. Our Monte Carlo results show that two-step empirical like-

lihood (EL) and two-step exponential tilting (ET) estimators have smaller bias and dispersion

than TGMM estimators in finite samples. Both EL and ET are GEL members.

Our TGEL is related to several approaches in the literature, but they are all about GMM

1On the other hand, for a GMM test to be robust to unknown heteroskedasticity, we need to be careful on

using a proper variance for its moments, whose inverse is also the optimal weighting matrix in its GMM objective

function.
2The empirical likelihood (EL) introduced in Owen (1991), as a member of GEL, has other advantages such

as the Bartlett correctability of EL ratio tests and confidence intervals (e.g., DiCiccio et al., 1991; Corcoran, 1998;

Chen and Cui, 2007), Bahadur efficiency (Otsu, 2010) and optimality in terms of large deviations of EL ratio tests

(Kitamura, 2001) for i.i.d. random samples.
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instead of GEL. First, it has some similarity to that in Crepon, Kramarz and Trognon (1997)

for the GMM estimation. They require that a subset of empirical moment conditions has a

unique solution of the nuisance parameter vector as a function of the parameters of interest. We

consider both the case with an initial
√
n-consistent estimator of nuisance parameters and the

case where the nuisance parameters can be replaced by an estimating function of parameters

of interest. In our TGEL or E-TGEL, the initial consistent estimator of nuisance parameters or

the estimating function need not necessarily be from a subset of originally proposed empirical

moment conditions. So our result can be regarded as a generalization of Crepon et al. (1997) in

a flexible extension to separate moments estimation in the first step and also martingale arrays.

In another related two-stage GMM procedure proposed in Gouriéroux, Monfort and Renault

(1996), the set of moments are partitioned and the set of parameters are unfolded to derive an

asymptotically efficient estimator of all parameters. We note again that their initial consistent

estimator is from a subset of the moment vector, but not any
√
n-consistent estimator. In the

presence of a consistent estimator of nuisance parameters, Trognon and Gouriéroux (1990)

propose a two-step estimation that can efficiently estimate all model parameters. They obtain

an approximated objective function by a second order Taylor expansion of an original objective

function at the initial consistent nuisance parameter estimate, thus the resulting estimator of

nuisance parameters is just a second-round estimator of the Newton-Raphson method. We

shall show that our E-TGEL estimator of parameters of interest is asymptotically equivalent to

their estimator.3 Frazier and Renault (2017) consider a general setting of two-step estimation

where there are awkward occurrences of the parameters of interest. Their approach can be

seen as a generalization of that in Trognon and Gouriéroux (1990). Song, Fan and Kalbfleisch

(2005) propose the algorithm of maximization by parts for separable log-likelihood functions.

It has been generalized to non-separable extremum estimation problems in Fan, Pastorello and

Renault (2015). The algorithm is iterative and involves the tuning parameter of the number of

iterations, which might need to be large.

There are also papers in the semiparametric framework for two-step estimation. Acker-

berg, Chen, Hahn and Liao (2014) consider a particular model where nuisance functions are

3In a way, this equivalence provides an account to justify that our E-TGEL is asymptotically efficient for the

estimation of the parameters of interest.
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identified by conditional moment restrictions not involving parameters of interest, which is a

subset of all moments used for estimation. They show that semiparametric two-step optimally

weighted GMM estimators can achieve the efficiency bound. Thus, they have a special setting

of moments of our E-TGEL to a specific semiparametric model. Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey and Robins (2018a) provide an excellent literature review on

C(α)-type orthogonalization and they show that it can be used to construct debiased/double

machine learning estimators. Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018b)

give a general construction of debiased/locally robust/orthogonal moment functions for GMM,

where a first step nonparametric estimation has no effect on the influence function.

This paper is organized as follows. Section 2 introduces the TGEL estimator and investigates

its asymptotic distribution, efficiency and higher order asymptotic bias properties. Section 3

studies various tests for parameter restrictions. Monte Carlo results are reported in Section 4.

Section 5 concludes. Lemmas and proofs of some theorems are provided in appendices, and

more detailed proofs are in the online supplementary material associated with this article.

2 Two-step GEL

Suppose that a sample moment gn(γ) = 1
n

∑n
i=1 gni(γ) is available, where n is the sample size, γ

is a kγ ×1 parameter vector and gni(γ) is mg ×1 with mg ≥ kγ . The true parameter value γ0 of γ

is characterized by the equation

E[gn(γ0)] = 0.

In general, gni(γ) can depend on all n data observations. At the true value γ0 of γ , gni(γ0)’s

are martingale differences (MD) with respect to an increasing sequence of σ -fields, but at other

parameter values they may not be MDs. Denote γ = (α′,β′)′, where α is a kα × 1 subvector of

nuisance parameters, and β is a kβ ×1 subvector of parameters of interest such that kγ = kα+kβ .

We consider the estimation of β with the moment vector gn(α̌,β) or gn(α̇n(β),β), where α̌ is

any
√
n-consistent estimator of α and α̇n(β) is any estimating function of β such that its value

at a consistent estimator of β is a
√
n-consistent estimator of α. An example of α̌ is a GMM

estimator derived from a moment vector hn(α) that does not involve β, and an example of α̇n(β)
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is an estimating equation derived from hn(α,β). Here hn(α) and hn(α,β) do not need to be

subvectors of gn(γ). The interesting situation is the case where α̌ and α̇n(β) are easy to derive,

while moments for the joint estimation of both α and β are efficient but relatively complex.

Some examples of α̌ and α̇n(β) are given below.

Example 1. Consider the following probit model with an endogenous regressor:

y∗1 = x′1κ+ y2τ +u, y2 = x′1α1 + x′2α2 + ε,

y1 = 1 if y∗1 > 0, and y1 = 0 otherwise,

(uε ) |x ∼N
(
0,

(
σ2
u ρσuσε

ρσuσε σ2
ε

))
,

(2.1)

where x1 and x2 are exogenous variable vectors, x = [x′1,x
′
2]′, y2 is an endogenous regressor, and κ,

τ , α1 and α2 are parameters. While y∗1 is not observable, we can observe an indicator y1, which

takes value 1 if y∗1 is positive, and takes value 0 otherwise. Since y2 is generated by a linear model,

a simple consistent estimator of α = [α′1,α
′
2]′ is the OLS estimator, which relates to a moment vector

ga(α) = x(y2−x′α) that only involves α. This estimator can be used to construct a TGEL estimator of

parameters of interest, denoted by β, with some moment conditions. A TGEL estimator with a proper

parameter normalization for identification is defined in Section 4.1. The whole moment vector may

or may not include ga(α). For example, the empirical moments consisting of scores are rather complex

and do not include ga(α) (See Rivers and Vuong, 1988).

Example 2. Consider the Box-Cox transformation model for a positive dependent variable yi : zi(β) =

x′iα +ui , where zi(β) = (yβi − 1)/β if β , 0, zi(β) = logyi if β = 0, xi is a vector of exogenous variables

and ui is an error term with mean zero. Although the model is nonlinear in β, it is a linear regression

model for given β, so an estimating function for α can be obtained by regressing zi(β) on xi , which

relates to the moment vector xi[zi(β)− x′iα] that involves both α and β.

Example 3. Consider the following SAR model:

Yn = βWnYn +Xnα1 +Vn, (2.2)

where n is the sample size, Yn is an n × 1 vector of observations on the dependent variable, Xn is

an n × kx matrix of observations on kx exogenous variables, Wn is an n × n spatial weights matrix

with a zero diagonal, β is a scalar spatial dependence parameter, α1 is a kx × 1 vector of coefficients,
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and elements vni ’s of Vn = [vn1, . . . , vnn]′ are i.i.d. with mean zero and variance σ2. Model (2.2) can

be estimated with moments linear in Vn and moments quadratic in Vn (Lee, 2007), where the latter

ones are motivated from the quasi maximum likelihood estimation and Moran’s I test for spatial

dependence (Moran, 1950). Like the above Box-Cox transformation model, model (2.2) is a linear

regression model (In−βWn)Yn = Xnα1 +Vn for given β. Thus, natural estimating functions of α1 and

σ2 can be, respectively,

α̇1n(β) = (X ′nXn)−1X ′n(In − βWn)Yn, (2.3)

σ̇2
n (β) =

1
n
V ′n(α̇1n(β),β)Vn(α̇1n(β),β), (2.4)

where Vn(α1,β) = (In −βWn)Yn −Xnα1. As in Jin and Lee (2019), model (2.2) can be estimated with

the moment vector:

gn(γ) =
1
n

[V ′n(α1,β)P1nVn(α1,β)− σ2 tr(P1n), . . . ,V ′n(α1,β)PkpnVn(α1,β)− σ2 tr(Pkpn),V ′n(α1,β)Qn]′,

(2.5)

where γ = [α′,β]′ with α = [α′1,σ
2]′, Pjn’s are n × n matrices, which are functions of Wn, and Qn is

an n× kq IV matrix, which are functions of Xn and Wn. With α̇1n(β) and σ̇2
n (β) substituting α1 and

σ2 in (2.5), we can consider the two-step estimation of β.

To eliminate possible asymptotic impact of α̌ (or α̇n(β)) on the estimation of β, we may use

C(α)-type moments as follows. Let gn(γ) = [g ′nb(γ), g ′na(γ)]′, where gnb(γ) is mb × 1 and gna(γ)

is ma × 1 such that mg = mb +ma.4 Consider the function gnb(γ) − C̄1ngna(γ) = C̄ngn(γ) of mb

moments, where C̄1n is an mb × ma nonstochastic matrix with bounded elements and C̄n =

[Imb ,−C̄1n] with Imb being the mb ×mb identity matrix. We can show by the mean value theorem

that
√
nC̄ngn(α̌,β0) has the same asymptotic distribution as that of

√
nC̄ngn(γ0) if C̄nḠnα = Ḡnbα−

C̄1nḠnaα = 0 and α̌ = α0 + Op(n−1/2), where Ḡnα = E(∂gn(γ0)
∂α′ ), Ḡnbα = E(∂gnb(γ0)

∂α′ ), and Ḡnaα =

E(∂gna(γ0)
∂α′ ) is assumed to have full column rank.5 Such a C̄1n exists if rank(Ḡnα) = rank(Ḡnaα).

An example of C̄1n is Ḡnbα(Ḡ′naαΩ̄
−1
naaḠnaα)−1Ḡ′naαΩ̄

−1
naa, where Ω̄naa = nE[gna(γ0)g ′na(γ0)]. There

4See Appendix A for a list of notations used in this paper.
5With C̄nḠnα = 0, by a first order Taylor expansion of

√
nC̄ngn(α̌,β0) at α = α0,

√
nC̄ngn(α̌,β0) has the same

asymptotic distribution as that of
√
nC̄ngn(γ0) as long as α̌ = α0 + op(n−1/4). Thus, it is possible to allow for

the convergence rate of α̌ to be slower than
√
n but faster than n1/4. We focus on the usual case with the

√
n-

convergence rate of α̌ in this paper.
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are mb moments in C̄ngn(γ), thus the number of moments is reduced by ma from mg . In the

special case that ma = kα, we have C̄1n = ḠnbαḠ−1
naα. For the following analyses, we assume that

ma ≥ kα and there exists a C̄n such that C̄nḠnα = 0. However, the case ma = kα will be of special

interest.

The transformation matrix C̄n might involve unknown parameters α0 and β0. Let Cn(α,β)

be a function of α and β such that Cn(α,β) at consistent estimators of α0 and β0 is a consistent

estimator of limn→∞ C̄n. If expectations in C̄n have closed forms, then we may simply letCn(γ) =

C̄n(γ), where C̄n(γ) is the matrix obtained by replacing γ0 in C̄n with γ ; otherwise, relevant

expectations can be estimated by corresponding sample averages. For example, when ma = kα,

Cn(γ) can be [Imb ,−Gnbα(γ)G−1
naα(γ)], where Gnbα(γ) = ∂gnb(γ)

∂α′ and Gnaα(γ) = ∂gna(γ)
∂α′ . We consider

the following TGEL estimators6

β̂
tgel

= argmin
β∈B

max
µ∈Λnd(α̌,β)

n∑
i=1

ρ
(
µ′dni(α̌,β)

)
, (2.6)

and

β̂
tgel2 = argmin

β∈B
sup

µ∈Λnd(α̇n(β),β)

n∑
i=1

ρ
(
µ′dni(α̇n(β),β)

)
, (2.7)

where dni(γ) = Cn(γ)gni(γ), Λnd(γ) = {µ : µ′dni(γ) ∈ V , i = 1, . . . ,n} for an open interval V con-

taining 0, and ρ(v) is a twice continuously differentiable concave function of a scalar v on V .

The TGEL estimators does not involve the estimation of any variance.7 Denote ρk(v) = ∂kρ(v)
∂vk

for k = 1,2. We may let ρ1(0) = ρ2(0) = −1 without loss of generality, as long as ρ1(0) , 0 and

6Alternatively, we may first derive a consistent but perhaps inefficient estimator β̌ of β0 and use the moment

Ĉn(α̌, β̌)gni(α̌,β) instead of Cn(α̌,β)gni(α̌,β) for estimation. Then an asymptotically equivalent TGEL estimator can

be derived. Using Ĉn(α̌, β̌)gni(α̌,β) involves an additional estimation step of β. These two moments also differ in

terms of identification conditions. We focus on the TGEL estimator using Cn(α̌,β)gni(α̌,β) in the main text, and

investigate the other one in the supplementary material. The same comment applies to the case with α̇n(β) for

Cn(α̇n(β),β).
7We may also consider optimal two-step GMM (TGMM) estimators, which require a consistent estimator

of the variance of 1√
n

∑n
i=1 gni(γ0) to construct an optimal weighting matrix. As gni(γ0)’s are MDs, the vari-

ance of 1√
n

∑n
i=1 gni(γ0) is Ω̄n = 1

n

∑n
i=1E[gni(γ0)g ′ni(γ0)]. With α̌ and a consistent estimator β̌ of β0, Ω̄n can

be estimated as Ωn(α̌, β̌) = 1
n

∑n
i=1 gni(α̌, β̌)g ′ni(α̌, β̌). Denote dn(γ) = Ĉn(γ)gn(γ) and Ωnd(γ) = Ĉn(γ)Ωn(γ)Ĉ′n(γ).

The proper optimal TGMM estimators of β to be compared with β̂
tgel

and β̂
tgel2 are, respectively, β̂

tgmm
=

argminβ∈B d′n(α̌,β)Ω−1
nd(α̌, β̌)dn(α̌,β) and β̂

tgmm2 = argminβ∈B d′n(α̇n(β),β)Ω−1
nd(α̇n(β̌), β̌)dn(α̇n(β),β).
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ρ2(0) < 0 (Newey and Smith, 2004). The class of GEL estimators include the EL estimator (Qin

and Lawless, 1994; Smith, 1997), the ET estimator (Kitamura and Stutzer, 1997; Smith, 1997),

and the CU estimator (Newey and Smith, 2004), which have, respectively, ρ(v) = ln(1 − v) for

v < 1, ρ(v) = −ev and ρ(v) = −1
2(v + 1)2. The TGEL estimators of the auxiliary vector µ corre-

sponding to β̂
tgel

and β̂
tgel2 are, respectively, µ̂

tgel
= argmaxµ∈Λnd(α̌,β̂

tgel
)
∑n
i=1ρ

(
µ′dni(α̌, β̂tgel)

)
,

and

µ̂
tgel2 = arg max

µ∈Λnd(α̇n(β̂
tgel2),β̂

tgel2)

n∑
i=1

ρ
(
µ′dni(α̇n(β̂

tgel2), β̂
tgel2)

)
.

A two-step GEL estimator has been considered in Newey et al. (2005) as

argmin
β∈B

sup
λ∈Λng (α̌,β)

n∑
i=1

ρ
(
λ′gni(α̌,β)

)
,

where Λng(α,β) = {λ : λ′gni(α,β) ∈ V , i = 1, . . . ,n}. It is asymptotically equivalent to the GMM

estimator argminβ∈B g ′n(α̌,β)Ω−1
n (γ̃)gn(α̌,β), where Ωn(γ) = 1

n

∑n
i=1 gni(γ)g ′ni(γ) and γ̃ is an ini-

tial consistent estimator of γ , due to the self-normalization property of the GEL.8 Since α̌ is

generally inefficient and has an impact on the asymptotic variance of estimates of β, the usual

variance formula cannot be used and a correction is needed. An inefficient estimate α̌ leads to

the inefficiency of the second-step estimate of β. Also their two-step GEL objective function

cannot be directly used to construct asymptotically pivotal tests either. As shown below, our

proposed TGEL objective function and estimators are designed to overcome those issues.

For comparison purposes, we present also the ordinary GEL estimator, which is

γ̂
gel

= argmin
γ∈Γ

max
λ∈Λng (γ)

n∑
i=1

ρ
(
λ′gni(γ)

)
, (2.8)

where Γ is the parameter space of γ . The TGEL estimator (2.6) is computationally simpler than

γ̂
gel

since there are fewer auxiliary parameters in µ than in λ and fewer parameters in β to be

estimated than in γ .

8It can be shown as for the ordinary GEL that, with moments gni(α̌,β) for i = 1, . . . ,n, the leading order term for

the GEL estimator argminβ∈B supλ∈Λng (α̌,β)
∑n
i=1ρ

(
λ′gni(α̌,β)

)
is the same as that for a GMM estimator with the em-

pirical moment gn(α̌,β) and the weighting matrix [ 1
n

∑n
i=1 gni(γ̃)g ′ni(γ̃)]−1. So GEL employs [ 1

n

∑n
i=1 gni(γ̃)g ′ni(γ̃)]−1

as the weighting internally, but that is not proper as α̌ has an impact on the asymptotic variance of the moment
√
ngn(α̌,β0).
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Let Ω̄n(γ) = 1
n

∑n
i=1E[gni(γ)g ′ni(γ)], Ω̄n = Ω̄n(γ0), Gn(γ) = ∂gn(γ)

∂γ ′ , Ḡn(γ) = E[Gn(γ)], Ḡn =

Ḡn(γ0) and Ḡnβ = E(∂gn(γ0)
∂β′ ). The following regularity conditions are required for our asymptotic

analysis on the consistency and asymptotic distributions of considered estimators.

Assumption 1. (i) E[gn(γ0)] = 0 and γ0 ∈ Γ is the unique solution to limn→∞E[gn(γ)] = 0;9 (ii) Γ is

compact; (iii) gni(γ) is continuous at each γ ∈ Γ with probability one; (iv) supγ∈Γ ‖gn(γ)−E[gn(γ)]‖ =

op(1) and E[gn(γ)] is continuous on Γ uniformly in n; (v) supγ∈Γ ‖gni(γ)‖η ≤ bni for some η > 2

and bni with 1
n

∑n
i=1E(bni) = O(1); (vi) supγ∈N ‖Ωn(γ) − Ω̄n(γ)‖ = op(1) for a neighborhood N of

γ0, Ω̄n(γ) is continuous on N uniformly in n, and limn→∞ Ω̄n is nonsingular; (vii) ρ(v) is con-

cave on V , twice continuously differentiable in a neighborhood of zero, and ρ1(0) = ρ2(0) = −1;

(viii) γ0 ∈ int(Γ ); (ix) gni(γ) is differentiable on N , supγ∈N ‖Gn(γ)− Ḡn(γ)‖ = op(1), Ḡn(γ) is con-

tinuous on N uniformly in n, and supγ∈N ‖
∂gni(γ)
∂γ ′ ‖ ≤ bni for some bni with 1

n

∑n
i=1E(bni) = O(1);

(x) rank(limn→∞ Ḡn) = kγ ; (xi) gni(γ0)’s are MDs with respect to an increasing σ -field so that
√
ngn(γ0)

d−→N (0, limn→∞ Ω̄n) by a central limit theorem (CLT) for MD arrays.

Assumption 2. (i) There exists a nonstochasticmb×ma matrix C̄1n such that limn→∞ C̄1n exists and

C̄nḠnα = 0, where C̄n = [Imb ,−C̄1n] and ma ≥ kα; (ii) for the case with α̌, supα∈Nα ,β∈B ‖Cn(α,β) −

C̄n(α,β)‖ = op(1) and C̄n(α,β) is continuous on Nα × B uniformly in n, where Nα is a neigh-

borhood of α0; for the case with α̇n(β), supγ∈Γ ‖Cn(γ) − C̄n(γ)‖ = op(1) and C̄n(γ) is continu-

ous on Γ uniformly in n; (iii) for the case with α̌, α̌ ∈ A; for the case with α̇n(β), α̇n(β) is in

the convex parameter space A of α; (iv) for the case with α̌, α̌ = α0 + Op(n−1/2); for the case

with α̇n(β), α̇n(β0) − α0 = Op(n−1/2) and there is some nonstochastic function αn(β) of β such

that αn(β) ∈ A for β ∈ B, supβ∈B ‖α̇n(β) − αn(β)‖ = op(1), αn(β) is continuous uniformly in n

and limn→∞αn(β0) = α0; (v) β0 is the unique solution to limn→∞ C̄n(α0,β)E[gn(α0,β)] = 0 and

limn→∞ C̄n(αn(β),β)E[gn(αn(β),β)] = 0; (vi) for the case with α̌, Cn(α,β) is differentiable with

respect to β on a neighborhood Nβ of β0 and supγ∈N ,1≤j≤kβ ‖
∂Cn(γ)
∂βj
‖ = Op(1); for the case with

α̇n(β), Cn(γ) is differentiable on N , α̇(β) is differentiable on Nβ , supγ∈N ,1≤j≤kγ ‖
∂Cn(γ)
∂γj
‖ = Op(1)

and supβ∈Nβ ,1≤j≤kβ ‖
∂α̇n(β)
∂βj
‖ =Op(1); (vii) rank(limn→∞ C̄nḠnβ) = kβ .

Assumption 1 is for the ordinary GEL estimator, while the additional Assumption 2 is for

9The existence of the limit of E[gn(γ)] is implicitly assumed in the expression limn→∞E[gn(γ)]. This also applies

to other expressions in the paper where limits are taken.
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TGEL estimators. Conditions in Assumption 1 extend those in Newey and Smith (2004) for

i.i.d data to allow for triangular arrays, where the moments at the true parameters are MD

arrays. Since we have only assumed that gni(γ0)’s at the true γ0 are MDs, high level regularity

conditions such as uniform convergence and continuity are imposed. For some specific models,

more primitive conditions can be derived. For example, primitive conditions for GMM and GEL

estimation of SAR models are given in Lee (2007) and Jin and Lee (2019). A CLT for MD arrays

in Assumption 1(xi) can be found in, e.g., Gänsler and Stute (1977) and Hall and Heyde (1980).

For SAR models, a CLT is derived in Kelejian and Prucha (2001) for linear-quadratic forms of

disturbances.

Assumptions 2(ii)–(iv) list some basic conditions on Cn(γ), α̌ and α̇n(β). Assumption 2(ii)

is needed for the consistency of the TGEL estimator. It may be verified by a proper law

of large numbers (LLN) in specific models, since Cn(γ) can be C̄n(γ) or estimated by using

sample averages for relevant expectations. Similarly, as α̇n(β) is a function of sample ob-

servations, an LLN might be applicable and it is plausible to assume some uniform conver-

gence and continuity conditions on α̇n(β).10 With α̌, even if limn→∞E[gn(α0,β)] is uniquely

zero at β = β0, limn→∞ C̄n(α0,β)E[gn(α0,β)] might not be so as the transformation reduces the

number of moments. As an example, consider the estimation of the SAR model (2.2) with

gn(γ) = [gnb(γ), gna(γ)]′, where gnb(γ) = 1
nV
′
n(α1,β)WnVn(α1,β) and

gna(γ) =
1
n

[V ′n(α1,β)Vn(α1,β)−nσ2,V ′n(α1,β)Qn]′

with Qn being an n× kq matrix for some kq ≥ kx. In this special case, as E ∂gnb(γ0)
∂α′ = 0, we may let

C̄1n = 0. Then limn→∞ C̄n(α0,β)E[gn(α0,β)] = limn→∞E[gnb(α0,β)] = limn→∞
σ2

0
n (β0−β) tr[Wn(Tn+

T ′n)] + limn→∞
1
n(β0 − β)2[(TnXnα10)′Wn(TnXnα10) + σ2

0 tr(T ′nWnTn)], which can be zero at β , β0,

where Tn = Wn(In − β0Wn)−1. On the other hand, 1
n E[gn(γ)] can be uniquely zero at γ = γ0. For

example, when limn→∞
1
nQ
′
n[Xn,TnXnα10] has full column rank, limn→∞Q

′
nVn(α1,β) is uniquely

10As an example, consider the case that gna(α,β) is kα × 1 and α̇n(β) is the solution to gna(α,β) = 0. If

E[gna(α0,β0)] = 0, under regularity conditions, E[gna(α,β)] = 0 yields a solution αn(β), which is a continuously

differentiable function of β and satisfies αn(β0) = α0. we can show that supβ∈B ‖α̇n(β)−αn(β)‖ = op(1), and α̇n(β0) =

α0 +Op(n−1/2) by expanding 0 = gna(α̇n(β0),β0) at (α0,β0). For the SAR model (2.2), with α̇n(β) = [α̇′1n(β), σ̇2
n (β)]′ ,

where α̇1n(β) and σ̇2
n (β) have explicit expressions in, respectively, (2.3) and (2.4), it is easy to show that Assump-

tion 2(iv) is satisfied.
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zero at (α1,β) = (α10,β0), which implies that 1
n E[gn(γ)] is uniquely zero at γ = γ0. In this ex-

ample, the transformation of gn(γ) results in the loss of too much information so that only

a moment quadratic in β is left, from which β0 is not identified. We may move some linear

moments from gna(γ) to gnb(γ) or add more quadratic moments to gnb(γ) to achieve the iden-

tification of β0 when using transformed moments. It is also possible that the transformation

of moments leads to weakened identification, which may result in worse finite sample perfor-

mance, but it is beyond the scope of this paper. In the case that there is an identification issue,

the penalization approach proposed in Frazier and Renault (2017) can be used.11 For simplic-

ity, we assume the identification uniqueness in Assumption 2(v). The same comment applies to

the case with α̇n(β). Assumptions 2(vi)–(vii) are needed for the
√
n-rate convergence of TGEL

estimators.

Denote D̄nβ = C̄nḠnβ and Ω̄nd = C̄nΩ̄nC̄
′
n. Then we have the following theorem on the

asymptotic properties of β̂
tgel

and β̂
tgel2.

Theorem 1. Suppose that Assumptions 1–2 are satisfied.

(i)
√
n(β̂

tgel
−β0)

d−→N
(
0, limn→∞(D̄ ′nβΩ̄

−1
ndD̄nβ)−1

)
and
√
n(β̂

tgel2−β0)
d−→N

(
0, limn→∞(D̄ ′nβΩ̄

−1
ndD̄nβ)−1

)
.

(ii) 2
[∑n

i=1ρ
(
µ̂′
tgel

dni(α̌, β̂tgel)
)
−nρ(0)

] d−→ χ2(mb−kβ) and 2[
∑n
i=1ρ(µ̂′

tgel2dni(α̇n(β̂
tgel2), β̂

tgel2))−

nρ(0)]
d−→ χ2(mb − kβ).

(iii) β̂
tgel

and β̂
tgel2 are generally less efficient relative to β̂

gel
, where β̂

gel
is the joint GEL estimator

of β, which is a subvector of γ̂
gel

in (2.8). But ifma = kα, then β̂
tgel

and β̂
tgel2 (will be denoted

as β̂
e-tgel

and β̂
e-tgel2) are asymptotically equivalent to β̂

gel
.

(iv) Ifma = kα and E(supα∈A,β∈Nβ ‖
∂gn(γ)
∂β′ ‖) <∞ for the parameter spaceA of α and a neighborhood

Nβ of β0, then α̂
e-tgel

and α̂
e-tgel2, where

α̂
e-tgel

= argmin
α∈A

sup
λ∈Λng (α,β̂

e-tgel
)

n∑
i=1

ρ
(
λ′gni(α, β̂e-tgel)

)
11An alternative to the penalization approach in Frazier and Renault (2017) is to use Newton iterations for

the TGEL objective function by starting from the initial consistent estimate β̃. The resulting estimate in each

iteration will be consistent and the estimate sequence converges to a critical point of the TGEL objective function.

As pointed out by Frazier and Renault (2017), the approach in Trognon and Gouriéroux (1990), which we shall

describe later, may also have a similar identification issue.
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and α̂
e-tgel2 = argminα∈A supλ∈Λng (α,β̂

e-tgel2)
∑n
i=1ρ(λ′gni(α, β̂e-tgel2)), are asymptotically equiv-

alent to the joint estimate α̂
gel

of α from (2.8).

With the C(α)-type formulation, the TGEL estimators have an asymptotically normal dis-

tribution with a limiting variance formed by a usual Jacobian matrix of given moments and

a weighting matrix, and do not involve any asymptotic variance of initial estimates of nui-

sance parameters. The TGEL objective functions can provide overidentification tests in Theo-

rem 1(ii). The C(α)-type transformation reduces the number of moments for the estimation of

β by ma, where ma ≥ kα, in order to eliminate the asymptotic impact of the kα × 1 dimensional

estimate α̌ or α̇n(β). The resulting TGEL estimates might not be efficient relative to the joint

estimator β̂
gel

. However, in the case that ma = kα, β̂
tgel

and β̂
tgel2 do not lose asymptotic effi-

ciency for the estimation of β, which is the parameter vector of interest. In the event that it is

also desirable to have a relatively efficient estimate of the nuisance parameter vector α, then the

efficient TGEL estimates β̂
e-tgel

and β̂
tgel2 may be plugged back into the original GEL objective

functions to obtain second round estimates of α, which turn out to be asymptotically as effi-

cient as the joint GEL estimate of α. For our results on GEL estimators in Theorem 1(iii)–(iv)

with ma = kα, the nuisance parameter vector α in gn(α,β) can be replaced by any
√
n-consistent

estimator α̌ or any estimating function α̇n(β) satisfying regularity conditions, while in Crepon

et al. (1997), α is replaced by α̂n(β), where α̂n(β) is the unique solution of gna(α,β) = 0 given β.

We note that our efficient TGEL estimators are asymptotically equivalent to a GMM esti-

mator proposed in Trognon and Gouriéroux (1990). Consider the case with α̌ as an example.

Applying their method to the OGMM objective function g ′n(α,β)Ω−1
n (α̌, β̌)gn(α,β), where β̌ is a

consistent estimator of β0, we derive the following objective function for a two-step estimator

[α∗,β∗] of [α0,β0]:

[gn(α̌,β) +Gnα(α̌,β)(α − α̌)]′Ω−1
n (α̌, β̌)[gn(α̌,β) +Gnα(α̌,β)(α − α̌)], (2.9)

where Gnα(α,β) = ∂gn(α,β)
∂α′ .12 This objective function is derived by a first order Taylor expansion

of gn(α,β) at α = α̌. For given β, the closed form solution of α is

α∗(β) = α̌ − [G′nα(α̌,β)Ω−1
n (α̌, β̌)Gnα(α̌,β)]−1G′nα(α̌,β)Ω−1

n (α̌, β̌)gn(α̌,β).

12Gn(α̌,β) in (2.9) can be replaced by Gn(α̌, β̌) and an asymptotically equivalent estimator can be derived. See

also Frazier and Renault (2017).
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Substituting this expression into (2.9) yields the objective function for β∗:

g ′n(α̌,β)Mnα(β)gn(α̌,β), (2.10)

whereMnα(β) = Ω−1
n (α̌, β̌)−Ω−1

n (α̌, β̌)Gnα(α̌,β)[G′nα(α̌,β)Ω−1
n (α̌, β̌)Gnα(α̌,β)]−1G′nα(α̌,β)Ω−1

n (α̌, β̌).

A two-step GMM (TGMM) estimator β̂
tgmm

, which is asymptotically equivalent to the TGEL es-

timator (see, e.g., Newey and Smith, 2004), has the objective function

g ′n(α̌,β)C′n(α̌,β)[Cn(α̌, β̌)Ωn(α̌, β̌)C′n(α̌, β̌)]−1Cn(α̌,β)gn(α̌,β). (2.11)

Assume that Cn(α̌,β)Gnα(α̌,β) = 0 for this comparison of our TGEL with the GMM in Trognon

and Gouriéroux (1990). Then

[Ω1/2
n (α̌, β̌)C′n(α̌,β)]′Ω−1/2

n (α̌, β̌)Gnα(α̌,β) = Cn(α̌,β)Gnα(α̌,β) = 0

and rank([Ω1/2
n (α̌, β̌)C′n(α̌,β),Ω−1/2

n (α̌, β̌)Gnα(α̌,β)]) = mb + kα ≤ mg as ma ≥ kα. Thus, Mnα(β) =

Ω−1/2
n (α̌, β̌) ·Ω1/2

n (α̌, β̌)Mnα(β)Ω1/2
n (α̌, β̌) ·Ω−1/2

n (α̌, β̌) ≥ Pnα(β), where

Pnα(β) = Ω−1/2
n (α̌, β̌)·Ω1/2

n (α̌, β̌)C′n(α̌,β)[Cn(α̌,β)Ωn(α̌, β̌)C′n(α̌,β)]−1Cn(α̌,β)Ω1/2
n (α̌, β̌)·Ω−1/2

n (α̌, β̌),

by the decomposition of projection in (3.25) of Ruud (2000), and

g ′n(α̌,β)Mnα(β)gn(α̌,β) ≥ g ′n(α̌,β)Pnα(β)gn(α̌,β).

If ma = kα, then g ′n(α̌,β)Mnα(β)gn(α̌,β) = g ′n(α̌,β)Pnα(β)gn(α̌,β). The objective function in (2.11)

differs from g ′n(α̌,β)Pnα(β)gn(α̌,β) only in that the optimal weighting matrix does not involve

unknown β, as the optimal GMM vs CU. Hence, the E-TGEL estimator β̂
e-tgel

is asymptotically

equivalent to β∗. By plugging β̂
e-tgel

back into the original GEL objective function, we may also

derive an estimator of α0 that is asymptotically equivalent to α∗.

We next study higher order asymptotic biases of β̂
tgel

and β̂
tgel2 based on the Nagar-type

expansion (Nagar, 1959) of an estimator β̂:

√
n(β̂ − β0) = ψnβ +n−1/2ϕnβ +Op(n−1),

where E(ψnβ) = 0, ψnβ = Op(1) and ϕnβ = Op(1). The higher order bias of β̂ is computed as

1
n E(ϕnβ). Newey and Smith (2004) show that the ordinary GEL can remove several bias terms
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of the ordinary feasible OGMM. For the TGEL and TGMM estimators, we expect α̌, α̇n(β) and

the estimation of C̄n to result in additional higher order bias terms. To investigate this, we make

the following assumption.

Assumption 3. (i) For the case with α̌,
√
n(α̌ − α0) = ψnα̌ +Op(n−1/2) = Op(1); for the case with

α̇n(β), α̇n(β) is twice differentiable and αn(β) is differentiable in a neighborhood Nβ of β0 such

that ∂α̇n(β0)
∂β′ −

∂αn(β0)
∂β′ = Op(n−1/2) and supβ∈B ‖∇2α̇n(β)‖ = Op(1), where ∇j denotes a vector of all

possible partial derivatives of order j; (ii)
√
n[Cn(γ0) − C̄n] = ψnC +Op(n−1/2), E(‖ψnC‖2) = O(1),

∇C̄n(γ) and ∇2Cn(γ) exist on N , ∇Cn(γ0) −∇C̄n(γ0) = Op(n−1/2) and supγ∈N ‖∇2Cn(γ)‖ = Op(1);

(iii) for 0 ≤ j ≤ 4 and all z, ∇jgni(γ) exists on N , supγ∈N ‖∇jgni(γ)‖ ≤ bni for some bni with

1
n

∑n
i=1E(b5

ni) = O(1), 1
n

∑n
i=1∇krni(γ0) − 1

n

∑n
i=1E[∇krni(γ0)] = Op(n−1/2) for k = 1,2 and rni(γ0) =

gni(γ0), gni(γ0)g ′ni(γ0), or gni(γ0)g ′ni(γ0)gni(γ0); (iv) ρ(v) is three times continuously differentiable

with Lipschitz third derivative in a neighborhood of zero.

In Assumptions 3(i)–(ii), ψnα̌ and ψnC being respectively leading order terms of
√
n(α̌ −α0)

and
√
n[Cn(γ0)−C̄n] are involved to derive the higher order bias of β̂

tgel
, whereψnα̌ andψnC may

be correlated in general. If Cn(γ) is equal to C̄n(γ), which can be the case when expectations

in C̄n have closed forms, then ψnC = 0; otherwise, ψnC , 0. For example, when mb = kα so

that C̄n = [Imb ,−ḠnbαḠ
−1
naα] and we take Cn(γ) = [Imb ,−Gnbα(γ)G−1

naα(γ)], then ψnC = [0,−(Gnbα −

Ḡnbα)Ḡ−1
naα + ḠnbαḠ−1

naα(Gnaα − Ḡnaα)Ḡ−1
naα], where Gnbα = Gnbα(γ0) and Gnaα = Gnaα(γ0). Other

regularity conditions in Assumption 3 such as smoothness conditions on α̇n(β), Cn(γ), gni(γ)

and ρ(v) are needed since Nagar-type expansions are based on higher order Taylor expansions.

Let gni(γ0) = gni , gn = gn(γ0), Gniβ = ∂gni(γ0)
∂β′ , Gnβ = ∂gn(γ0)

∂β′ , Ḡ(j)
nβ = E(∂

2gni(γ0)
∂γj∂β′

), g(j)
ni = ∂gni(γ0)

∂γj
,

C̄
(j)
n = ∂C̄n(γ0)

∂γj
, α(j)

n = ∂αn(β0)
∂βj

, Σ̄nd = (D̄ ′nβΩ̄
−1
ndD̄nβ)−1, H̄nd = Σ̄ndD̄

′
nβΩ̄

−1
nd , P̄nd = Ω̄−1

nd−Ω̄
−1
ndD̄nβΣ̄ndD̄

′
nβΩ̄

−1
nd ,

ρ3(v) = d3ρ(v)
dv3 , ψj be the jth element of any vector ψ, and ekβj be the jth unit column vector of

dimension kβ . Denote ψnβ = −H̄nd
√
nC̄ngn and ψnµ = −P̄nd

√
nC̄ngn, which are leading order

terms of, respectively,
√
n(β̂

tgel
− β0) and

√
nµ̂

tgel
. In addition, let the leading order terms of

√
n[α̇n(β̂

tgel
) − α0],

√
n[Cn(α̌, β̂

tgel
) − C̄n] and

√
n[Cn(α̇n(β̂

tgel
), β̂

tgel
) − C̄n] be, respectively, ψnα̇,

ψnČ and ψnĊ , whose explicit expressions are given in Appendix A.

Theorem 2. Suppose that Assumptions 1–3 are satisfied.
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(i) The bias of β̂
tgel

is

Bias(β̂
tgel

) = [BInd + (BΩnd +
ρ3(0)

2
B̃Ωnd) + (BGnd − B̃

G
nd)] + [BC−βnd +BC−gnd +BC−Ωnd +BC−Gnd +Bα̌nd],

where BInd = H̄nd E(C̄nGnβH̄ndC̄ngn)− 1
2nH̄nd

∑kβ
j=1 C̄nḠ

(kα+j)
nβ Σ̄ndekβj , B

Ω
nd = H̄nd E(C̄nΩnC̄

′
nP̄ndC̄ngn),

B̃Ωnd = 1
n2

∑n
i=1 H̄ndC̄nE(gnig ′niC̄

′
nP̄ndC̄ngni), B

G
nd = −Σ̄nd E(G′nβC̄

′
nP̄ndC̄ngn),

B̃Gnd = − 1
n2 Σ̄nd

n∑
i=1

E(G′niβC̄
′
nP̄ndC̄ngni),

B
C−β
nd = 1

nΣ̄nd

[
tr[C̄(kα+1)

n ḠnαE(ψnα̌ψ′nµ)], . . . , tr[C̄
(kα+kβ)
n ḠnαE(ψnα̌ψ′nµ)]

]′
,

B
C−g
nd = −1

n
H̄nd E(

√
nψnČgn +ψnČḠnαψnα̌ +ψnČḠnβψnβ),

BC−Ωnd = −1
n
H̄nd E[(ψnCΩ̄nC̄

′
n+C̄nΩ̄nψ

′
nC)ψnµ]− 1

n
H̄nd

kα∑
j=1

(C̄(j)
n Ω̄nC̄

′
n+C̄nΩ̄nC̄

(j)′
n )E(ψnµψnα̌j),

BC−Gnd = 1
n E(Σ̄ndḠ′nβψ

′
nČ
ψnµ), and

Bα̌nd =
1
n
E
[
Σ̄nd

kα∑
j=1

Ḡ
(j)′

nβ C̄
′
nψnµψnα̌j − H̄nd

√
nC̄n(Gnα − Ḡnα)ψnα̌ −

1
2
H̄nd

kα∑
j=1

C̄nḠ
(j)
nαψnα̌ψnα̌j

− H̄nd
kα∑
j=1

C̄nḠ
(j)
nβψnβψnα̌j −

1
n
H̄nd

kα∑
j=1

n∑
i=1

C̄nE(g(j)
ni g
′
ni + gnig

(j)′

ni )C̄′nψnµψnα̌j
]
.

(ii) The bias of β̂
tgel2 is

Bias(β̂
tgel2) = �Bias(β̂

tgel
) +BC−α̇nd + (Bα̇−Gαnd − B̃α̇−Gαnd ) +Bα̇−Gα−Cnd ,

where BC−α̇nd = 1
nΣ̄nd

[
tr[(

∑kα
j=1 C̄

(j)
n α

(1)
nj )ḠnαE(ψnα̇ψ′nµ)], . . . , tr[(

∑kα
j=1 C̄

(j)
n α

(kβ)
nj )ḠnαE(ψnα̇ψ′nµ)]

]′
,

B
α̇−Gα
nd = −Σ̄nd E(α′nβG

′
nαC̄

′
nP̄ndC̄ngn), B̃α̇−Gαnd = − 1

n2 Σ̄nd
∑n
i=1E(α′nβG

′
niαC̄

′
nP̄ndC̄ngni),

B
α̇−Gα−C
nd =

1
n
Σ̄ndα

′
nβ E

[( kα∑
j=1

Ḡ
(j)
nαC̄

′
nψnα̇j + Ḡ′nαψ

′
nĊ

)
ψnµ

]
,

and �Bias(β̂
tgel

) has the same form as that of Bias(β̂
tgel

) in (i) except that ψnα̌ in Bias(β̂
tgel

) is

replaced by ψnα̇.
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With the moment vector C̄ngn(α0,β), the bias terms BInd , BΩnd and BGnd have similar interpreta-

tions to corresponding ones for one-step estimators, respectively, the bias for a GMM estimator

with the optimal linear combination D̄ ′nβΩ̄
−1
ndC̄ngn(α0,β), that from estimating the second mo-

ment matrix Ω̄n in Ω̄nd with the empirical variance 1
n

∑n
i=1 gnig

′
ni , and that from estimating Ḡnβ

in the gradient C̄nḠnβ . As gni(γ)’s are not i.i.d., BGnd , B̃
G
nd and BΩnd , B̃

Ω
nd in general, and their

differences depend on the strength of correlations across observations. If gni(γ)’s are i.i.d., then

BGnd−B̃
G
nd drops out from GEL’s higher order bias. Furthermore, for EL, since ρ3(0) = −2, the bias

term BΩnd+ ρ3(0)
2 B̃Ωnd also drops out in the i.i.d. case. The bias term B

C−β
nd +BC−gnd +BC−Ωnd +BC−Gnd +Bα̌nd

of β̂
tgel

arises since the ith transformed moment vector dni(α̌,β) = Cn(α̌,β)gni(α̌,β) involves

Cn(α,β) and the initial estimate α̌. The bias term B
C−β
nd arises from the derivatives C(kα+j)

n of

Cn(α̌,β) with respective to β; BC−gnd , BC−Ωnd and BC−Gnd arise from the estimation of C̄n in, respec-

tively, the moment vector C̄ngn(α0,β), the second moment matrix C̄nΩ̄nC̄
′
n, and the gradient

C̄nḠnβ ; and Bα̌nd arises from the initial estimate α̌.

Compared with β̂
tgel

, β̂
tgel2 has some additional bias terms BC−α̇nd , Bα̇−Gαnd , B̃α̇−Gαnd and Bα̇−Gα−Cnd

due to the derivative of α̇(β). The bias term BC−α̇nd is the direct result of the derivative of α̇(β),

B
α̇−Gα
nd and B̃α̇−Gαnd are related to the correlation of gn with estimated Ḡnα, and Bα̇−Gα−Cnd is related

to the correlation of gn with estimated Cn and also Ḡnα. With i.i.d. data, B̃α̇−Gαnd = B
α̇−Gα−C
nd , so

B̃
α̇−Gα
nd −Bα̇−Gα−Cnd drops out from Bias(β̂

tgel2).

In the special case that gna(γ) = gna(α) does not involve β and is kα × 1, an initial consistent

estimator α̌ might be derived by solving gna(α) = 0. It follows that Cn(α̌,β)gn(α̌,β) = gnb(α̌,β)

does not involve Cn(α̌,β). Furthermore, since E ∂gna(α0)
∂β′ = 0, C̄nḠnβ = E ∂gnb(γ0)

∂β′ does not involve

C̄1n. Then β̂
tgel

will not have the bias terms BC−gnd and BC−Gnd .13

Corollary 1. If gna(γ) = gna(α) is kα × 1, the unique solution α̌ to gna(α) = 0 is a
√
n-consistent

estimator of α0 and α̌ is used to derive β̂
tgel

, then Bias(β̂
tgel

) = [BInd+(BΩnd+ ρ3(0)
2 B̃Ωnd)+(BGnd−B̃

G
nd)]+

[BC−βnd +BC−Ωnd +Bα̌nd].

As in Newey and Smith (2004), Theorem 2 and Theorem D.1 in the supplementary mate-

13The bias term BC−Ωnd will still be present because C̄1n appears in the second moment matrix Ω̄nd , even though

it does not appear in C̄ngn(α̌,β) = gnb(α̌,β). For β̂
tgel2, we may consider the special case that gna(γ) is kα × 1 and

α̇n(β) is the unique solution to gna(γ) = 0, where only the bias term B
C−g
nd disappears.
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rial show that TGEL estimators have fewer bias sources than corresponding TGMM estimators.

However, for general models, it is not clear whether TGEL estimators have smaller higher or-

der biases than TGMM estimators or not, because the signs of higher order bias terms can be

positive or negative and fewer bias terms do not necessarily mean smaller higher order bias. In

addition, as pointed out in the introduction, a TGEL estimator might not have finite moments,

so the analysis might not imply the exact finite sample bias of TGEL and TGMM. Criticisms

and interpretations on using Nagar-type expansions for higher order bias analysis can be found

in Rothenberg (1984) and references therein. To compare the higher order biases of GEL and

GMM, Newey and Smith (2004) consider some special models including conditional moment

restriction models and some minimum distance estimation models. For such models, GEL’s

bias does not increase with the number of moments while GMM’s bias does. GEL automati-

cally eliminates some bias terms due to the presence of unknown β in estimated C̄n. Except

for these bias terms eliminated by GEL, the bias terms from the moment vector C̄ngn(α0,β)

and TGMM’s extra bias terms due to its two-step nature in forming an optimal weighting ma-

trix, TGEL and TGMM estimators have the same higher order bias due to the estimation of C̄n

and the estimate α̌ or α̇n(β). Thus TGEL estimates generally have bias advantages over TGMM

estimates for those conditional moment restriction models and minimum distance estimation

models. In our framework, α̌ and α̇n(β) are arbitrary except for some regularity conditions,

thus it is not easy to see the relation between the number of moments and the bias terms which

are not from C̄ngn(α0,β).

3 Tests for parameter restrictions

In this section, we study tests for parameter restrictions with the TGEL estimator. We consider

kr general restrictions r(β0) = 0 on the parameters of interests β for a kr × 1 vector of functions

r(·) with kr < kβ . The alternative hypothesis is r(β0) , 0. For any
√
n-consistent estimator α̌ of

α, dni(α̌,β) plays the role of gni(γ).14

14α̇n(β̂) at a
√
n-consistent estimator β̂ of β0 is a

√
n-consistent estimator of α0 and the first order asymptotic

analysis in the following text is the same, so we just use α̌.
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Let ρnd(α,β,µ) =
∑n
i=1ρ

(
µ′dni(α,β)

)
, β̂rtgel be the restricted TGEL estimator that solves

min
β∈B

sup
µ∈Λnd(α̌,β)

ρnd(α̌,β,µ), s.t. r(β) = 0,

and µ̂rtgel = argmaxµ∈Λnd(α̌,β̂rtgel)ρnd(α̌, β̂rtgel,µ). The TGEL ratio test has the test statistic

R
tgel

= 2[ρnd(α̌, β̂rtgel, µ̂rtgel)−ρnd(α̌, β̂
tgel

, µ̂
tgel

)], (3.1)

which follows the asymptotic distribution χ2(kr) under the null hypothesis r(β0) = 0. While

R
tgel

requires both restricted and unrestricted estimates, it avoids the estimation of any vari-

ance and it has a form similar to the likelihood ratio test. The Wald test statistic with the TGEL

estimate is

W
tgel

= n · r ′(β̂
tgel

)[R(β̂
tgel

)Σnd(α̌, β̂
tgel

)R′(β̂
tgel

)]−1r(β̂
tgel

), (3.2)

where R(β) = ∂r(β)
∂β′ and Σnd(γ) = [D ′nβ(γ)Ω−1

nd(γ)Dnβ(γ)]−1. Alternatively, we may consider a re-

stricted GEL estimation and construct a test directly based on the GEL score ∂ρnd(γ,µ)
∂β evaluated

at the restricted GEL estimate. Under the null that r(β0) = 0, the test statistic satisfies

S
tgel

=
1
n

∂ρnd(α̌, β̂rtgel, µ̂rtgel)
∂β′

Σnd(α̌, β̂rtgel)
∂ρnd(α̌, β̂rtgel, µ̂rtgel)

∂β
d−→ χ2(kr). (3.3)

This test only requires the restricted TGEL estimate.

AC(α)-type gradient test and a corresponding GEL test can be applied with any
√
n-consistent

restricted estimator β̌r such that r(β̌r) = 0. Let

Ψn(α,β) = R(γ̌r)Σnd(γ̌r)D
′
nβ(γ̌r)Ω

−1
nd(γ̌r)dn(α,β), (3.4)

where γ̌r = (α̌, β̌′r)
′. Then

√
nΨn(α̌, β̌r) is a C(α)-type statistic such that it has the same asymp-

totic distribution as that of
√
nΨn(α̌,β0) by the mean value theorem, and the same as that of

√
nΨn(α0,β0) since

√
ndn(α̌,β0) =

√
ndn(α0,β0) + op(1). Let Ψni(α,β) be the vector derived by re-

placing dn(α,β) in Ψn(α,β) with dni(α,β) so that Ψn(α,β) = 1
n

∑n
i=1Ψni(α,β). Then we have the

following gradient test in the GEL framework:

G
tgel

= 2
[

sup
λ∈ΛnΨ (α̌,β̌r )

n∑
i=1

ρ
(
λ′Ψni(α̌, β̌r)

)
−nρ(0)

]
, (3.5)

where ΛnΨ (α,β) = {λ : λ′Ψni(α,β) ∈ V , i = 1, . . . ,n}. Note that 1
n

∑n
i=1Ψni(γ̌r)Ψ

′
ni(γ̌r) is a consis-

tent estimator of the limiting variance of
√
nΨn(γ0) and its inverse is used internally by the
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GEL as the optimal weighting matrix. An advantage of G
tgel

is its robustness to unknown het-

eroskedasticity, because Ωn(γ0) = 1
n

∑n
i=1 gni(γ0)g ′ni(γ0) may capture unknown heteroskedastic-

ity in gni(γ0) (Lee and Yu, 2012). This test statistic only requires the estimation of the auxiliary

vector λ in the GEL framework, and no variance matrix needs to be estimated.15

We maintain Assumption 4 for asymptotic analysis on the above tests.

Assumption 4. (i) The true β value in the data generating process is βn = β0 + n−1/2c for some

constant vector c; (ii) r(β) is continuously differentiable and R = ∂r(β0)
∂β′ has full row rank; (iii) r(β̌r) =

0 and
√
n(β̌r − β0) =Op(1).

With a continuously differentiable r(·), the Pitman drift in Assumption 4(i) implies a local

violation of r(β) = 0.

Theorem 3. Suppose that Assumptions 1–2 and 4 hold.

(i) R
tgel

,W
tgel

, S
tgel

and G
tgel

are all asymptotically equivalent with the asymptotic distribution

χ2(kr , limn→∞ c
′R′(RΣ̄ndR′)−1Rc), where χ2(a1, a2) denotes a noncentral chi-squared distribu-

tion with a1 degrees of freedom and the noncentrality parameter a2.

(ii) limn→∞ c
′R′(RΣ̄ndR′)−1Rc ≤ limn→∞ c

′R′(RγΣ̄nR′γ )−1Rc, where Rγ = ∂r(β0)
∂γ ′ = [0,R], Σ̄n =

(Ḡ′nΩ̄
−1
n Ḡn)−1, limn→∞ c

′R′(RΣ̄ndR′)−1Rc is the noncentrality parameter in (i), and

lim
n→∞

c′R′(RγΣ̄nR
′
γ )−1Rc

is the noncentrality parameter for tests in the ordinary GEL framework in the supplementary

material.

(iii) If ma = kα, then limn→∞ c
′R′(RΣ̄ndR′)−1Rc = limn→∞ c

′R′(RγΣ̄nR′γ )−1Rc.

The above theorem shows that tests in the TGEL framework are asymptotically equivalent

under either the null or local alternative hypotheses. These tests are locally less powerful in

general than those in the ordinary GEL framework, but they are locally as powerful as the latter

ones when ma = kα.

15In Jin and Lee (2019), this form of test is used to implement Moran’s I test for spatial dependence, which can

also be robust under unknown heteroskedasticity.

21



4 Monte Carlo

In this section, we conduct some Monte Carlo studies on finite sample performance of the two-

step estimators and tests considered in this paper. We consider both the probit model (2.1) with

an endogenous regressor and the SAR model (2.2).

4.1 Probit model with an endogenous regressor

We first consider estimation of model (2.1) with simple moments as those in Wilde (2008),

where the initial consistent estimator of nuisance parameters for TGEL and TGMM is the solu-

tion to a subset of simple empirical moment conditions.16

The parameters for model (2.1) are not identifiable without a proper normalization. We

may show that E(y1|x) = Φ((x′1κ + x′ατ)/σs), where σ2
s = σ2

u + τ2σ2
ε + 2ρτσuσε, and Φ(·) denotes

the standard normal cumulative distribution function. Following Wilde (2008), with β1 = κ/σs

and β2 = τ/σs, we have the simple moment vector g(γ) = [g ′b(γ), g ′a(γ)]′, where gb(γ) = x[y1 −

Φ(x′1β1 +x′αβ2)], ga(γ) = x(y2−x′α), and γ = (α′,β′)′ with β = (β′1,β2)′. Given g(γ), a convenient

two-step estimation is to first derive the OLS estimate α̌ by regressing y2 on x, which is the

solution to the empirical moment condition
∑n
i=1 gai(γ) = 0, where gai(γ) denotes ga(γ) at the

ith observation, and then use the transformed moment Cn(α̌,β)g(α̌,β) to estimate β, where

Cn(α,β) = [Imb ,−(
∑n
i=1

∂gbi (γ)
∂α′ )(

∑n
i=1

∂gai(γ)
∂α′ )−1].

In our Monte Carlo experiments, x1 contains 2 regressors of independent standard normal

random variables and we set β10 = α10 = 0. The two-step approaches have computational

advantage, in particular, if x2 contains many variables, so we let x2 contain 5 or 20 regressors of

independent standard normal random variables. In a linear regression model of y1 with only

an endogenous regressor, i.e., if y1 in (2.1) were generated by y1 = y2τ+u instead, the first stage

F, which is a measure of the IV strength (Staiger and Stock, 1997), is approximately nR2

k2(1−R2) +1,

where R2 = α′20α20

α′20α20+σ2
ε

and k2 is the number of variables in x2. F > 10 is usually regarded as the

16As an alternative asymptotically efficient estimation, in the supplementary material, we consider estimation

with the score vector of the likelihood function, where the initial estimator of nuisance parameters is computa-

tionally simple but is not a solution derived from a subvector of the complex score vector.
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case with strong IV (Staiger and Stock, 1997). We set R2 to be 0.7 or 0.01 and set n to be 100 or

400, so that R2 = 0.7 and R2 = 0.01 correspond to, respectively, relatively strong and very weak

IV cases. Elements of α20 are equal. The true values of σu and σε are equal and are selected

so that the true value of σs is equal to 1. Then β2 = τ and σ2
ε = 1

1+τ2+2ρτ . The true value of τ

is set to be 0, and the true ρ0 is either 0, 0.2, 0.4, 0.6 or 0.8. Each exogenous variable in x2 has

the same coefficient. The number of Monte Carlo repetitions is 2000, and the nominal size for

various tests is 0.05.

For GEL and TGEL estimators, we use a double optimization method. Both inner and outer

optimizations use a quasi-Newton strategy with limited memory BFGS updating. For the inner

optimization, the first order derivative of the objective function is provided and the starting

value is a zero vector. For the outer optimization, the provided derivative is derived by the im-

plicit function theorem. The starting value is the GMM estimate β̃ = argminβ g ′nb(α̌,β)gnb(α̌,β),

where α̌ is the OLS estimate by regressing y2 on x2 and the starting value for β̃ is a zero vector.

More computational details are in the supplementary material.

For the performance of various estimators, we compute the following measures: median bias

(MB), median absolute deviation (MAD), interdecile range (IDR), bias, standard deviation (SD),

root mean squared error (RMSE), and tail probability (TP), which is the proportion of estimates

with absolute values larger than 25 × 90% = 22.5. We follow Guggenberger (2008) to use the

number 25 for TP. The first three are robust measures of central tendency and dispersion. We

consider the following two-step estimates: two-step ET (TET), two-step EL (TEL) and two-

step GMM (TGMM), and compare them with the joint estimates ET, EL and (feasible optimal)

GMM.17 ET, EL and GMM use jointly all the moments in g(γ).

4.1.1 Estimation results

The parameter β2 for the endogenous regressor is often a parameter of interest, so we focus

on the performance of various estimates of β2. Figure 1 presents the estimation results when

17The CU estimator is often observed to possess multiple modes and thus generally considered to be less desir-

able than the EL and ET estimators (Hansen et al., 1996; Imbens et al., 1998). Our Monte Carlo results also show

that CU has worse performance than ET and EL. For simplicity, we do not include results for CU in the main text

but report them in the supplementary material.
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R2 = 0.7. Only the robust measures MB, MAD and IDR are reported, since all TPs are zero

in this case and comparisons of robust measures are observed to be the same as those of the

usual measures bias, SD and RMSE. All MBs are relatively small when x2 contains 5 variables.

The MB of GMM is large when x2 contains 20 variables and ρ0 , 0, but those of ET and EL

are still relatively small. In terms of MAD and IDR, among ET, EL and GMM, EL performs

the best and GMM performs the worst; among TET, TEL and TGMM, EL performs the best,

and ET outperforms TGMM in most cases. The two-step estimates TET, TEL and TGMM have

similar performance as corresponding one-step estimates in general. We also report TET and

TEL estimates where there is no unknown β in the transformation matrix Ĉn, which we denote

by TETc and TELc. We observe that TETc and TELc tend to have larger MB than corresponding

TET and TEL, but they generally have smaller MAD and IDR.
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Figure 1: Performance of various estimates of β2 in the probit model with R2 = 0.7. All TPs are observed to be zero. TETc and TELc are,

respectively, TET and TEL estimators with Ĉn(α̌, β̃). k2 is the number of variables in x2, the true value of τ is 0, and the sample size n is 100.

Figure 2 presents the estimation results when R2 = 0.01. We observe very different results

compared with those in Figure 1 when R2 = 0.7. With R2 = 0.01, ET, EL and GMM have nonzero

TPs in all cases, while two-step estimates have zero TPs except TELc. EL has a smaller TP than

that of ET, but larger than that of GMM. As a result, among ET, EL and GMM, ET has the largest
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SD and RMSE, and GMM has the smallest SD and RMSE. Figure 2 omits the usual measures

bias, SD and RMSE. In terms of robust measures MB, MAD and IDR, GMM has larger MB than

those of ET and EL, but smaller MAD and IDR in some cases. ET has larger MB, MAD and IDR

than those of EL. TEL and TEL have smaller MB than that of TGMM in some cases, but they

generally have larger MAD and IDR than those of TGMM. While TETc and TELc tend to have

larger MB than that of corresponding TET and TEL, they have significantly smaller MAD and

IDR. TELc generally has the smallest MAD and IDR among two-step estimates.
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Figure 2: Performance of various estimates of β2 in the probit model with R2 = 0.01. TETc and TELc are, respectively, TET and TEL estimators

with Ĉn(α̌, β̃). k2 is the number of variables in x2, the true value of τ is 0, and the sample size n is 100.

To investigate the potential local minimum problem of GEL, we also conduct some Monte

Carlo experiments where there is no x1 in model (2.1), so that for two-step estimates, the un-

known parameter β = β2 is one-dimensional and we can do a grid search.18 Following Guggen-

berger (2008), two-step estimates of β2 are searched over the interval [−25,25] with a grid size

0.01. Figure 3 reports the results for the case with R2 = 0.7. We observe similar patterns as

those in the corresponding Figure 1, where grid search is not used. The results with grid search

18We thank an anonymous referee for this suggestion. For joint GMM and GEL estimates, we do not use grid

search since the large number of unknown parameters makes grid search computationally demanding.
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for the case with R2 = 0.01 are similar to those in Figure 2. They are omitted to save space.
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Figure 3: Performance of various estimates of β2 with grid search in the probit model with R2 = 0.7. All TPs are observed to be zero. TETc and

TELc are, respectively, TET and TEL estimators with Ĉn(α̌, β̃). k2 is the number of variables in x2, the true value of τ is 0, and the sample size

n is 100.

From these results, we can see that ET and EL outperform GMM in cases with strong iden-

tification, but they may have a heavy tail problem in cases with weak identification. This is

consistent with the Monte Carlo results in Guggenberger (2008). Note that in our theoretical

analysis, we have assumed strong identification. In the weak identification case, the GEL es-

timators cease to be consistent and can have a nonstandard asymptotic distribution which is

different from that of the (“optimal”) GMM estimator (Stock and Wright, 2000; Guggenberger

and Smith, 2005). Thus, we may observe the results in Figure 2.

Table 1 reports the computational time of various estimates where grid search is not used.

GEL is computationally more intensive than GMM as expected from the saddle-point charac-

terization of GEL. EL takes slightly more time to compute than that of ET. GEL takes about 5 to

20 times longer to compute than TGEL, and GMM takes about 3 to 10 times longer to compute

than TGMM. TETc and TELc take less time to compute than the corresponding TET and TEL in

most cases. The computational time generally increases as the sample size n, k2 and ρ0 increase
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and as R2 decreases.

Table 1: Computational time of various estimates for the probit model

ET EL GMM TET TEL TGMM TETc TELc

n = 100 k2 = 5, R2 = 0.7, ρ0 = 0 20.4 21.0 3.8 7.7 7.8 1.3 7.9 7.3
k2 = 5, R2 = 0.7, ρ0 = 0.8 37.2 40.0 4.9 7.8 8.4 1.6 7.0 7.7
k2 = 5, R2 = 0.01, ρ0 = 0 94.1 100.2 12.9 14.9 15.7 2.1 11.2 12.2
k2 = 5, R2 = 0.01, ρ0 = 0.8 109.2 124.1 13.0 15.4 16.7 2.1 11.4 12.4
k2 = 20, R2 = 0.7, ρ0 = 0 134.9 153.0 11.0 15.3 17.5 2.1 13.4 16.0
k2 = 20, R2 = 0.7, ρ0 = 0.8 234.9 277.7 11.8 15.5 18.7 2.2 13.3 16.1
k2 = 20, R2 = 0.01, ρ0 = 0 293.8 255.9 15.6 22.7 25.3 2.4 16.3 19.5
k2 = 20, R2 = 0.01, ρ0 = 0.8 417.1 446.3 17.0 26.7 31.7 2.4 18.8 23.7

n = 400 k2 = 5, R2 = 0.7, ρ0 = 0 102.7 102.1 4.9 35.4 35.0 2.7 38.9 40.2
k2 = 5, R2 = 0.7, ρ0 = 0.8 245.0 245.4 6.9 36.0 36.2 2.8 39.9 40.4
k2 = 5, R2 = 0.01, ρ0 = 0 393.2 395.8 16.8 87.1 86.8 4.1 80.1 80.6
k2 = 5, R2 = 0.01, ρ0 = 0.8 619.4 624.4 18.8 88.0 90.9 3.9 80.9 82.9
k2 = 20, R2 = 0.7, ρ0 = 0 299.1 312.3 13.8 69.0 74.8 3.8 65.2 71.5
k2 = 20, R2 = 0.7, ρ0 = 0.8 625.0 651.9 16.9 71.6 80.0 3.7 64.9 71.4
k2 = 20, R2 = 0.01, ρ0 = 0 1301.2 1326.7 39.2 152.1 165.3 4.8 110.3 120.0
k2 = 20, R2 = 0.01, ρ0 = 0.8 1852.8 1814.0 43.1 158.7 177.2 4.8 120.1 136.2

(i) The reported numbers are the total time in seconds for computing each estimate 2000 times. The results

are from Matlab on a desktop computer with Intel Core i7-8700 CPU and 16 gigabyte memory.

(ii) TETc and TELc are, respectively, TET and TEL estimators with Ĉn(α̌, β̃).

(iii) k2 is the number of variables in x2. The true values of τ is 0.

4.1.2 Tests

To investigate the performance of various tests of β20 = 0, we set R2 = 0.7 which corresponds

to the case with relatively strong identification. Table 2 reports empirical sizes. With k2 = 5,

the size distortions of all tests are relatively small. With k2 = 20, W
et

, W
el

, W
tet

, W
tel

, G
tet

and G
tel

have large size distortions for the small sample size n = 100, but their empirical sizes

become much closer to the nominal 5% with n = 400. Tests in the two-step frameworks have

similar empirical sizes as those of corresponding ones in the ordinary frameworks except for

some cases with k2 = 20, n = 100 and a large ρ0 = 0.8.

Table 3 reports empirical powers of the tests when n = 100. The powers of all tests increase

as τ0 increases. With τ0 = 0.4, the powers are close to 1. For given ρ0, τ0 and k2, different tests

generally have similar powers.
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Table 2: Empirical sizes of various tests for β20 = 0 in the probit model

k2 = 5, n = 100 k2 = 5, n = 400 k2 = 20, n = 100 k2 = 20, n = 400

ρ0 = 0 ρ0 = 0.8 ρ0 = 0 ρ0 = 0.8 ρ0 = 0 ρ0 = 0.8 ρ0 = 0 ρ0 = 0.8

R
et

0.052 0.065 0.055 0.066 0.081 0.081 0.063 0.066

R
el

0.052 0.065 0.054 0.065 0.079 0.086 0.059 0.064

W
et

0.061 0.067 0.058 0.065 0.166 0.160 0.074 0.071

W
el

0.052 0.059 0.054 0.062 0.094 0.096 0.060 0.062

S
et

0.036 0.043 0.051 0.060 0.021 0.021 0.045 0.058

S
el

0.045 0.060 0.053 0.063 0.062 0.070 0.055 0.064

G
et

0.046 0.060 0.053 0.064 0.059 0.079 0.057 0.064

G
el

0.046 0.058 0.052 0.064 0.057 0.079 0.057 0.064

R
tet

0.052 0.065 0.055 0.066 0.082 0.081 0.063 0.066

R
tel

0.052 0.065 0.054 0.065 0.080 0.084 0.059 0.064

W
tet

0.060 0.068 0.058 0.066 0.161 0.163 0.073 0.071

W
tel

0.051 0.060 0.055 0.064 0.092 0.096 0.063 0.064

S
tet

0.036 0.044 0.051 0.062 0.025 0.025 0.046 0.056

S
tel

0.046 0.058 0.052 0.063 0.065 0.061 0.054 0.063

G
tet

0.049 0.057 0.055 0.063 0.063 0.131 0.057 0.068

G
tel

0.048 0.055 0.055 0.063 0.061 0.129 0.056 0.067

(i) k2 is the number of variables in x2. The nominal size is 5%.

(ii) R
et

: ET ratio test; R
el

: EL ratio test; W
et

: ET Wald test; W
el

: EL Wald test; S
et

:

score-type test in the ET framework; S
el

: score-type test in the EL framework; G
et

:

ET gradient test; G
el

: EL gradient test.

(iii) R
tet

: TET ratio test; R
tel

: TEL ratio test; W
tet

: TET Wald test; W
tel

: TEL Wald

test; S
tet

: score-type test in the TET framework; S
tel

: score-type test in the TEL

framework; G
tet

: TET gradient test; G
tel

: TEL gradient test.
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Table 3: Empirical powers of various tests for β20 = 0 in the probit model

ρ0 = 0 ρ0 = 0.8

τ0 = 0.1 τ0 = 0.2 τ0 = 0.3 τ0 = 0.4 τ0 = 0.1 τ0 = 0.2 τ0 = 0.3 τ0 = 0.4

k2 = 5 R
et

0.245 0.668 0.914 0.992 0.208 0.546 0.807 0.941
R

el
0.244 0.658 0.912 0.993 0.203 0.538 0.806 0.937

W
et

0.265 0.687 0.929 0.996 0.272 0.619 0.864 0.960
W

el
0.240 0.666 0.919 0.995 0.249 0.596 0.850 0.955

S
et

0.193 0.580 0.874 0.984 0.160 0.469 0.754 0.908
S
el

0.228 0.644 0.900 0.992 0.195 0.523 0.792 0.934
G
et

0.233 0.654 0.910 0.993 0.213 0.551 0.814 0.943
G
el

0.230 0.650 0.908 0.993 0.208 0.545 0.813 0.942

R
tet

0.245 0.668 0.914 0.992 0.208 0.546 0.807 0.941
R

tel
0.244 0.658 0.912 0.993 0.203 0.538 0.806 0.937

W
tet

0.262 0.688 0.929 0.995 0.275 0.620 0.867 0.961
W

tel
0.242 0.664 0.922 0.994 0.256 0.601 0.857 0.956

S
tet

0.184 0.561 0.848 0.969 0.110 0.353 0.642 0.826
S
tel

0.223 0.625 0.886 0.985 0.144 0.422 0.718 0.879
G
tet

0.245 0.672 0.918 0.992 0.258 0.607 0.856 0.957
G
tel

0.243 0.667 0.915 0.992 0.253 0.601 0.853 0.957

k2 = 20 R
et

0.264 0.618 0.877 0.980 0.214 0.528 0.784 0.915
R

el
0.275 0.638 0.892 0.984 0.224 0.546 0.804 0.926

W
et

0.384 0.749 0.935 0.992 0.354 0.691 0.882 0.970
W

el
0.308 0.668 0.905 0.989 0.282 0.625 0.840 0.953

S
et

0.105 0.336 0.614 0.777 0.082 0.283 0.482 0.634
S
el

0.243 0.589 0.874 0.982 0.204 0.512 0.786 0.915
G
et

0.239 0.629 0.910 0.989 0.332 0.692 0.890 0.975
G
el

0.235 0.626 0.909 0.989 0.331 0.690 0.888 0.975

R
tet

0.265 0.621 0.876 0.982 0.210 0.526 0.783 0.916
R

tel
0.275 0.639 0.894 0.987 0.221 0.544 0.800 0.925

W
tet

0.378 0.744 0.938 0.988 0.361 0.698 0.887 0.969
W

tel
0.299 0.667 0.908 0.990 0.291 0.636 0.849 0.959

S
tet

0.108 0.320 0.568 0.702 0.043 0.161 0.312 0.427
S
tel

0.246 0.586 0.856 0.970 0.157 0.426 0.682 0.854
G
tet

0.255 0.677 0.931 0.982 0.462 0.814 0.946 0.981
G
tel

0.254 0.677 0.931 0.982 0.460 0.810 0.945 0.981

(i) k2 is the number of variables in x2, the nominal size is 5%, and the sample size is 100.

(ii) R
et

: ET ratio test; R
el

: EL ratio test;W
et

: ET Wald test;W
el

: EL Wald test; S
et

: score-type test

in the ET framework; S
el

: score-type test in the EL framework; G
et

: ET gradient test; G
el

: EL

gradient test.

(iii) R
tet

: TET ratio test; R
tel

: TEL ratio test; W
tet

: TET Wald test; W
tel

: TEL Wald test; S
tet

:

score-type test in the TET framework; S
tel

: score-type test in the TEL framework; G
tet

: TET

gradient test; G
tel

: TEL gradient test.
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4.2 SAR model

For the SAR model (2.2), let Vn(α1,β) = [vn1(α1,β), . . . , vnn(α1,β)]′, Pjn = [pjn,rs] andQn = [Qn1, . . . ,Qnn]′.

Then gn(θ) in (2.5) can be written as gn(θ) = 1
n

∑n
i=1 gni(θ), where

gni(θ) =
[(
v2
ni(α1,β)− σ2

)
p1n,ii + vni(α1,β)

i−1∑
j=1

(p1n,ij + p1n,ji)vnj(α1,β),

. . . ,
(
v2
ni(α1,β)− σ2

)
pkpn,ii + vni(α1,β)

i−1∑
j=1

(pkpn,ij + pkpn,ji)vnj(α1,β),Q′nivni(α1,β)
]′
.

Since E[gni(θ0)|vn1, . . . , vn,i−1] = 0 and E[gni(θ0)|vn1, . . . , vni] = gni(θ0) at the true value θ0 of θ,

gni(θ0)’s are martingale differences. Thus, we may consider GEL and TGEL estimators with

gni(θ)’s.

As one Pjn can be In and Xn is usually included in Qn, we assume that Pkpn = In and Qn =

[Xn,Q1n], and rewrite the moment vector as gn(θ) = [g ′nb(θ), g ′na(θ)]′, where

gnb(θ) =
1
n

[V ′n(α1,β)P1nVn(α1,β)−σ2 tr(P1n), . . . ,V ′n(α1,β)Pkp−1,nVn(α1,β)−σ2 tr(Pkp−1,n),V ′n(α1,β)Q1n]′

and gna(θ) = 1
n [V ′n(α1,β)Vn(α1,β)− nσ2,V ′n(α1,β)Xn]′. TGEL estimators of β can be constructed

with the C(α)-moment [Imb ,−C̄1n]gni(θ), where

C̄1n =
(
E
∂gnb(θ0)
∂α′

)(
E
∂gna(θ0)
∂α′

)−1
=


1
n tr(P1n) 0
...

...
1
n tr(Pkp−1,n) 0

0 Q′1nXn(X′nXn)−1


does not involve unknown parameters.

In our Monte Carlo experiments, Xn contains 2 or 8 exogenous variables and each exogenous

variable is randomly drawn from the standard normal distribution. TheWn is generated by the

rook criterion and row-normalized to have row sums equal to one. We set the variance of vni

to 1 and α10 is chosen such that R2 ≡ var(Xnα10)/[var(Xnα10) + 1] is either 0.7 or 0.01. For

estimation, we use two quadratic moments with P1n = Wn and P2n = In, and the IV matrix is

[Xn,WnXn].

Figures 4–5 report the MBs, MADs and IDRs of various estimates of β.19 In terms of MB,

GEL and TGEL estimators perform better than GMM and TGMM estimators, especially when

19Note that the spatial dependence parameter β is often the parameter of interest in practice. The parameter
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β0 , 0 and kx = 8. In terms of MAD and IDR, GMM, ET and EL have similar performance. For

two-step estimates, we observe that TET and TEL perform better than TGMM in terms of MAD

and IDR.
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Figure 4: Performance of various estimates of β in the SAR model with R2 = 0.7. The sample size n is 100.

5 Conclusion

This paper considers the TGEL estimation of parameters of interest via moment functions,

which are martingale differences at the true parameter values, when there is a
√
n-consistent es-

timator of nuisance parameters or the nuisance parameters can be eliminated by an estimating

function of parameters of interest. We propose to employ a C(α)-type moment vector derived

from proper linear combinations of the original moments. Such a two-step approach can elim-

space of β is (1/λmin,1/λmax), where λmin and λmax are, respectively, the minimum negative and maximum positive

eigenvalues of Wn. As our Wn is row-normalized, λmax = 1. For convenience, two-step estimates of β are searched

over the interval [−0.99,0.99] with a grid size of 0.01 and other estimates do not use grid search but also use this

parameter space for consistency, so we do not report TPs. The comparisons of the usual measures bias, SD and

RMSE for various estimates are similar to those for robust measures, so only robust measures are reported.
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Figure 5: Performance of various estimates of β in the SAR model with R2 = 0.01. The sample size n is 100.

inate the asymptotic impact of the nuisance parameter estimate, so that confidence intervals

and various asymptotically pivotal tests can still be constructed with the TGEL objective func-

tion. Meanwhile, a TGEL approach can save computational time relative to the GEL approach

due to its reduction in the number of moments and the number of parameters to be estimated.

We show that TGEL does not lead to efficiency loss if the linearly combined C(α)-type moment

vector only reduces the number of moments by the number of nuisance parameters. The TGEL

approach has a higher order bias advantage over its corresponding TGMM. In addition to the

reduction in bias terms as for the ordinary GEL, TGEL does not have a bias term of TGMM

which results from using an estimated feasible optimal weighting. Furthermore, we investi-

gate various tests for parameter restrictions in both the ordinary and two-step GEL and GMM

frameworks. Tests in the two frameworks can have equal local power.20

In a recent paper, Cattaneo et al. (2018) show that a first order bias emerges when the

number of included covariates in the first step of a two-step GMM estimation procedure is

20Our two-step approaches are very useful in deriving simple and efficient estimators for some models. In Jin

et al. (2018), TGMM is applied to dynamic short panel data models and is shown to generate closed-form root

estimators of the dynamic parameter that are asymptotically as efficient as quasi maximum likelihood estimators.
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large, rending standard inference procedures invalid. Our analysis is based on a fixed number

of nuisance parameters. It is of interest to study in future research how to extend our analysis

to such a situation, where a bias correction might be needed in addition to the use of a C(α)-

type formulation. Our Monte Carlo results show that two-step EL tests perform similarly to

ordinary EL tests, which may have size distortions in small samples. More accurate inference

for EL can be conducted by applying the Bartlett correction. It is of interest to study the Bartlett

correctability of our two-step EL.21
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Appendix A List of notations

γ = (α′,β′)′, γ is kγ × 1, α is kα × 1, β is kβ × 1.

gn(γ) = 1
n

∑n
i=1 gni(γ), ḡn(γ) = E[gn(γ)], gn(γ) = (g ′nb(γ), g ′na(γ))′, gn(γ) ismg×1, gnb(γ) ismb×1,

gna(γ) is ma × 1. gni = gni(γ0), gn = gn(γ0), gnb = gnb(γ0), γj is the jth element of γ , g(j)
ni = ∂gni(γ0)

∂γj
,

Gniα(γ) = ∂gni(γ)
∂α′ , Gniα = Gniα(γ0), Gnα(γ) = 1

n

∑n
i=1Gniα(γ), Ḡnα = E[Gnα(γ0)], G(j)

niα(γ) = ∂Gniα(γ)
∂γj

,

G
(j)
niα = G(j)

niα(γ0), G(j)
nα = 1

n

∑n
i=1G

(j)
niα, Ḡ(j)

nα = E[G(j)
nα(γ0)].

Gniβ = ∂gni(γ0)
∂β′ , Gnβ = ∂gn(γ0)

∂β′ , Ḡnβ = E(∂g(γ0)
∂β′ ), Ḡ(j)

nβ = E(∂
2gn(γ0)
∂γj∂β′

), Gn(γ) = ∂gn(γ)
∂γ ′ , C̄(j)

n = ∂C̄n(γ0)
∂γj

,

α
(j)
n = ∂αn(β0)

∂βj
.

Ωn(γ) = 1
n

∑n
i=1 gni(γ)g ′ni(γ), Ω̄n = E[Ωn(γ0)], Ω̄naa = E[ngna(γ0)g ′na(γ0)], Ḡnbβ = E(∂gnb(γ0)

∂β′ ),

Ḡnbα = E(∂gnb(γ0)
∂α′ ).
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dni(γ) = Ĉngni(γ), dn(γ) = Ĉngn(γ), Ωnd(γ) = ĈnΩn(γ)Ĉ′n, Ω̄nd = C̄nΩ̄nC̄
′
n.

D̄nβ = C̄nḠnβ , Σ̄nd = (D̄ ′nβΩ̄
−1
ndD̄nβ)−1, H̄nd = Σ̄ndD̄

′
nβΩ̄

−1
nd , P̄nd = Ω̄−1

nd − Ω̄
−1
ndD̄nβΣ̄ndD̄

′
nβΩ̄

−1
nd .

ψnµ = −P̄nd
√
nC̄ngn,ψnβ = −H̄nd

√
nC̄ngn,ψnα̇ =

√
n(α̇n(β0)−α0)+αnβψnβ ,ψnČ = ψnC+

∑kα
j=1 C̄

(j)
n ψnα̌j+∑kβ

j=1 C̄
(kα+j)
n ψnβj , and ψnĊ = ψnC +

∑kα
j=1 C̄

(j)
n ψnα̇j +

∑kβ
j=1 C̄

(kα+j)
n ψnβj .

ekβj is the jth unit column vector of dimension kβ .

Appendix B Proofs

In this section, MVT will denote the mean value theorem.

Proof of Theorem 1. We first prove the consistency of β̂
tgel

. It is shown in the proof of Lemma

H.1(i) that supβ∈B ‖gn(α̌,β) − ḡn(α0,β)‖ = op(1) and supβ∈B ‖ḡn(α0,β)‖ = O(1), where ḡn(γ) =

E[gn(γ)]. We may similarly prove that supβ∈B ‖Cn(α̌,β)−C̄n(α0,β)‖ = op(1) and supβ∈β ‖C̄n(α0,β)‖ =

O(1). It follows that

sup
β∈B
‖Cn(α̌,β)gn(α̌,β)− C̄n(α0,β)ḡn(α0,β)‖

= sup
β∈B
‖[Cn(α̌,β)− C̄n(α0,β)][gn(α̌,β)− ḡn(α0,β)] + C̄n(α0,β)[gn(α̌,β)− ḡn(α0,β)]

+ [Cn(α̌,β)− C̄n(α0,β)]ḡn(α0,β)‖

≤ sup
β∈B
‖Cn(α̌,β)− C̄n(α0,β)‖sup

β∈B
‖gn(α̌,β)− ḡn(α0,β)‖+ sup

β∈B
‖C̄n(α0,β)‖sup

β∈B
‖gn(α̌,β)− ḡn(α0,β)‖

+ sup
β∈B
‖Cn(α̌,β)− C̄n(α0,β)‖sup

β∈B
‖ḡn(α0,β)‖

= op(1).

By Lemma H.4(ii), Cn(α̌, β̂
tgel

)gn(α̌, β̂
tgel

) =Op(n−1/2). Then

‖C̄n(α0, β̂tgel)ḡn(α0, β̂tgel)‖

≤ ‖C̄n(α0, β̂tgel)ḡn(α0, β̂tgel)−Cn(α̌, β̂
tgel

)gn(α̌, β̂
tgel

)‖+ ‖Cn(α̌, β̂
tgel

)gn(α̌, β̂
tgel

)‖ = op(1).

Since C̄n(α0,β)ḡn(α0,β) is uniquely zero at β = β0 for large enough n and it is uniformly equicon-

tinuous, ‖C̄n(α0,β)ḡn(α0,β)‖ must be bounded away from zero outside of any neighborhood of

β0 for large enough n. Hence β̂
tgel

must be inside any neighborhood of β0 with probability
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approaching one (w.p.a.1), i.e., β̂
tgel

= β0 + op(1). As Cn(α̌, β̂
tgel

)gn(α̌, β̂
tgel

) =Op(n−1/2), Lemma

H.3 holds for β̄ = β̂
tgel

and hni(β) = Cn(α̌,β)gni(α̌,β). Therefore,

µ̂
tgel

= arg max
µ∈Λn(α̌,β̂

tgel
)

n∑
i=1

ρ
(
µ′Cn(α̌, β̂

tgel
)gni(α̌, β̂tgel)

)
exists w.p.a.1, and µ̂

tgel
=Op(n−1/2).

We next investigate the asymptotic distribution of θ̂
tgel

. Let vni(α,θ) = µ′Cn(α,β)gni(α,β),

C
(j)
n (α,β) = ∂Cn(α,β)

∂γj
, where γj is the jth element of γ = (α′,β′)′, qni(α,θ) = [∂vni(α,θ)

∂β′ , ∂vni(α,θ)
∂µ′ ]′,

hni(α,θ) =
(
G′niβ(α,β)C′n(α,β)µ

Cn(α,β)gni(α,β)

)
, and ∆̂ni(α,θ) = [µ′C(kα+1)

n (α,β)gni(α,β), . . . ,µ′C
(kα+kβ)
n (α,β)gni(α,β)]′.

Then qni(α,θ) = hni(α,θ) +
(∆̂ni(α,θ)

0
)
, where ∆̂ni(α,θ) is due to the unknown β in Cn(α̌,β). The

first order condition of θ̂
tgel

is
∑n
i=1ρ1(vni(α̌, θ̂tgel))qni(α̌, θ̂tgel) = 0. Applying the MVT to this

condition at θ = θ0 yields

0 =
n∑
i=1

ρ1(0)qni(α̌,θ0) +
n∑
i=1

[
ρ1(vni(α̌, θ̈))

∂qni(α̌, θ̈)
∂θ′

+ ρ2(vni(α̌, θ̈))qni(α̌, θ̈)q′ni(α̌, θ̈)
]
(θ̂

tgel
−θ0)

=
n∑
i=1

ρ1(0)hni(α̌,θ0) +
n∑
i=1

[
ρ1(vni(α̌, θ̈))

(
∂hni(α̌, θ̈)
∂θ′

+
(∂∆̂ni(α̌,θ̈)

∂θ′

0

))
+ ρ2(vni(α̌, θ̈))qni(α̌, θ̈)q′ni(α̌, θ̈)

]
(θ̂

tgel
−θ0),

(B.1)

where θ̈ = (β̈′, µ̈′)′ lies between θ0 and θ̂
tgel

,

∂∆̂ni(α,θ)
∂θj

=
[
µ′
∂[C(kα+1)

n (α,β)gni(α,β)]
∂βj

, . . . ,µ′
∂[C

(kα+kβ)
n (α,β)gni(α,β)]

∂βj

]′
for 1 ≤ j ≤ kβ , and ∂∆̂ni(α,θ)

∂θj
= [e′mb,j−kβC

(kα+1)
n (α,β)gni(α,β), . . . , e′mb,j−kβC

(kα+kβ)
n (α,β)gni(α,β)]′ for

kβ + 1 ≤ j ≤ kθ. With µ̂
tgel

= Op(n−1/2) and the consistency of β̂
tgel

, max1≤i≤n |vni(α̌, θ̈)| =

op(1) by Lemma H.2. Then 1
n

∑n
i=1ρ1(vni(α̌, θ̈))gni(α̌, β̈) = −gn(α̌, β̈) + op(1) = −ḡn(α0, β̈) + op(1) =

−ḡn(α0,β0) + op(1) = op(1). It follows that 1
n

∑n
i=1ρ1(vni(α̌, θ̈))∂∆̂ni(α̌,θ̈)

∂θj
= op(1) for kβ + 1 ≤ j ≤ kθ.

With µ̂
tgel

=Op(n−1/2), similarly, we have 1
n

∑n
i=1ρ1(vni(α̌, θ̈))∂∆̂ni(α̌,θ̈)

∂θj
= op(1) for 1 ≤ j ≤ kβ ,

1
n

n∑
i=1

ρ2(vni(α̌, θ̈))hni(α̌, θ̈)∆̂′ni(α̌, θ̈) = op(1)

and 1
n

∑n
i=1ρ2(vni(α̌, θ̈))∆̂ni(α̌, θ̈)∆̂′ni(α̌, θ̈) = op(1). Then, by (B.1), the term ∆̂ni(α,θ) for the

derivative ∂vni(α,θ)
∂β has no impact on the asymptotic distribution of θ̂

tgel
. Then, as in the proof
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of Theorem 3.2 in Newey and Smith (2004), we may derive from (B.1) that

√
n(θ̂

tgel
−θ0) = −

(
H̄nd
P̄nd

)
C̄n
√
ngn(α̌,β0) + op(1). (B.2)

Applying the MVT to C̄n
√
ngn(α̌,β0) yields C̄n

√
ngn(α̌,β0) = C̄n

√
ngn(γ0) + C̄nGnα(α̈,β0)

√
n(α̌ −

α0), where α̈ lies between α0 and α̌. Since
√
n(α̌ − α0) = Op(1), Gnα(α̈,β0) = Ḡnα + op(1) under

Assumption 1(ix). Using C̄nḠnα = 0, (B.2) becomes

√
n(θ̂

tgel
−θ0) = −

(
H̄nd
P̄nd

)
C̄n

1
√
n

n∑
i=1

gni(γ0) + op(1). (B.3)

With the asymptotic distribution of
√
ngn(γ0) in Assumption 1(xi),

√
n(θ̂

tgel
−θ0)

d−→N
(
0, lim
n→∞

(
Σ̄nd 0

0 P̄nd

))
.

For β̂
tgel2, supβ∈B ‖Cn(α̇n(β),β)− C̄n(αn(β),β)‖ = op(1) and supβ∈B ‖C̄n(αn(β),β)‖ =O(1) by ar-

guments similar to those for supβ∈B ‖gn(α̇n(β),β)−ḡn(αn(β),β)‖ = op(1) and supβ∈B ‖ḡn(αn(β),β)‖ =

O(1) in the proof of Lemma H.1(i). It follows that

sup
β∈B
‖Cn(α̇n(β),β)gn(α̇n(β),β)− C̄n(αn(β),β)ḡn(αn(β),β)‖ = op(1).

Since limn→∞ C̄n(αn(β),β)ḡn(αn(β),β) is uniquely zero at β = β0, C̄n(αn(β),β)ḡn(αn(β),β) must be

bounded away from zero outside of any neighborhood of β0. Hence β̂
tgel2 must be inside any

neighborhood of β0 w.p.a.1, i.e., β̂
tgel2 = β0 + op(1). By Lemma H.3, µ̂

tgel2 = Op(n−1/2). For the

asymptotic distribution of θ̂
tgel2, compared with that of θ̂

tgel
, we need to take into account the

additional derivative term due to the unknown β in α̇(β). This additional term does not affect

the asymptotic distribution of θ̂
tgel2, as the derivative term due to the unknown β in Cn(α̌,β)

for the asymptotic distribution of θ̂
tgel

. Then we may similarly show that θ̂
tgel2 has the same

asymptotic distribution as that of θ̂
tgel

.

(ii) For (ii)–(iv), we only prove the results for β̂
tgel

, since those for β̂
tgel2 can be similarly

proved. As ρ(0) = 1
n

∑n
i=1ρ(0 · dni(α̌, β̂tgel)), by a first order Taylor expansion of 1

n

∑n
i=1ρ(0 ·

dni(α̌, β̂tgel)) at µ̂
tgel

and using the first order condition of µ̂
tgel

,

ρ(0) =
1
n

n∑
i=1

ρ
(
µ̂′
tgel

dni(α̌, β̂tgel)
)

+
1

2n

n∑
i=1

ρ2

(
µ̈′dni(α̌, β̂tgel)

)
µ̂′
tgel

dni(α̌, β̂tgel)d
′
ni(α̌, β̂tgel)µ̂tgel,
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where µ̈ lies between 0 and µ̂
tgel

. Denote M̄nd = Imb − Ω̄
−1/2
nd D̄nβ(D̄ ′nβΩ̄

−1
ndD̄nβ)−1D̄ ′nβΩ̄

−1/2
nd . Then,

2n
[1
n

n∑
i=1

ρ
(
µ̂′
tgel

dni(α̌, β̂tgel)
)
− ρ(0)

]
= −
√
nµ̂′

tgel

1
n

n∑
i=1

ρ2

(
µ̈′ndni(α̌, β̂tgel)

)
dni(α̌, β̂tgel)d

′
ni(α̌, β̂tgel)

√
nµ̂

tgel

=
√
nµ̂′

tgel

1
n

n∑
i=1

dni(α̌, β̂tgel)d
′
ni(α̌, β̂tgel)

√
nµ̂

tgel
+ op(1)

= [C̄n
√
ngn(γ0)]′P̄ndC̄n

√
ngn(γ0) + op(1)

= [Ω̄−1/2
nd C̄n

√
ngn(γ0)]′M̄ndΩ̄

−1/2
nd C̄n

√
ngn(γ0) + op(1)

d−→ χ2(mb − kβ),

(B.4)

where the third equality uses the properties 1
n

∑n
i=1dni(α̌, β̂tgel)d

′
ni(α̌, β̂tgel) = Ω̄nd + op(1), (B.3)

and P̄ndΩ̄nd P̄nd = P̄nd ; and the asymptotic distribution follows because Ω̄
−1/2
nd C̄n

√
ngn(γ0) is

asymptotically multivariate standard normal and M̄nd is a projection matrix with rank (mb−kβ).

(iii) For γ̂
gel

= (α̂′
gel
, β̂′

gel
)′, by (A.8) in Newey and Smith (2004),

√
n(γ̂

gel
−γ0) = −(Ḡ′nΩ̄

−1
n Ḡn)−1Ḡ′nΩ̄

−1
n

√
ngn(γ0) + op(1).

As Ḡn = [Ḡnα, Ḡnβ], by the block matrix inverse formula,

√
n(β̂

gel
− β0) = −

{
Ḡ′nβ[Ω̄−1

n − Ω̄−1
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n ]Ḡnβ

}−1

· Ḡ′nβ[Ω̄−1
n − Ω̄−1

n Ḡnα(Ḡ′nαΩ̄
−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n ]
√
ngn(γ0) + op(1),

(B.5)

where Ω̄−1
n −Ω̄−1

n Ḡnα(Ḡ′nαΩ̄
−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n = Ω̄−1/2

n [Img−Ω̄
−1/2
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n ]Ω̄−1/2

n

with mg =mb +ma. It follows that the asymptotic variance of β̂
gel

is

lim
n→∞

{
Ḡ′nβΩ̄

−1/2
n [Img − Ω̄

−1/2
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n ]Ω̄−1/2

n Ḡnβ
}−1
.

On the other hand, the asymptotic variance of β̂
tgel

is

lim
n→∞

[Ḡ′nβC̄
′
nΩ̄
−1
ndC̄nḠnβ]−1 = lim

n→∞
[Ḡ′nβΩ̄

−1/2
n · Ω̄1/2

n C̄′nΩ̄
−1
ndC̄nΩ̄

1/2
n · Ω̄−1/2

n Ḡnβ]−1.

Note that (Ω̄1/2
n C̄′n)′Ω̄−1/2

n Ḡnα = 0, and Ω̄1/2
n C̄′n and Ω̄−1/2

n Ḡnα both have full column rank. Thus,

for the mg × (mb + kα) matrix E = [Ω̄1/2
n C̄′n,Ω̄

−1/2
n Ḡnα],

E(E′E)−1E′ = Ω̄1/2
n C̄′nΩ̄

−1
ndC̄nΩ̄

1/2
n + Ω̄−1/2

n Ḡnα(Ḡ′nαΩ̄
−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n ,
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by Exercise (3.17) on pp. 71–72 of Ruud (2000). Therefore,

Img − Ω̄
−1/2
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n − Ω̄1/2

n C̄′nΩ̄
−1
ndC̄nΩ̄

1/2
n = Img −E(E′E)−1E′

is nonnegative definite, but will be positive definite if mb + kα < mg . Thus, β̂
tgel2 is generally

less efficient relative to β̂
gel

.

If ma = kα, then E(E′E)−1E′ = Img . Thus,

Img − Ω̄
−1/2
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n = Ω̄1/2

n C̄′nΩ̄
−1
ndC̄nΩ̄

1/2
n ,

and β̂
tgel

has the same asymptotic variance as that of β̂
gel

.

(iv) For α̂
tgel

, the consistency can be similarly proved to that for β̂
tgel

. Then an equation for

α̂
tgel

as that for β̂
tgel

in (B.2) is
√
n(α̂

tgel
−α0) = −(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n
√
ngn(α0, β̂tgel)+op(1).

By the MVT,

√
n(α̂

tgel
−α0) = −(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n [
√
ngn(α0,β0) + Ḡnβ

√
n(β̂

tgel
− β0)] + op(1)

= −(Ḡ′nαΩ̄
−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n [
√
ngn(α0,β0) + Ḡnβ

√
n(β̂

gel
− β0)] + op(1),

where the second equality follows because
√
n(β̂

tgel
− β0) =

√
n(β̂

gel
− β0) + op(1) when ma = kα.

This equation is the same as that we can obtain from the first order condition for α̂
gel

. Hence,
√
n(α̂

tgel
−α0) =

√
n(α̂

gel
−α0) + op(1). �

Proof of Corollary 1. As C̄n = [Imb ,−C̄1n], let ψnČ = [0mb×mb ,−ψnC1
]. With E ∂gna(α0)

∂β′ = 0, ψnČḠnβ =

[0mb×mb ,−ψnC1
]
(
E ∂gnb(γ0)

∂β′
0

)
= 0. Thus, BC−Gnd = 0. By a first order Taylor expansion, 0 = gna(α̌) =

gna(α0)+Ḡnaα(α̌−α0)+Op(n−1) = gna(α0)+n−1/2Ḡnaαψnα̌+Op(n−1), where Ḡnaα = E ∂gna(α0)
∂α′ . Thus,

−1
nH̄ndψnČ(

√
ngn + Ḡnαψnα̌) = −1

nH̄ndψnC1
[
√
ngna(α0) + Ḡnaαψnα̌] = Op(n−3/2). Hence the higher

bias of order O(n−1) for β̂
tgel

does not contain BC−gnd . �

Proof of Theorem 3. (i) To derive the asymptotic distribution of R
tgel

, we use the results

√
n(β̂rtgel − β0) = −[Σ̄nd − Σ̄ndR′(RΣ̄ndR′)−1RΣ̄nd]D̄ ′nβΩ̄

−1
nd

√
ndn(α̌,β0) + op(1). (B.6)

and

√
nµ̂rtgel = [−Ω̄−1

nd+Ω̄−1
ndD̄nβΣ̄ndD̄

′
nβΩ̄

−1
nd−Ω̄

−1
ndD̄nβΣ̄ndR

′(RΣ̄ndR
′)−1RΣ̄ndD̄

′
nβΩ̄

−1
nd]
√
ndn(α̌,β0)+op(1),

(B.7)
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which are derived in Section I.5 of the supplementary material. With (B.7), as in (B.4), we have

2n
[1
n

n∑
i=1

ρ
(
µ̂′rtgeldni(α̌, β̂rtgel)

)
− ρ(0)

]
=
√
nd′n(γ0)[Ω̄−1

nd − Ω̄
−1
ndD̄nβΣ̄ndD̄

′
nβΩ̄

−1
nd + Ω̄−1

ndD̄nβΣ̄ndR
′(RΣ̄ndR

′)−1RΣ̄ndD̄
′
nβΩ̄

−1
nd]
√
ndn(γ0) + op(1).

(B.8)

By (B.4) and (B.8),

R
tgel

=
√
nd′n(α0,β0)Ω̄−1

ndD̄nβΣ̄ndR
′(RΣ̄ndR

′)−1RΣ̄ndD̄
′
nβΩ̄

−1
nd

√
ndn(α0,β0) + op(1).

By the MVT,

√
ngn(α0,β0) =

√
ngn(α0,βn) +Gnβ(α0, β̈n)

√
n(β0 − βn)

=
√
ngn(α0,βn)− Ḡnβc+ op(1)

d−→N
(
− lim
n→∞

Ḡnβc, lim
n→∞

Ω̄n

)
,

where β̈n lies between β0 and βn. Hence, R
tgel

d−→ χ2(kr , limn→∞ c
′R′(RΣ̄ndR′)−1Rc).

For W
tgel

, by the MVT,
√
nr(β̂

tgel
) = R(β̈)

√
n(β̂

tgel
− β0) = −RΣ̄ndD̄ ′nβΩ̄

−1
nd

√
ndn(γ0) + op(1),

where the second equality follows by (B.3). It follows thatW
tgel

=R
tgel

+ op(1).

For S
tgel

,

1
√
n

∂
∂β

ρnd(α̌, β̂rtgel, µ̂rtgel) =
1
n

n∑
i=1

ρ1

(
µ̂′rtgeldni(α̌, β̂rtgel)

)∂d′ni(α̌, β̂rtgel)
∂β

√
nµ̂rtgel

= −D̄ ′nβ
√
nµ̂rtgel + op(1)

= R′(RΣ̄ndR
′)−1RΣ̄ndD̄

′
nβΩ̄

−1
nd

√
ndn(α̌,β0) + op(1).

It follows that

S
tgel

=
√
nd′n(α0,β0)Ω̄−1

ndD̄nβΣ̄ndR
′(RΣ̄ndR

′)−1RΣ̄ndD̄
′
nβΩ̄

−1
nd

√
ndn(α0,β0) + op(1) =R

tgel
+ op(1).

For G
tgel

, as in Lemma H.2, λ̌r = argmaxλ∈ΛnΨ (α̌,β̌r )
∑n
i=1ρ

(
λ′Ψni(α̌, β̌r)

)
exists w.p.a.1, and

the first order condition
∑n
i=1ρ1

(
λ̌′rΨni(α̌, β̌r)

)
Ψni(α̌, β̌r) = 0 holds. Applying the MVT to this

first order condition at λ = 0, we have

0 =
n∑
i=1

ρ1(0)Ψni(α̌, β̌r) +
n∑
i=1

ρ2

(
λ̈′Ψni(α̌, β̌r)

)
Ψni(α̌, β̌r)Ψ

′
ni(α̌, β̌r)λ̌r ,
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where λ̈ lies between 0 and λ̌r . Then,

√
nλ̌r =

[1
n

n∑
i=1

ρ2

(
λ̈′Ψni(α̌, β̌r)

)
Ψni(α̌, β̌r)Ψ

′
ni(α̌, β̌r)

]−1 1
√
n

n∑
i=1

Ψni(α̌, β̌r)

= −(RΣ̄ndR
′)−1RΣ̄ndD̄

′
nβΩ̄

−1
nd

√
ndn(γ0) + op(1).

Hence, by an expansion as that in (B.4),

G
tgel

=
√
nλ̌′r

1
n

n∑
i=1

Ψni(α̌, β̌r)Ψ
′
ni(α̌, β̌r)

√
nλ̌r + op(1) =R

tgel
+ op(1). (B.9)

(ii) Note that Ḡn = [Ḡnα, Ḡnβ], then by the block matrix inverse formula, RγΣ̄nR′γ = R[Ḡ′nβΩ̄
−1
n Ḡnβ−

Ḡ′nβΩ̄
−1
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1
n Ḡnβ]−1R′ ≤ R[Ḡ′nβC̄

′
n(C̄nΩ̄nC̄

′
n)−1C̄nḠnβ]−1R′ = RΣ̄ndR′, where

the inequality has used Ikg − Ω̄
−1/2
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n ≥ Ω̄1/2

n C̄′n(C̄nΩ̄nC̄
′
n)−1C̄nΩ̄

1/2
n

whenma ≥ kα, which is shown in the proof of Theorem 1. Thus, c′R′(RγΣ̄nR′γ )−1Rc ≤ c′R′(RΣ̄ndR′)−1Rc.

(iii) Whenma = kα, Ikg −Ω̄
−1/2
n Ḡnα(Ḡ′nαΩ̄

−1
n Ḡnα)−1Ḡ′nαΩ̄

−1/2
n = Ω̄1/2

n C̄′n(C̄nΩ̄nC̄
′
n)−1C̄nΩ̄

1/2
n and

c′R′(RγΣ̄nR′γ )−1Rc = c′R′(RΣ̄ndR′)−1Rc. �
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